

Deblurring
images

Melina
Freitag

Outline

Motivation

How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

Mathematical Beer Goggles or

The Mathematics of Image Processing

Melina Freitag

Department of Mathematical Sciences
University of Bath

Postgraduate Seminar Series
University of Bath
12th February 2008

1 Motivation

2 How images become numbers

3 Compressing images

4 The image deblurring problem

5 Blurring and Deblurring images

- The blurring function
- Deblurring

Outline

Deblurring
images

Melina
Freitag

Outline

Motivation

How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

1 Motivation

2 How images become numbers

3 Compressing images

4 The image deblurring problem

5 Blurring and Deblurring images

- The blurring function
- Deblurring

Outline

Deblurring
images

Melina
Freitag

Outline

Motivation

How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

1 Motivation

2 How images become numbers

3 Compressing images

4 The image deblurring problem

5 Blurring and Deblurring images

- The blurring function
- Deblurring

Deblurring
images

Melina
Freitag

Outline

Motivation

How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

One dimensional matrix

$$X = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 8 & 8 & 0 & 4 & 4 & 0 & 2 & 0 \\ 0 & 8 & 8 & 0 & 4 & 4 & 0 & 2 & 0 \\ 0 & 8 & 8 & 0 & 4 & 4 & 0 & 2 & 0 \\ 0 & 8 & 8 & 0 & 4 & 4 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

`imagesc(X), colormap(gray)`

MATLAB image

Deblurring
images

Melina
Freitag

Outline

Motivation

How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

Deblurring
imagesMelina
Freitag

Outline

Motivation

How images
become
numbersCompressing
imagesThe image
deblurring
problemBlurring and
Deblurring
imagesThe blurring
function
Deblurring

Three dimensional matrix

$$X(:,:,1) = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$X(:,:,2) = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$X(:,:,3) = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

`imagesc(X)`

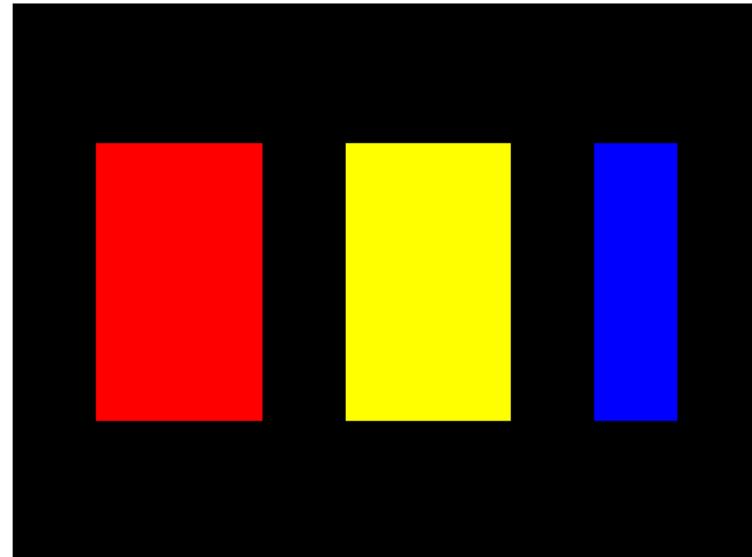
MATLAB image

Deblurring
images

Melina
Freitag

Outline

Motivation


How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring


```
X = imread('pic.jpg'), imwrite(X,'pic.jpg')
```

Outline

Deblurring
images

Melina
Freitag

Outline

Motivation

How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

1 Motivation

2 How images become numbers

3 Compressing images

4 The image deblurring problem

5 Blurring and Deblurring images

- The blurring function
- Deblurring

Deblurring
imagesMelina
Freitag

Outline

Motivation

How images
become
numbersCompressing
imagesThe image
deblurring
problemBlurring and
Deblurring
imagesThe blurring
function
Deblurring

Existence and Uniqueness

Let $X \in \mathbb{C}^{m,n}$, $m \geq n$ Then

$$\left[\begin{array}{c} X \end{array} \right] \left[\begin{array}{c} v_1 | v_2 | \dots | v_n \end{array} \right] = \left[\begin{array}{c} u_1 | u_2 | \dots | u_m \end{array} \right] \left[\begin{array}{ccccc} \sigma_1 & & & & \\ & \sigma_2 & & & \\ & & \ddots & & \\ & & & & \sigma_n \\ & & & & 0 \end{array} \right]$$

or

$$X = U \Sigma V^T,$$

where $U^T U = I$, with columns of U called left singular vectors and $V^T V = I$ with right singular vectors as columns of V and $\Sigma = \text{diag}(\sigma_1, \dots, \sigma_n)$ called **singular values** ordered such that $\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_n \geq 0$.

