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Introduction

Four-dimensional variational assimilation (4DVar)
Minimise the cost function
n
I(x0) = (x0 = x¢) "B~ (xo —xf) + D _(yi — Hi(x:)) "Ry (yi — Hi(x:))
=0

subject to model dynamics x; = Mg_.;xq
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Introduction

Four-dimensional variational assimilation (4DVar)

Minimise the cost function

J(x0) = (x0 — x&)TB 1 (x0 — x&) + Z(yi — Hi(x:) "R (yi — Hi(xs))

assimilarion window

Figure: Copyright: ECMWF %BATH
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Tikhonov regula

Tll-posed problems

Given an operator A we wish to solve
Ax=Db

it is well-posed if

> solution exits
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Tll-posed problems

Given an operator A we wish to solve
Ax=Db

it is well-posed if
> solution exits
» solution is unique

> is stable (A~ continuous)
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Tikhonov regula

Tll-posed problems

Given an operator A we wish to solve
Ax=Db

it is well-posed if
> solution exits
» solution is unique
> is stable (A~ continuous)

Equation is ill-posed if it is not well-posed.
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Tikhonov regula

Linear, finite dimensional case

Finite dimensions

» A :R"™ — R", then Ax = b is well-posed if A~ exists.
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Linear, finite dimensional case

Finite dimensions
» A :R"™ — R", then Ax = b is well-posed if A~ exists.

» Existence imposed by considering least squares solutions

x1,s = arg min{||Ax — b||}
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Tikhonov regula

Linear, finite dimensional case

Finite dimensions
» A :R"™ — R", then Ax = b is well-posed if A~ exists.

» Existence imposed by considering least squares solutions

x1,s = arg min{||Ax — b||}

» Uniqueness imposed by taking minimum norm least squares solution

xMNLs = arg min{||xrs||} = ATb.
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Tikhonov regularisation

Linear, finite dimensional case

Finite dimensions
» A :R"™ — R", then Ax = b is well-posed if A~ exists.

» Existence imposed by considering least squares solutions

x1,s = arg min{||Ax — b||}

» Uniqueness imposed by taking minimum norm least squares solution

xMNLs = arg min{||xrs||} = ATb.

but ..
In the finite dimensional case one can replace A~ by its pseudo-inverse AT, but

> discrete problem of underlying ill-posed problem becomes ill-conditioned
> singular values of A decay to zero
» A~ is unstable! &
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Tikhonov regularisation

A way out of this - Tikhonov regularisation

Solution to the minimisation problem

arg min {||Ax — b|? + aox|1?}
(ATA + D) 'ATD

Xa

where « is called the regularisation parameter.
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Tikhonov regularisation

Tikhonov regularisation using Singular Value Decomposition

Using the SVD of A = UXV7 the regularised solution in Tikhonov regularisation
is given by

Xa = (ATA+al)71ATD
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Tikhonov regularisation

Tikhonov regularisation using Singular Value Decomposition

Using the SVD of A = UXV7 the regularised solution in Tikhonov regularisation
is given by

(ATA + D) 1ATD
(v=TuTuzsvT + avvT)-tvsTuTb

Xa
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Tikhonov regularisation

Tikhonov regularisation using Singular Value Decomposition

Using the SVD of A = UXV7 the regularised solution in Tikhonov regularisation
is given by

Xa

(ATA + D) 1ATD
(v=TuTuzsvT + avvT)-tvsTuTb

. s? 1 T
Vdiag ( 5—+———)U"b
Sy +asg
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Tikhonov regularisation

Tikhonov regularisation using Singular Value Decomposition

Using the SVD of A = UXV7 the regularised solution in Tikhonov regularisation
is given by

(ATA + D) 1ATD
(v=TuTuzsvT + avvT)-tvsTuTb

21
Vdiag (S— )UTb

Xa

s? + o s;
n s? uZ.Tb
Xa = E -, - Vi
S; +a s;

i=1
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Tikhonov regularisation

Bayesian Interpretation

Assuming X, B are random variables then
m(x|b) = m(b[x)7(x)/x(b),

Maximum a posteriori estimator is maximum of a posteriori pdf, hence minimise
w.r.t. x

— log(m(x|b)) = —log(m(b|x)) — log(w(x))

Example
If X and n = B — AX are normally distributed then

11

|[Ax —b]|?
204

) and w(x|b) = Caexp(
207

)

m(x) = C1 exp(—

and Tikhonov cost functional is

J(x) = || Ax — b||* + of|x|*
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Link between 4DVar and Tikhonov regularisation

