

Solving eigenvalue problems and matrix nearness problems using the implicit determinant method

Melina A. Freitag and Alastair Spence

University of Bath

UNIVERSITY OF
BATH

Implicit Determinant Method

- Let $\mathbf{A}(\lambda, \mu) \in \mathbb{C}^{n \times n}$, $\lambda, \mu \in \mathbb{C}$ and $\mathbf{b}, \mathbf{c} \in \mathbb{C}^n$. Consider the **bordered matrix**

$$\mathbf{M}(\lambda, \mu) = \begin{bmatrix} \mathbf{A}(\lambda, \mu) & \mathbf{b} \\ \mathbf{c}^H & \mathbf{0} \end{bmatrix}.$$

- Assume $\text{rank}(\mathbf{A}(\lambda, \mu)) \geq n - 1$ and \mathbf{b}, \mathbf{c} are chosen such that $\mathbf{M}(\lambda, \mu)$ is nonsingular.

- Consider

$$\begin{bmatrix} \mathbf{A}(\lambda, \mu) & \mathbf{b} \\ \mathbf{c}^H & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{f} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ 1 \end{bmatrix} \quad \mathbf{x} \in \mathbb{C}^n, \quad \mathbf{f} \in \mathbb{C}, \quad (1)$$

then

- (i) $\mathbf{f} = \mathbf{f}(\lambda, \mu)$ and $\mathbf{x} = \mathbf{x}(\lambda, \mu)$.
- (ii) Given (λ, μ) then $\mathbf{f}(\lambda, \mu)$ and $\mathbf{x}(\lambda, \mu)$ can be found by solving (1),
- (iii) Derivatives $f_\lambda(\lambda, \mu)$, $f_\mu(\lambda, \mu)$, $f_{\lambda\lambda}(\lambda, \mu)$, etc. can be found easily by differentiation of (1) and then a solve with the same system matrix as in (1),
- (iv) important equivalence:

$$\mathbf{f}(\lambda, \mu) = \mathbf{0} \Leftrightarrow \det(\mathbf{A}(\lambda, \mu)) = 0$$

- (v) If $\det(\mathbf{A}(\lambda^*, \mu^*)) = 0$ then $\mathbf{f}(\lambda^*, \mu^*) = \mathbf{0}$ and $\mathbf{x}(\lambda^*, \mu^*) \in \ker(\mathbf{A}(\lambda^*, \mu^*))$.

Applications: A (new) method for finding eigenvalues (for linear and nonlinear eigenvalue problems)

- $\mathbf{A}(\lambda, \mu) := \mathbf{A} - \lambda \mathbf{I}$

$$\mathbf{f}(\lambda) = \mathbf{0} \Leftrightarrow \det(\mathbf{A} - \lambda \mathbf{I}) = 0$$

- Newton's method for $\mathbf{f}(\lambda) = \mathbf{0}$:

- Given λ_- , solve (1) with $\lambda = \lambda_-$ to get $\mathbf{f}(\lambda_-)$ and $\mathbf{x}(\lambda_-)$
- Solve

$$\lambda_+ = \lambda_- - \frac{f(\lambda_-)}{f_\lambda(\lambda_-)}$$

- Close links with Inverse iteration

- Advantages if the matrix is defective (or nearly defective)

- Extends to general nonlinear analytic problem $\mathbf{A}(\lambda) \in \mathbb{C}^n$