Low-rank approximations

Deblurring
images

Melina
Freitag

Outline

Motivation

How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

Theorem (The rank of a matrix)

The rank of X is r , the number of nonzero singular values in

$$X = U\Sigma V^T = U \begin{bmatrix} \sigma_1 & & & & & \\ & \sigma_2 & & & & \\ & & \ddots & & & \\ & & & \sigma_r & & \\ & & & & 0 & \cdots \\ & & & & 0 & \ddots \end{bmatrix} V^T.$$

Low-rank approximations

Deblurring
images

Melina
Freitag

Outline

Motivation

How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

Theorem (The rank of a matrix)

The rank of X is r , the number of nonzero singular values in

$$X = U\Sigma V^T = U \begin{bmatrix} \sigma_1 & & & & & \\ & \sigma_2 & & & & \\ & & \ddots & & & \\ & & & \sigma_r & & \\ & & & & 0 & \cdots \\ & & & & & 0 & \ddots \end{bmatrix} V^T.$$

Theorem (Another representation)

X is the sum of r rank-one matrices

$$X = \sum_{j=1}^r \sigma_j u_j v_j^T.$$

Low-rank approximations

Deblurring
images

Melina
Freitag

Outline

Motivation

How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

Theorem

For any ν with $0 \leq \nu \leq r$, define

$$X_\nu = \sum_{j=1}^{\nu} \sigma_j u_j v_j^T,$$

Then

$$\|X - X_\nu\|_2 = \inf_{B \in \mathbb{C}^{m,n}, \text{rank}(B) \leq \nu} \|X - B\|_2 = \sigma_{\nu+1}.$$

Deblurring
imagesMelina
Freitag

Outline

Motivation

How images
become
numbersCompressing
imagesThe image
deblurring
problemBlurring and
Deblurring
imagesThe blurring
function
DeblurringProof ($m = n$)

$$\begin{aligned}\|X - X_\nu\|_2 &= \left\| \sum_{j=\nu+1}^r \sigma_j u_j v_j^T \right\|_2 = \|U \begin{bmatrix} 0 & & & \\ & \sigma_{\nu+1} & & \\ & & \ddots & \\ & & & \sigma_n \end{bmatrix} V^T\|_2 \\ &= \sigma_{\nu+1}\end{aligned}$$

Remains to show that there is no closer rank ν matrix to X .

Low-rank approximations

Deblurring
images

Melina
Freitag

Outline

Motivation

How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

Proof ($m = n$)

$$\begin{aligned}
 \|X - X_\nu\|_2 &= \left\| \sum_{j=\nu+1}^r \sigma_j u_j v_j^T \right\|_2 = \|U \begin{bmatrix} 0 & & & \\ & \sigma_{\nu+1} & & \\ & & \ddots & \\ & & & \sigma_n \end{bmatrix} V^T\|_2 \\
 &= \sigma_{\nu+1}
 \end{aligned}$$

Remains to show that there is no closer rank ν matrix to X .

- Let B have rank ν , **null space of (B)** has dimension $n - \nu$
- $\{v_1, \dots, v_{\nu+1}\}$ has dimension $\nu + 1$
- Let h be a unit vector in their intersection:

$$\begin{aligned}
 \|X - B\|^2 &\geq \|(X - B)h\|^2 = \|Xh\|^2 = \|U\Sigma V^T h\|^2 \\
 &= \|\Sigma(V^T h)\|^2 \geq \sigma_{\nu+1}^2 \|V^T h\|^2 \geq \sigma_{\nu+1}^2.
 \end{aligned}$$

Example $m = 604, n = 453, m * n = 273612$

Deblurring
images

Melina
Freitag

Outline

Motivation

How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

Compression ratio

$$c := \frac{(m+n)\nu}{mn}$$

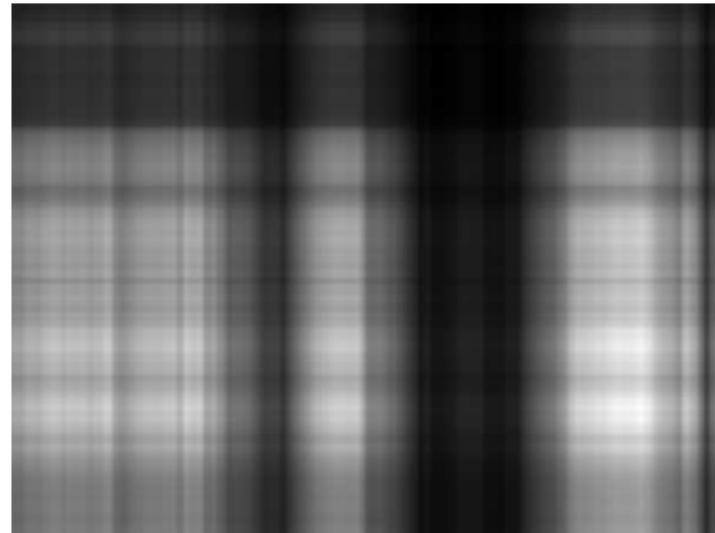
Rank-1 approximation $m = 604$, $n = 453$, $m + n = 1057$