Relation between 4DVar and Tikhonov regularisation

4DVar minimises

J(x0) = (x0 = x¢) "B~ (x0 = x§) + > _(vi — Hi(x:)) "R (yi — Hi(x,))
i=0

subject to model dynamics x; = Mg_.;xq
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Link between 4DVar and Tikhonov regularisation

Relation between 4DVar and Tikhonov regularisation

4DVar minimises

J(x0) = (x0 = x¢) "B~ (x0 = x§) + > _(vi — Hi(x:)) "R (yi — Hi(x,))
i=0

subject to model dynamics x; = Mg_.;xq

or

J(x0) = (x0 — x5) "B (x0 — xF) + (¥ — H(x0)) "R (¥ — H(x0))
where
H=[H],(HiM(t1,t0))T, ... (HoM(tn, t0))"]"
y=1Iys, -, yrl"

and R is block diagonal with R; on diagonal.
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Link between 4DVar and Tikhonov regularisation

Relation between 4DVar and Tikhonov regularisation

Solution to the optimisation problem

Linearise about xg then the solution to the optimisation problem
J(x0) = (x0 = x¢) "B~ (x0 — x¢) + (¥ — H(x0)) "R~ (¥ — H(x0))
is given by

xo=xF + B +H'RT'H)'HTR'd, d=HxF -3)
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Link between 4DVar and Tikhonov regu

risation

Relation between 4DVar and Tikhonov regularisation

Solution to the optimisation problem
Linearise about xg then the solution to the optimisation problem

J(x0) = (x0 —x¢)" B~ (x0 — x¢) + (¥ — H(x0))"
is given by

¥ — H(x0))
xo=xt +B'+H'R'E)THTRd, d=HxF -y)
Singular value decomposition

Assume B = U%I and R = U?DI and define the SVD of the observability matrix H
H=Uuz=VvT

Then the optimal analysis can be written as

B 53 ufd
X0 = X + E )

AEE

S5

2
where 2




Link between 4DVar and Tikhonov regularisation

Relation between 4DVar and Tikhonov regularisation

If B and R are not multiples of the identity

J(x0) = (x0 — x§) B (x0 — x§) + (¥ = H(x0)) "R~ (¥ — H(x0))
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Link between 4DVar and Tikhonov regularisation

Relation between 4DVar and Tikhonov regularisation

If B and R are not multiples of the identity

J(x0) = (x0 — x§) B (x0 — x§) + (¥ = H(x0)) "R~ (¥ — H(x0))

Variable transformations
B = O'%FB and R = U%FR and
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Link between 4DVar and Tikhonov regularisation

Relation between 4DVar and Tikhonov regularisation

If B and R are not multiples of the identity

J(x0) = (x0 — x§) B (x0 — x§) + (¥ = H(x0)) "R~ (¥ — H(x0))

Variable transformations

B = O'%FB and R = U?)FR and define new variable z := F;l/Q (x0 — xg)
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Link between 4DVar and Tikhonov regularisation

Relation between 4DVar and Tikhonov regularisation

If B and R are not multiples of the identity

J(x0) = (x0 — x§) B (x0 — x§) + (¥ = H(x0)) "R~ (¥ — H(x0))

Variable transformations

B =0%Fp and R = 02 Fp and define new variable z := e
B o B

x0 — x&)
SN o2 —1/2 4 C1/20m—1/2 2
J(z) = p7llz]2 + |[Fp " "d = Fp ""HF 5 /2|3

12 can be interpreted as a regularisation parameter.
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Link between 4DVar and Tikhonov regularisation

Relation between 4DVar and Tikhonov regularisation

If B and R are not multiples of the identity

J(x0) = (x0 — x§) B (x0 — x§) + (¥ = H(x0)) "R~ (¥ — H(x0))

Variable transformations

B =0%Fp and R = 02 Fp and define new variable z := e
B o B

X0 —xg)

% —1/245 —1/2 —1/2
J(z) = u?|z)3 + |F /%4 — B, /PHF ' %23

12 can be interpreted as a regularisation parameter.
This is Tikhonov regularisation!

