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Implicit Determinant Method

◮ Let A(λ, µ) ∈ C
n×n, λ, µ ∈ C and b, c ∈ C

n. Consider the bordered matrix

M(λ, µ) =

[

A(λ, µ) b
cH 0

]

.

◮ Assume rank(A(λ, µ)) ≥ n − 1 and b, c are chosen such that M(λ, µ) is nonsingular.
◮ Consider

[

A(λ, µ) b
cH 0

] [

x
f

]

=

[

0
1

]

x ∈ C
n, f ∈ C, (1)

then
(i) f = f (λ, µ) and x = x(λ, µ),
(ii) Given (λ, µ) then f (λ, µ) and x(λ, µ) can be found by solving (1),
(iii) Derivatives fλ(λ, µ), fµ(λ, µ), fλλ(λ, µ), etc. can be found easily by differentiation of (1) and then a solve with the same system matrix as in (1),
(iv) important equivalence:

f (λ, µ) = 0 ⇔ det(A(λ, µ)) = 0
(v) If det(A(λ∗, µ∗) = 0 then f (λ∗, µ∗) = 0 and x(λ∗, µ∗) ∈ ker(A(λ∗, µ∗)).

Applications: A (new) method for finding eigenvalues (for li near and nonlinear eigenvalue problems)

◮ A(λ, µ) := A − λI
f (λ) = 0 ⇔ det(A − λI) = 0

◮ Newton’s method for f (λ) = 0:
◮ Given λ−, solve (1) with λ = λ− to get f (λ−) and x(λ−)
◮ Solve

[

A − λ−I b
cH 0

] [

xλ(λ−)
fλ(λ−)

]

=

[

x(λ−)
0

]

(2)

◮ λ+ = λ− −
f (λ

−
)

fλ(λ−
)

◮ Close links with Inverse iteration
◮ Advantages if the matrix is defective (or nearly defective)
◮ Extends to general nonlinear analytic problem A(λ) ∈ C

n

Calculating a Jordan block

◮ A(λ, µ) := A(µ) − λI
◮ Assume A(µ∗) has a Jordan block at eigenvalue λ∗

◮ At the Jordan block

f (λ∗, µ∗) = 0 ⇔ det(A(λ∗, µ∗)) = 0

fλ(λ∗, µ∗) = 0 ⇔
∂

∂λ
det(A(λ, µ)) |λ∗,µ∗ = 0

γ

α

β α*,β*

γ*

f(α,β,γ)=0

(a) Strong coupling of eigenvalues at a saddle point
of f

◮ Numerical method: Newton’s method applied to

f (λ, µ) = 0
fλ(λ, µ) = 0

◮ fλ(λ, µ) is calculated as in (2) and elements of the Jacobian fµ(λ, µ),
fλλ(λ, µ) are calculated similarly

(b) Coalescence of complex eigenvalues bus
problem
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(c) Coalescence of smallest eigenvalues for panel
flutter problem

◮ Applications in aerodynamical stability, stability of electrical power systems,
quantum mechanics etc.

Distance to instability

◮ Distance to instability β(A) = min{‖E‖ | η(A + E) = 0, E ∈ C
n×n},

where η(A) := max{Re(λ) |λ ∈ Λ(A)}

◮ E is destabilising perturbation: (A + E − ωiI)z = 0, ω ∈ R, z ∈ C
n.

◮ Measure for distance to instability of a matrix (Van Loan 1984):

β(A) = min
ω∈R

σmin (A − ωiI),

where σmin (A − ωiI) is the smallest singular value of A − ωiI
◮ Byers (1988): The 2n × 2n Hamiltonian matrix

H(α) =

[

A −αI
αI −AH

]

.

has pure imaginary eigenvalue if and only if α ≥ β(A):
[

A −αI
αI −AH

] [

v
u

]

= ωi
[

v
u

]

ωi is a defective eigenvalue.

◮ Method: Use implicit determinant method to find smallest α such that
det(H(α) − iωI) = 0

◮ Set up
[

H(α) − iωI Jc
cH 0

] [

x(α, ω)

f (α, ω)

]

=

[

0
1

]

◮ Solve for

f (α, ω) = 0
fω(α, ω) = 0
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(d) Eigenvalues of the Tolosa matrix

Table: Results for Tolosa matrix

NEWTON METHOD

i ω(i) α(i) ‖g(ω(i), α(i))‖ fωω(ω(i), α(i))

0 155.99992199998 0 - -
1 155.99988299728 0.0019997968878 9.99903e-04 -8.217446e-02
2 155.99984399453 0.0019997968253 1.60251e-06 -4.108720e-02
3 155.99984399452 0.0019997968879 3.12541e-11 -4.108718e-02
4 155.99984399452 0.0019997968878 3.78571e-16 -4.108718e-02

Table: CPU times

“Outer” iterations
“Inner” iterations (Eigenvalue computation Total

Algorithm for Hamiltonian matrix) CPU
quantity CPU time quantity CPU time time

Boyd/Balakrishnan 3 67.52 s 3 5.27 s 72.79 s
He/Watson > 33000 > 2230 s > 11 > 18 s > 2248 s

Newton 4 2.01 s 1 1.69 s 3.7 s

Summary of applications

◮ Computations of paths detA(λ, µ) = 0 [S./Poulton, 2005]
◮ Computation of Jordan blocks [Akinola/F./S., 2013]
◮ Distance to nearby defective matrix [Akinola/F./S., 2013]
◮ Distance to instability [F./S., 2011]
◮ Computing the real stability radius [F./S., 2013]
◮ Calculating the H∞-norm [F./S./Van Dooren, 2014]
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