Deblurring
images

Melina
Freitag

Outline

Motivation


How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

Compression ratio

$$c := 3.8631e - 03$$

Rank-2 approximation

Deblurring
images

Melina
Freitag

Outline

Motivation

How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

Compression ratio

$$c := 7.7263e - 03$$

Rank-3 approximation

Deblurring
images

Melina
Freitag

Outline

Motivation

How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

Compression ratio

$$c := 1.1589e - 02$$

Rank-4 approximation

Deblurring
images

Melina
Freitag

Outline

Motivation

How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

Compression ratio

$$c := 1.5453e - 02$$

Rank-5 approximation

Deblurring
images

Melina
Freitag

Outline

Motivation

How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

Compression ratio

$$c := 1.9316e-02$$

Rank-10 approximation

Deblurring
images

Melina
Freitag

Outline

Motivation

How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

Compression ratio

$$c := 3.8631e - 02$$

Rank-20 approximation

Deblurring
images

Melina
Freitag

Outline

Motivation

How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

Compression ratio

$$c := 7.7263e - 02$$

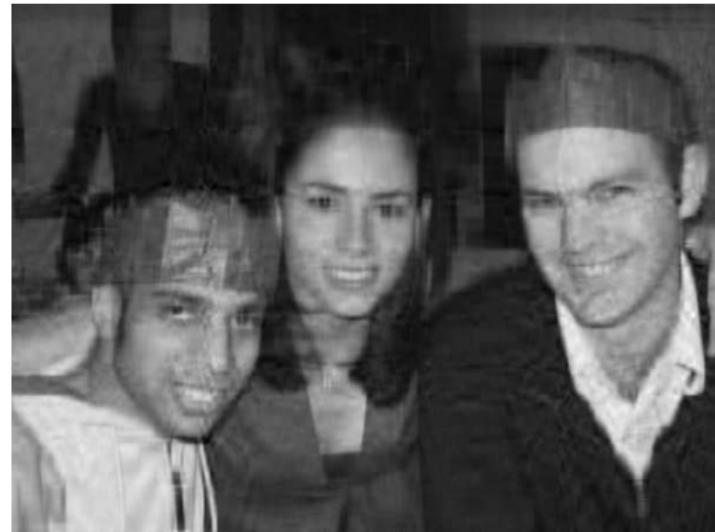
Rank-30 approximation

Deblurring
images

Melina
Freitag

Outline

Motivation


How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

Compression ratio

$$c := 0.11589$$

Rank-40 approximation

Deblurring
images

Melina
Freitag

Outline

Motivation

How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

Compression ratio

$$c := 0.15453$$

Rank-60 approximation

Deblurring
images

Melina
Freitag

Outline

Motivation

How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

Compression ratio

$$c := 0.23179$$

Rank-80 approximation

Deblurring
images

Melina
Freitag

Outline

Motivation

How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

Compression ratio

$$c := 0.30905$$

Outline

Deblurring
images

Melina
Freitag

Outline

Motivation

How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

1 Motivation

2 How images become numbers

3 Compressing images

4 The image deblurring problem

5 Blurring and Deblurring images

- The blurring function
- Deblurring

Blurred and exact images

Deblurring
images

Melina
Freitag

Outline

Motivation

How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

- Let X be the exact image
- Let B be the blurred image

Blurred and exact images

Deblurring
images

Melina
Freitag

Outline

Motivation

How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

- Let \mathbf{X} be the exact image
- Let \mathbf{B} be the blurred image
- If the blurring of the columns is independent of the blurring in the rows then

$$A_c \mathbf{X} A_r^T = \mathbf{B}, \quad A_c \in \mathbb{R}^{m,m}, \quad A_r \in \mathbb{R}^{n,n}$$

Blurred and exact images

Deblurring
images

Melina
Freitag

Outline

Motivation

How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

- Let \mathbf{X} be the exact image
- Let \mathbf{B} be the blurred image
- If the blurring of the columns is independent of the blurring in the rows then

$$A_c \mathbf{X} A_r^T = \mathbf{B}, \quad A_c \in \mathbb{R}^{m,m}, \quad A_r \in \mathbb{R}^{n,n}$$