J(x) = | Ax = b||” + ax|3
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Link between 4DV

- and Tikhonov regul

Example

Burger’s equation

n ou 0%u
ut+u— =v——>
¢ Ox Ox2
Optimal solution (4DVar)
2 Tj

s u:-d o2

B J J 2 @)

up =ugy + —_ vi, where p°=—%

; N2 + S? s J 0_‘23

isation in



Link between 4DVar and Tikhonov regu

Singular value analysis - observations everywhere

Optimal solution (4DVar)

2 T3 2
8% u-d o
uo:u(})g-i-g ﬁ J —v;, where u? = (2)
7 W —i—sj Sj B

Titer factor u drs;
5
4
3
2
1
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0 20 40 60 80 100 0 20 40 60 80 100
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Link between 4DVar and Tikhonov

Singular value analysis - observations every 10 points

Optimal solution (4DVar)

2 T3 2
—uB 55 wd 2_ %
up =ugy + —5——% ———Vj, Wwhere u°= 5.
2 4 s2 s o2
j K J J B
x10
8
7
6
5
.
3
2
1
) 20 40 60 80 100 o 20 40 60 80 100
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Motivation: Results from image process

Blurred and exact images

The blurring process as a linear model
» Let X be the exact image
» Let B be the blurred image
x1 b1
x=vec(X)=| : | €ERY, b=vec(B)=| : | eRY
x}v b;v
N = m *n are related by the linear model

Ax=Db

where A is the discretisation of a point spread function.
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Motivation: Results from image process

Blurred and exact images

The blurring process as a linear model

» Let X be the exact image
» Let B be the blurred image

X1 bl
x=vec(X)=| : | €ERY, b=vec(B)=| : | eRY
XN bN
N = m *n are related by the linear model
Ax=Db
where A is the discretisation of a point spread function.

Noise b = bexa(t +e

XNaive = A7'b = A_lbexact + A le=x + A le

Melina Fre g Lil-regularisation in 4DVar



Motivation: Results from image process

Need regularisation techniques!

Standard technique: Tikhonov regularisation

min {|[Ax — bl|3 + alx|3}

equivalent to
ul'b

X(y—g 2+a 5 Vi
i
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Motivation: Results from image process

Need regularisation techniques!

Standard technique: Tikhonov regularisation

min {|[Ax — bl|3 + alx|3}

equivalent to
ul'b

X(y—g 2+a 5 Vi
i

L1 regularisation
In image processing, Li-norm regularisation provides edge preserving image

deblurring!
min {[|Ax — b|13 + allx||1 }
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Motivation: Results from image processing

Results from image deblurring: L1 regularisation

400 1
450 - 4
S00 il L i 1 L L L 1 S s 35

50 100 180 200 250 300 350 400 4A0 OO

Figure: Blurred picture




Motivation: Results from image proc

Results from image deblurring: L1 regularisation

200 F
250
300
380
400

450

500

YR e L . 1 i
50 100 150 200 250 300 350 400 450 500

Figure: Tikhonov regularisation min {||Ax — b||Z + a||x||§}




Motivation: Results from image processing

Results from image deblurring: L1 regularisation

Reconstruction

50 (SR gl
1o0f ] o ] )
1=k
a0t
=0t
Eu]
=0l
a0t

450 1

I i L L L L L L i}
80 100 150 200 250 300 350 400 450 500

Figure: Ll-norm regularisation min {||Ax — b||3 + aflx[1}
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L1 regularisation

In image processing, Li-norm regularisation provides edge preserving image
deblurring!

» L1 regularisation beneficial in Data Assimilation?

> 4D Var smears out sharp fronts

isation in



Motivation: Results from image process

L1 regularisation

In image processing, Li-norm regularisation provides edge preserving image
deblurring!

» L1 regularisation beneficial in Data Assimilation?
> 4D Var smears out sharp fronts

» L1 regularisation has the potential to overcome this problem

Melina Fre g Lil-regularisation in 4DVar
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First results on Ll-regularisation in 4DVar




sation in 4DVar

Inviscid Burger’s equation

Inviscid Burger’s equation

ut +uuy =0
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First results on L1l-regularisation in 4DVar

Inviscid Burger’s equation

Inviscid Burger’s equation
ut +uuy =0

Conservative first order upwind method

At
n+l _rm _ 20 n _n
Uj =Uj Agc(FJ"*‘% Fj_l)7
where
1772
. _ §Uj UjJr% >0
i3 T YU, v, 1<0
27j+1 Yitg
v 1= 3 +Ujt1) Uj # Ui
itz U] Uj = U]'+1.

Melina Fre
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First results on L1l-regularisation in 4DVar

Initial conditions

Initial conditions for the true solution are

0z )=

. _ 1 .
with Az = ;55 and j=1,...,N
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First results on L1l-regularisation in 4DVar

Initial conditions

Initial conditions for the true solution are

0 )=

with Az = ﬁ and j =1,...,N and for the background solution they are

21 0<a(j) <35

Up(a(3) = {0.6 3.5 < z(j) < 10.