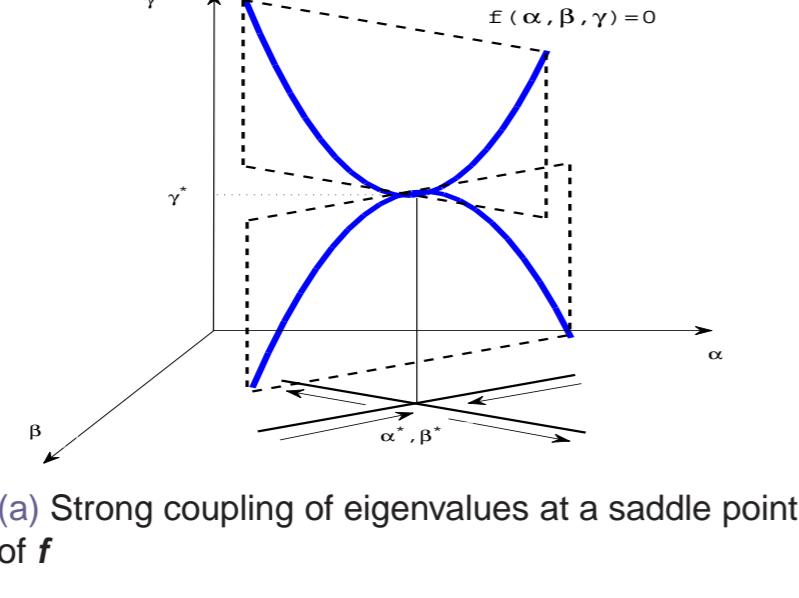
Calculating a Jordan block

- $\mathbf{A}(\lambda, \mu) := \mathbf{A}(\mu) - \lambda \mathbf{I}$

- Assume $\mathbf{A}(\mu^*)$ has a Jordan block at eigenvalue λ^*

- At the Jordan block

$$\begin{aligned} \mathbf{f}(\lambda^*, \mu^*) = \mathbf{0} &\Leftrightarrow \det(\mathbf{A}(\lambda^*, \mu^*)) = 0 \\ f_\lambda(\lambda^*, \mu^*) = \mathbf{0} &\Leftrightarrow \frac{\partial}{\partial \lambda} \det(\mathbf{A}(\lambda, \mu)) \Big|_{\lambda^*, \mu^*} = 0 \end{aligned}$$