First attempt at deblurring

$$X_{\text{Naive}} = A_c^{-1} B A_r^{-T}.$$

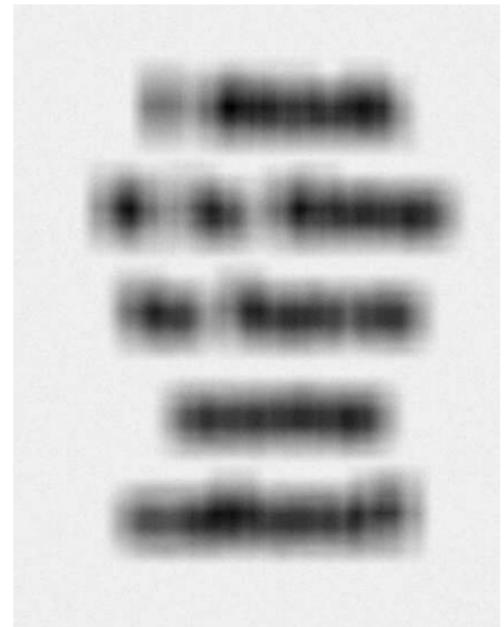
First attempt at deblurring

Deblurring
images

Melina
Freitag

Outline

Motivation


How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

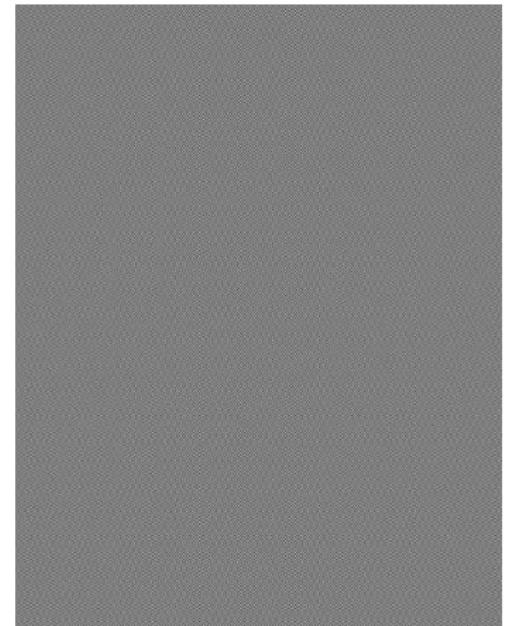
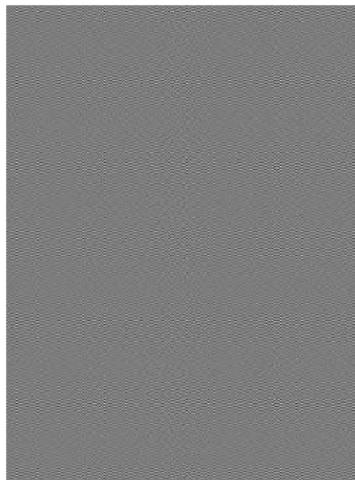
$$X_{\text{Naive}} = A_c^{-1} B A_r^{-T}$$

Deblurring images

Melina
Freitag

Outline

Motivation



How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

What is the problem?

Deblurring
images

Melina
Freitag

Outline

Motivation

How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

A noisy blurred image

$$B = B_{\text{exact}} + E = A_c X A_r^T + E$$

and therefore

$$X_{\text{Naive}} = X + A_c^{-1} E A_r^{-T}.$$

What is the problem?

Deblurring
images

Melina
Freitag

Outline

Motivation

How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

A noisy blurred image

$$B = B_{\text{exact}} + E = A_c X A_r^T + E$$

and therefore

$$X_{\text{Naive}} = X + A_c^{-1} E A_r^{-T}.$$

Error

The naive solution satisfies

$$\frac{\|X_{\text{Naive}} - X\|_F}{\|X\|_F} \leq \text{cond}(A_c)\text{cond}(A_r) \frac{\|E\|_F}{\|B\|_F}.$$

Deblurring using a general model

Deblurring
images

Melina
Freitag

Outline

Motivation

How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

The blurring process as a linear model

We assume the blurring process is **linear**, i.e.

$$x = \text{vec}(X) = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} \in \mathbb{R}^N, \quad b = \text{vec}(B) = \begin{bmatrix} b_1 \\ \vdots \\ b_N \end{bmatrix} \in \mathbb{R}^N$$

$N = m * n$ are related by the linear model

$$Ax = b$$

Deblurring using a general model

Deblurring
images

Melina
Freitag

Outline

Motivation

How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

The blurring process as a linear model

We assume the blurring process is **linear**, i.e.