Melina Freitag Lil-regularisation in 4DVar



awtion in 4DVar

Truth and Background trajectory

—o— Truth
—e— Background

3f 1 3f 1

u(x)

of 1 of 1
ab 1 b ]
" . . . . . . . . . " . . . . . . . . .

o 1 2 3 4 5 6 7 8 9 o 1 2 3 4 5 6 7 8 9 10

Figure: Initial conditions for Truth and
Background, t =0

Figure:

Truth and Background after

2000 time steps
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rst results on Ll-regularisation in 4DVar

Setup

> At = 0.0001

» use ”"L1l.1-regularisation” i.e.
min {||Ax — b||3 + allx||}:;]

leading to a differentiable function and avoiding quadratic programming
problem for the moment

isation in



First results on L1l-regularisation in 4DVar

Setup

» At = 0.0001
» use ”"L1l.1-regularisation” i.e.
min {||Ax — b||3 + allx||}:;]

leading to a differentiable function and avoiding quadratic programming
problem for the moment

> length of the assimilation window: 1000 time steps
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First results on L1l-regularisation in 4DVar

Setup

» At = 0.0001
» use ”"L1l.1-regularisation” i.e.
min {||Ax — b||3 + allx||}:;]

leading to a differentiable function and avoiding quadratic programming
problem for the moment
> length of the assimilation window: 1000 time steps

» perfect and noisy observations

Melina Fre g Lil-regularisation in 4DVar



First results on L1-re E awtion in 4DVar

Setup

Perfect observations




First results on L1l-regularisation in 4DVar

4DVar

720 1 2 3 4 5 6 7 8 9 b 720 1 2 3 4 5 6 7 8 9 10
Figure: Truth and Background and Figure: Truth and Background and
final solution at time ¢ = 0 (beginning final solution after 500 time steps
of the assimilation window) using (middle of the assimilation window)
4DVar using 4DVar




First results on L1l-regularisation in 4DVar

4DVar

oy i b
P 1 2 s 4 5 & 1 8 9 u 0 1 2 3 4 s & 7 8§ s 10

Figure: Truth and Background and Figure: Truth and Background and

final solution after 1000 time steps final solution after 2000 time steps

(which is the end of the assimilation (assimilation window plus 1000 further

window) using 4DVar steps forecast) using 4DVar




First results on L1l-regularisation in 4DVar

4DVar

cost function cost function gradient

10 T T T T T T 10 T T T T T T T
€
2
s B
& g
5 10°p 1 't q
2 g
H 3
@
8
10" . . . . . . . 10° . . . . . . .
) 2 4 6 8 10 12 14 u ) 2 4 6 8 10 12 14 16
iterations iterations
Figure: Cost function Figure: Cost function gradient
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results on Ll-reg

L1.1 Regularisation

Figure: Truth and Background and
final solution after 500 time steps
(middle of the assimilation window)
using L1.1

Figure: Truth and Background and
final solution at time ¢ = 0 (beginning
of the assimilation window) using L1.1




results on L1-r

L1.1 Regularisation

=1

=1

Figure: Truth and Background and
final solution after 1000 time steps
(which is the end of the assimilation
window) using L1.1

Figure: Truth and Background and
final solution after 2000 time steps
(assimilation window plus 1000 further
steps forecast) using L1.1




First results on L1l-regularisation in 4DVar

L1.1 Regularisation

. cost function . cost function gradient
10 10
10°F
= 10'h q
5
o g
s 10 ¢ E
§ g
5 §
b=t T
g o s
C10E 2
8.3
8 107} i
10°F
10" 10°
0 2 4 6 8 10 12 14 u 0 2 4 6 8 10 12 14 16
iterations iterations
Figure: Cost function Figure: Cost function gradient
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First results on L1l-regularisation in 4DVar

Comparison 4DVar and L1.1 Regularisation

55 T T T T T 6 T T T T T T T T T
AN -k (T ——————— L
oo ~— _ RMS error before assimilati sr — — — RMS error before assimilatio
RMS error after assimilatior RMS error after assimilation
a5 q
at 1
5 4 1 B
5 5
[%] 1%] 3r 1
= =
@ 35F B o
A 1
3t 1
25 o 1
0 200 400 600 800 1000 1200 1400 1600 1800 20( ] 200 400 600 800 1000 1200 1400 1600 1800 2000
Time step Time step
Figure: Root mean square error using Figure: Root mean square error using
4DVar. L1.1.
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Setup