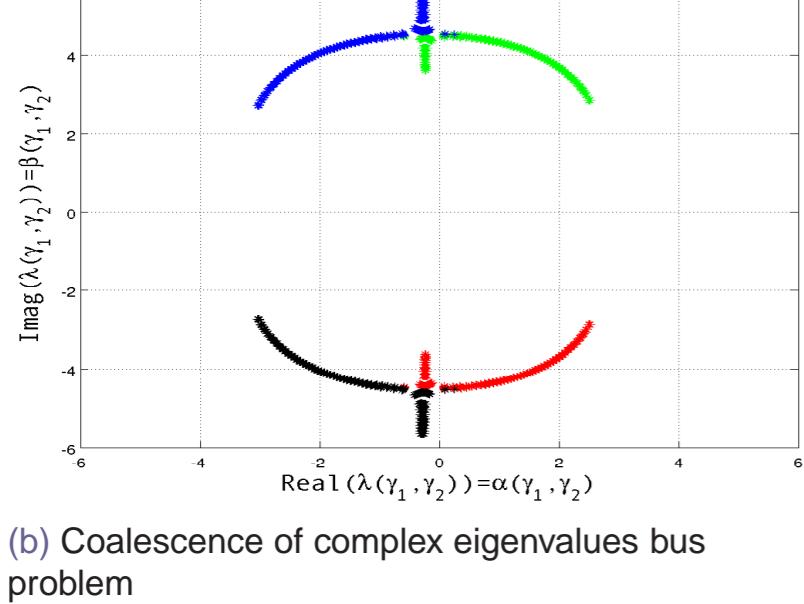


(a) Strong coupling of eigenvalues at a saddle point of \mathbf{f}

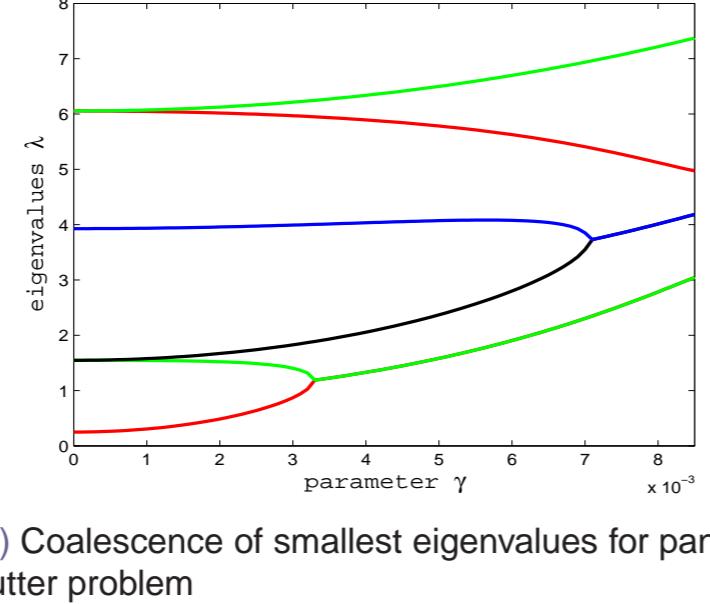
- Numerical method: Newton's method applied to

$$\begin{aligned} \mathbf{f}(\lambda, \mu) &= \mathbf{0} \\ f_\lambda(\lambda, \mu) &= \mathbf{0} \end{aligned}$$

- $f_\lambda(\lambda, \mu)$ is calculated as in (2) and elements of the Jacobian $\mathbf{f}_\mu(\lambda, \mu)$, $f_{\lambda\lambda}(\lambda, \mu)$ are calculated similarly



(b) Coalescence of complex eigenvalues bus problem



(c) Coalescence of smallest eigenvalues for panel flutter problem

- Applications in aerodynamical stability, stability of electrical power systems, quantum mechanics etc.

Summary of applications

- Computations of paths $\det(\mathbf{A}(\lambda, \mu)) = 0$

[S./Poulton, 2005]

- Computation of Jordan blocks

[Akinola/F.S., 2013]

- Distance to nearby defective matrix

[Akinola/F.S., 2013]

- Distance to instability

[F.S., 2011]

- Computing the real stability radius

[F.S., 2013]

- Calculating the H_∞ -norm

[F.S./Van Dooren, 2014]

Distance to instability

- Distance to instability $\beta(\mathbf{A}) = \min\{\|\mathbf{E}\| \mid \eta(\mathbf{A} + \mathbf{E}) = 0, \mathbf{E} \in \mathbb{C}^{n \times n}\}$, where $\eta(\mathbf{A}) := \max\{\text{Re}(\lambda) \mid \lambda \in \Lambda(\mathbf{A})\}$

- \mathbf{E} is destabilising perturbation: $(\mathbf{A} + \mathbf{E} - \omega i \mathbf{I}) \mathbf{z} = \mathbf{0}$, $\omega \in \mathbb{R}$, $\mathbf{z} \in \mathbb{C}^n$.

- Measure for distance to instability of a matrix (Van Loan 1984):

$$\beta(\mathbf{A}) = \min_{\omega \in \mathbb{R}} \sigma_{\min}(\mathbf{A} - \omega i \mathbf{I}),$$

where $\sigma_{\min}(\mathbf{A} - \omega i \mathbf{I})$ is the smallest singular value of $\mathbf{A} - \omega i \mathbf{I}$

- Byers (1988): The $2n \times 2n$ Hamiltonian matrix

$$\mathbf{H}(\alpha) = \begin{bmatrix} \mathbf{A} & -\alpha \mathbf{I} \\ \alpha \mathbf{I} & -\mathbf{A}^H \end{bmatrix}.$$

has pure imaginary eigenvalue if and only if $\alpha \geq \beta(\mathbf{A})$:

$$\begin{bmatrix} \mathbf{A} & -\alpha \mathbf{I} \\ \alpha \mathbf{I} & -\mathbf{A}^H \end{bmatrix} \begin{bmatrix} \mathbf{v} \\ \mathbf{u} \end{bmatrix} = \omega i \begin{bmatrix} \mathbf{v} \\ \mathbf{u} \end{bmatrix} \quad \omega i \text{ is a defective eigenvalue.}$$

- Method: Use implicit determinant method to find smallest α such that $\det(\mathbf{H}(\alpha) - i\omega \mathbf{I}) = 0$