$$x = \text{vec}(X) = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} \in \mathbb{R}^N, \quad b = \text{vec}(B) = \begin{bmatrix} b_1 \\ \vdots \\ b_N \end{bmatrix} \in \mathbb{R}^N$$

$N = m * n$ are related by the linear model

$$Ax = b$$

$$b = b_{\text{exact}} + e$$

$$x_{\text{Naive}} = A^{-1}b = A^{-1}b_{\text{exact}} + A^{-1}e = x + A^{-1}e$$

Deblurring
imagesMelina
Freitag

Outline

Motivation

How images
become
numbersCompressing
imagesThe image
deblurring
problemBlurring and
Deblurring
imagesThe blurring
function
Deblurring

The Kronecker product

If horizontal and vertical flow can be separated then

$$A\mathbf{x} = \mathbf{b} \Leftrightarrow A\text{vec}(X) = \text{vec}(B) = \text{vec}(A_c X A_r^T)$$

$$(A_r \otimes A_c)\text{vec}(X) = \text{vec}(A_c X A_r^T),$$

where

$$A = A_r \otimes A_c = \begin{bmatrix} a_{11}^r A_c & \dots & a_{1n}^r A_c \\ \vdots & \vdots & \vdots \\ a_{n1}^r A_c & \dots & a_{nn}^r A_c \end{bmatrix},$$

$$(U_r \Sigma_r V_r^T) \otimes (U_c \Sigma_c V_c^T) = (U_r \otimes U_c)(\Sigma_r \otimes \Sigma_c)(V_r \otimes V_c)^T.$$

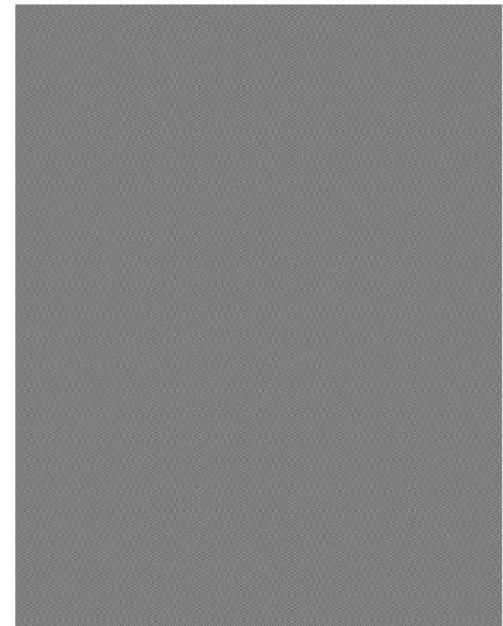
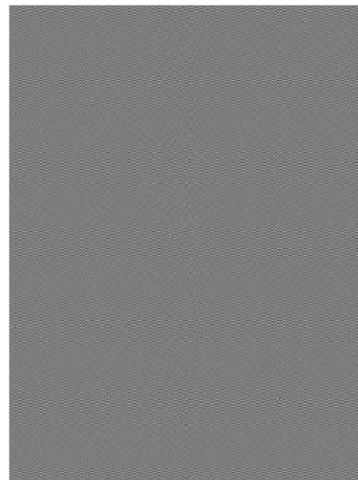
$$x_{\text{Naive}} = x + A^{-1}e$$

Deblurring images

Melina
Freitag

Outline

Motivation



How images
become
numbers

Compressing
images

**The image
deblurring
problem**

Blurring and
Deblurring
images

The blurring
function
Deblurring

Outline

Deblurring
images

Melina
Freitag

Outline

Motivation

How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

1 Motivation

2 How images become numbers

3 Compressing images

4 The image deblurring problem

5 Blurring and Deblurring images

- The blurring function
- Deblurring

Taking bad pictures

Deblurring
images

Melina
Freitag

Outline

Motivation

How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

Sources of bad pictures

- defocus the camera lens (limitations in the optical system)
- motion blur
- air turbulence
- atmospheric blurring

Taking bad pictures

Deblurring
images

Melina
Freitag

Outline

Motivation

How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

Sources of bad pictures

- defocus the camera lens (limitations in the optical system)
- motion blur
- air turbulence
- atmospheric blurring

Noise E

- background photons from both natural or artificial sources
- signal represented by finite number of bits (quantisation error)