Noisy observations




First results on L1l-regularisation in 4DVar

Comparison 4DVar and L1.1 Regularisation

55 6 T T T T T T T T
T pe—_"
[ 9 e sttt AR e .
45F — — — RMS error before assimilatiof
RMS error after assimilation
af J al 4
S 35t 1 s
5 5
2 g7 ]
x 3f 4 z
25 i o |
B i
1 4
0 200 400 600 800 1000 1200 1400 1600 1800 20( 0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time step Time step
Figure: Root mean square error using Figure: Root mean square error using
4DVar. L1.1.
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Figure: Truth and Background and Figure: Truth and Background and
final solution at time ¢ = 0 (beginning final solution after 500 time steps
of the assimilation window) using (middle of the assimilation window)
4DVar using 4DVar

isation in



awtion in 4DVar

-2 -2
[ 1 2 3 4 5 6 7 8 9 1 ] 1 2 3 4 5 6 7 8 9 10
Figure: Truth and Background and Figure: Truth and Background and
final solution after 1000 time steps final solution after 2000 time steps
(which is the end of the assimilation (assimilation window plus 1000 further

window) using 4DVar steps forecast) using 4DVar




Figure: Truth and Background and
final solution after 500 time steps
(middle of the assimilation window)
using L1.1

Figure: Truth and Background and
final solution at time ¢ = 0 (beginning
of the assimilation window) using L1.1




results on L1-r

L1.1 Regularisation - tridiagonal B

=1

=1

Figure: Truth and Background and
final solution after 1000 time steps
(which is the end of the assimilation
window) using L1.1

Figure: Truth and Background and
final solution after 2000 time steps
(assimilation window plus 1000 further
steps forecast) using L1.1




First results on L1l-regularisation in 4DVar

4DVar - Gaussian exponential function in B, b;; = o exp(—7;;)

=1

-2

720 1 2 3 4 5 6 7 8 9 1 0 1 2 3 4 5 6 7 8 9 10
Figure: Truth and Background and Figure: Truth and Background and
final solution at time ¢ = 0 (beginning final solution after 500 time steps
of the assimilation window) using (middle of the assimilation window)
4DVar using 4DVar
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sation in 4DVar

4DVar - Gaussian exponential function in B, b;; = o exp(—7;;)

4 T T T T T T T T T 4 T T T T T T . : :
—&— Truth
—&— Background
—&— Final solutiol

Figure: Truth and Background and
final solution after 2000 time steps
(assimilation window plus 1000 further
steps forecast) using 4DVar

Figure: Truth and Background and
final solution after 1000 time steps
(which is the end of the assimilation
window) using 4DVar
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First results on L1l-regularisation in 4DVar

L1.1 Regularisation - Gaussian exponential function in B,
bij = op exp(—rij)

4 T T T T T T : : :
4 —e— Truth
—6&— Truth —o&— Background
—6— Background —&— Final solutio

—S— Final solutiol 3

Figure: Truth and Background and

Figure: Trvuth anq Backfround gnd. final solution after 500 time steps
final solution at time ¢ = 0 (beginning (middle of the assimilati indow)
of the assimilation window) using L1.1 ursr,;lng I?lol ¢ assinuiation window

Melina Fre Lil-regularisation in 4DVar



First results on L1l-regularisation in 4DVar

L1.1 Regularisation - Gaussian exponential function in B,
bij = op exp(—rij)

4 T T T T T T : : : 4 T T T T T T : : :
—o&— Truth —6&— Truth
—o&— Background —o&— Background

R —&— Final solutio N —&— Final solutio

of 4 of 4
oy i b i
2 . i SR
0 1 2 3 4 5 6 7 8 9 1 0 1 2 3 4 5 6 7 8 9 10
Figure: Truth and Background and Figure: Truth and Background and
final solution after 1000 time steps final solution after 2000 time steps
(which is the end of the assimilation (assimilation window plus 1000 further
window) using L1.1 steps forecast) using L1.1
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First results on L1l-regularisation in 4DVar

Conclusions, questions and further work

> L1.1-norm regularisation recovers discontinuity better than 4DVar
» L1.1 minimisation gives smaller increments than 4DVar?
> Breakdown with fewer observations

» Implementation using quadratic/linear programming tools

Melina Fre g Lil-regularisation in 4DVar
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