- Set up

$$\begin{bmatrix} \mathbf{H}(\alpha) - i\omega \mathbf{I} & \mathbf{Jc} \\ \mathbf{c}^H & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x}(\alpha, \omega) \\ \mathbf{f}(\alpha, \omega) \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ 1 \end{bmatrix}$$

- Solve for

$$\begin{aligned} \mathbf{f}(\alpha, \omega) &= \mathbf{0} \\ \mathbf{f}_\omega(\alpha, \omega) &= \mathbf{0} \end{aligned}$$

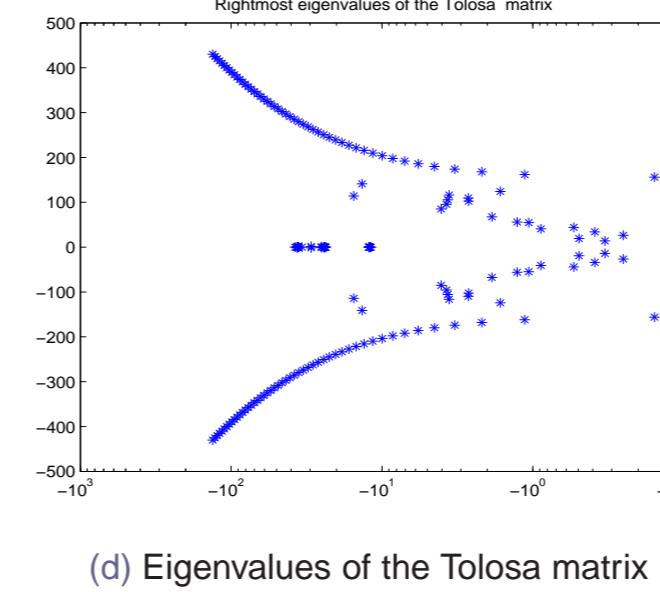


Table: Results for Tolosa matrix

NEWTON METHOD				
	$\omega^{(i)}$	$\alpha^{(i)}$	$\ \mathbf{g}(\omega^{(i)}, \alpha^{(i)})\ $	$\ f_{\omega\omega}(\omega^{(i)}, \alpha^{(i)})\ $
0	155.99992199999	0	9.99903e-04	8.217446e-02
1	155.9998299728	0.001997968253	1.60251e-06	4.108720e-02
2	155.99984399453	0.001997968253	3.12541e-11	4.108718e-02
3	155.99984399452	0.001997968879	3.78571e-16	4.108718e-02
4	155.99984399452	0.001997968878		

Table: CPU times

Algorithm	"Inner" iterations quantity	CPU time	"Outer" iterations (Eigenvalue computation for Hamiltonian matrix) quantity	CPU time	Total CPU time
Boyd/Balakrishnan	3	67.52 s	3	5.27 s	72.79 s
He/Watson	> 33000	> 2230 s	> 11	> 18 s	> 2248 s
Newton	4	2.01 s	1	1.69 s	3.7 s

References

- R. O. AKINOLA, M. A. FREITAG, AND A. SPENCE, *The calculation of the distance to a nearby defective matrix*, 2013. To appear in Numer. Linear Algebra Appl.
- , *A method for the computation of Jordan blocks in parameter-dependent matrices*, 2013. To appear in IMA J. Numer. Anal.
- M. A. FREITAG AND A. SPENCE, *A Newton-based method for the calculation of the distance to instability*, Linear Alg. Appl., 435 (2011), pp. 3189 – 3205.
- , *A new approach for calculating the real stability radius*, 2013. To appear in BIT Numerical Mathematics.
- M. A. FREITAG, A. SPENCE, AND P. V. DOOREN, *Calculating the H_∞ -norm using the implicit determinant method*, 2014. To appear in SIAM J. Matrix Anal. Appl.
- A. SPENCE AND C. POULTON, *Photonic band structure calculations using nonlinear eigenvalue techniques*, J. Comput. Phys., 204 (2005), pp. 65–81.