Modelling the blurring matrix A

Deblurring
images

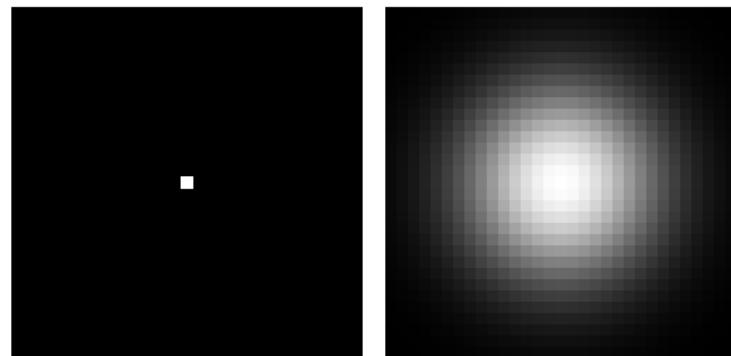
Melina
Freitag

Outline

Motivation

How images
become
numbers

Compressing
images


The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

Single bright pixel

$$x = e_i \Rightarrow Ae_i = \text{ column } i \text{ of } A$$

Figure: Point source
(single bright pixel)

Figure: Point spread
function (PSF)

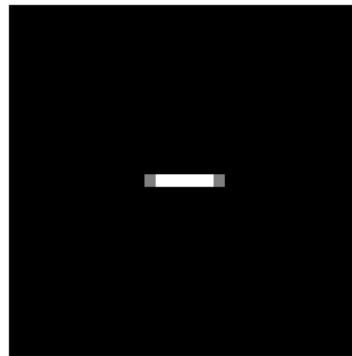
Modelling the blurring matrix A

Deblurring
images

Melina
Freitag

Outline

Motivation


How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

Figure: Motion blur

Figure: Out-of-focus blur

$$p_{ij} = \begin{cases} 1/(\pi r)^2 & \text{if } (i - k)^2 + (j - l)^2 \leq r^2 \\ 0 & \text{otherwise} \end{cases}$$

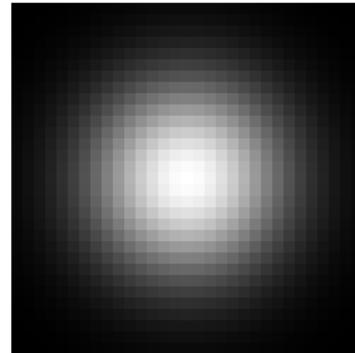
Modelling the blurring matrix A

Deblurring
images

Melina
Freitag

Outline

Motivation


How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

Figure: Atmospheric turbulence blur

$$p_{ij} = \exp \left(-\frac{1}{2} \begin{bmatrix} i - k \\ j - l \end{bmatrix}^T \begin{bmatrix} s_1^2 & \rho^2 \\ \rho^2 & s_2^2 \end{bmatrix}^{-1} \begin{bmatrix} i - k \\ j - l \end{bmatrix}^T \right)$$

$$p_{ij} = \left(1 + \begin{bmatrix} i - k \\ j - l \end{bmatrix}^T \begin{bmatrix} s_1^2 & \rho^2 \\ \rho^2 & s_2^2 \end{bmatrix}^{-1} \begin{bmatrix} i - k \\ j - l \end{bmatrix}^T \right)^{-\beta}$$

Boundary conditions and structured matrix computations

Deblurring
images

Melina
Freitag

Outline

Motivation

How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

Boundary conditions

- Zero boundary conditions
- Periodic boundary conditions
- Reflexive boundary conditions

The matrix A which is obtained from P by convolution becomes

- Block Toeplitz matrix
- Block Circulant matrix
- Sum of Block Toeplitz and Block Hankel and Block Toeplitz plus Hankel matrices

Spectral filtering

Deblurring
images

Melina
Freitag

Outline

Motivation

How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

The SVD again

With

$$A = U\Sigma V^T = [u_1 | u_2 | \dots | u_N] \begin{bmatrix} \sigma_1 & & & \\ & \sigma_2 & & \\ & & \ddots & \\ & & & \sigma_N \end{bmatrix} \begin{bmatrix} v_1^T \\ \vdots \\ v_N^T \end{bmatrix}$$

we have

$$x_{\text{Naive}} = A^{-1}b = V\Sigma^{-1}U^Tb = \sum_{i=1}^N \frac{u_i^T b}{\sigma_i} v_i$$

$$X_{\text{Naive}} = \sum_{i=1}^N \frac{u_i^T b}{\sigma_i} V_i = \sum_{i=1}^N \frac{u_i^T b_{\text{exact}}}{\sigma_i} V_i + \sum_{i=1}^N \frac{\cancel{u_i^T b}}{\sigma_i} V_i$$

Deblurring
images

Melina
Freitag

Outline

Motivation

How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

Behaviour of singular values

- $\sigma_i \rightarrow 0$ as i grows
- the more “blurry” the function, the faster the decay rate
- $\text{cond}(A) = \sigma_1/\sigma_N$

Spectral filtering

Deblurring
images

Melina
Freitag

Outline

Motivation

How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

Behaviour of singular values

- $\sigma_i \rightarrow 0$ as i grows
- the more “blurry” the function, the faster the decay rate
- $\text{cond}(A) = \sigma_1/\sigma_N$

The regularised solution

Introduce filter factors Φ_i

$$x_{\text{Naive}} = \sum_{i=1}^N \Phi_i \frac{u_i^T b}{\sigma_i} v_i$$

Two methods

Deblurring
images

Melina
Freitag

Outline

Motivation

How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

TSVD

$$\Phi_i = \begin{cases} 1 & i = 1, \dots, k \\ 0 & i = k + 1, \dots, N \end{cases}$$

Two methods

Deblurring
images

Melina
Freitag

Outline

Motivation

How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

TSVD

$$\Phi_i = \begin{cases} 1 & i = 1, \dots, k \\ 0 & i = k + 1, \dots, N \end{cases}$$

Tikhonov regularisation

$$\Phi_i = \frac{\sigma_i^2}{\sigma_i^2 + \alpha^2}$$

where $\alpha > 0$ is a regularisation parameter, This choice of filter factor yields solution to the minimisation problem

$$\min_x \{ \|b - Ax\|_2^2 + \alpha^2 \|x\|_2^2 \}.$$

Deblurring
imagesMelina
Freitag

Outline

Motivation

How images
become
numbersCompressing
imagesThe image
deblurring
problemBlurring and
Deblurring
imagesThe blurring
function
Deblurring

Regularised solution

$$\begin{aligned}x_{\text{filt}} &= V\Phi\Sigma^{-1}U^T b \\&= V\Phi\Sigma^{-1}U^T A x_{\text{exact}} + V\Phi\Sigma^{-1}U^T e \\&= V\Phi V^T x_{\text{exact}} + V\Phi\Sigma^{-1}U^T e\end{aligned}$$

$$x_{\text{exact}} - x_{\text{filt}} = \underbrace{(I - V\Phi V^T)x_{\text{exact}}}_{\text{Regularisation error}} - \underbrace{V\Phi\Sigma^{-1}U^T e}_{\text{Perturbation error}}$$

Deblurring
imagesMelina
Freitag

Outline

Motivation

How images
become
numbersCompressing
imagesThe image
deblurring
problemBlurring and
Deblurring
imagesThe blurring
function
Deblurring

Regularised solution

$$\begin{aligned}x_{\text{filt}} &= V\Phi\Sigma^{-1}U^T b \\&= V\Phi\Sigma^{-1}U^T A x_{\text{exact}} + V\Phi\Sigma^{-1}U^T e \\&= V\Phi V^T x_{\text{exact}} + V\Phi\Sigma^{-1}U^T e\end{aligned}$$

$$x_{\text{exact}} - x_{\text{filt}} = \underbrace{(I - V\Phi V^T)x_{\text{exact}}}_{\text{Regularisation error}} - \underbrace{V\Phi\Sigma^{-1}U^T e}_{\text{Perturbation error}}$$

Oversmoothing and undersmoothing

- small regularisation error, large perturbation error leads to **undersmoothed solution**
- large regularisation error, small perturbation error leads to **oversmoothed solution**

Deblurring
images

Melina
Freitag

Outline

Motivation

How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

Parameter choice methods

- Discrepancy Principle
- Generalised Cross Validation
- L-Curve Criterion

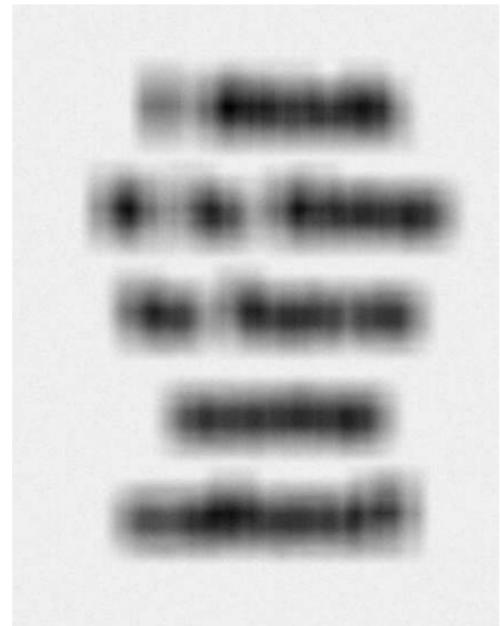
A second attempt at deblurring

Deblurring
images

Melina
Freitag

Outline

Motivation


How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

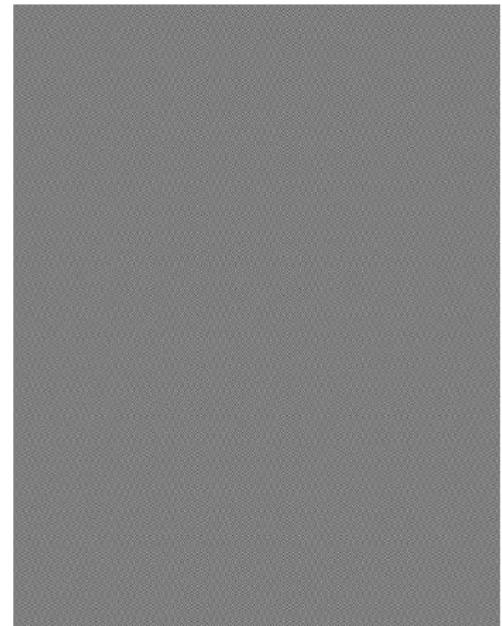
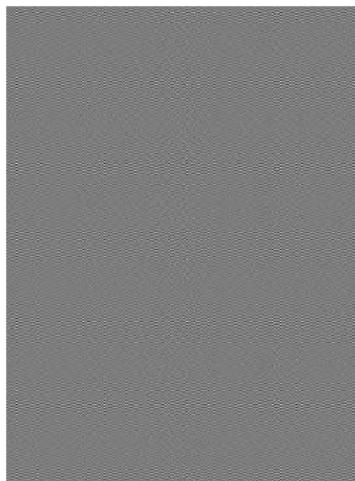
$$X_{\text{Naive}} = A_c^{-1} B A_r^{-T}$$

Deblurring images

Melina
Freitag

Outline

Motivation



How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

Filtered solution using TSVD

Deblurring
images

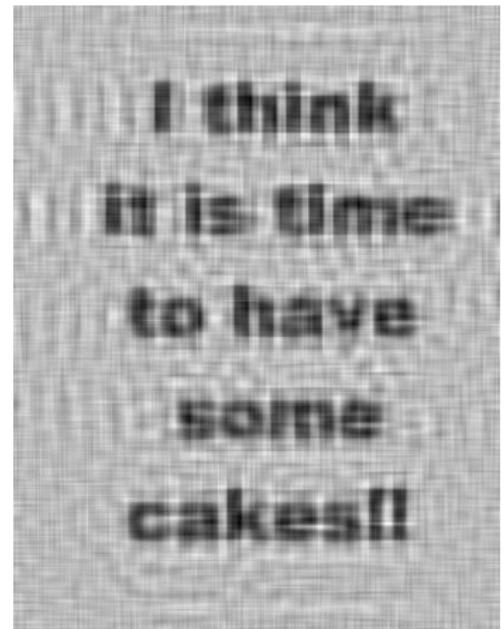
Melina
Freitag

Outline

Motivation

How images
become
numbers

Compressing
images


The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

Figure: $k = 4801$,
 $N = 83000$

Figure: $k = 6630$,
 $N = 238650s$

Tikhonov regularisation

Deblurring
images

Melina
Freitag

Outline

Motivation

How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

Figure: $\alpha = 0.0276$

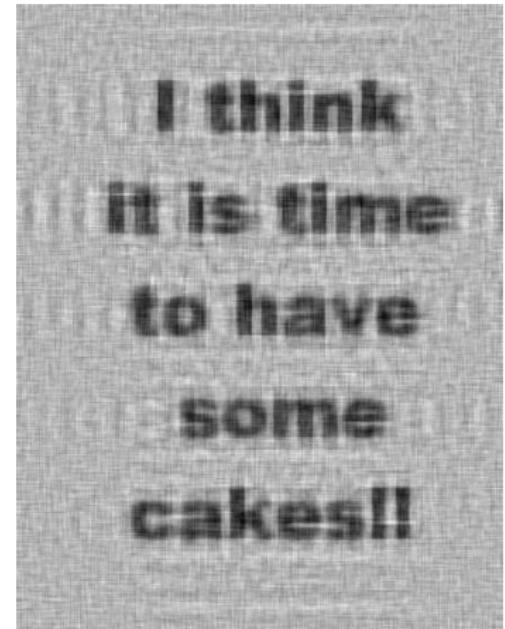


Figure: $\alpha = 0.0137$

Deblurring
images

Melina
Freitag

Outline

Motivation

How images
become
numbers

Compressing
images

The image
deblurring
problem

Blurring and
Deblurring
images

The blurring
function
Deblurring

P. C. HANSEN, J. G. NAGY, AND D. P. O'LEARY,
Deblurring Images - Matrices, Spectra and Filtering, SIAM,
Philadelphia, 1st ed., 2006.