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Implicit Determinant Method

»LetA(A, 1) € C"" A, u € Cand b,c € C". Consider the bordered matrix

_ |A(A, ) b
M(Aa ”’) — [ CH 0Ol°
» Assume rank(A(A, 1)) > n — 1 and b, ¢ are chosen such that M (A, p) is nonsingular.
» Consider ( Vb
A, 1 x| |0 N
P[] -] xeen ree
then

(i) f =f(A, p) and x =X (A, p),
(i) Given (A, p) then f (A, p) and x (A, p) can be found by solving (1),

(iii) Derivatives fx(X, i), fu (A, 1), fax(X, 1), etc. can be found easily by differentiation of (1) and then a solve with the same system matrix as in (1),

(iv) important equivalence:

f(A, 1) = 0 & det(A(A, ) = 0

(v) If det(A(A*, p*) = O then f (A*, u*) = 0 and x (\*, u*) € ker(A(A\*, u*)).
Applications: A (new) method for finding eigenvalues (for li

»A(A, [J/) = A — Al

near and nonlinear eigenvalue problems)

f(A\) =0 < det(A — Al) =0

» Newton’s method for f (\) = O:

» Given A_, solve (1) with A = A_ to get f(A_) and x(A-)
» Solve

[A — -l Db
cH

f(A_)
RN

» Close links with Inverse iteration
~ Advantages Iif the matrix is defective (or nearly defective)
» Extends to general nonlinear analytic problem A(A) € C"

>A+=A_

Calculating a Jordan block

A, 1) = A(p) — Al
» Assume A(w*) has a Jordan block at eigenvalue \*
» At the Jordan block

F(A" 1") =0 < det(A(A*, p")) =0
0
(W, 1) = 0 & det(A(, 1))

)\*,u* —_ O

(a) Strong coupling of eigenvalues at a saddle point

of f
» Numerical method: Newton’s method applied to
f(A,pu) =0
f)\(>‘v ,u*) =0

- fa(A, p) is calculated as in (2) and elements of the Jacobian f,, (X, i),
fax(A, i) are calculated similarly
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(c) Coalescence of smallest eigenvalues for panel
flutter problem

(b) Coalescence of complex eigenvalues bus
problem

- Applications in aerodynamical stability, stability of electrical power systems,
guantum mechanics etc.

Summary of applications

[S./Poulton, 2005]
[Akinola/F./S., 2013]
[Akinola/F./S., 2013]

[F/S., 2011]
[F/S., 2013]
[F./S./Van Dooren, 2014]

» Computations of paths detA(A\, u) =0
» Computation of Jordan blocks

» Distance to nearby defective matrix

» Distance to instability

» Computing the real stability radius

» Calculating the Ho-norm
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Distance to instability

» Distance to instability 3(A) = min{||[E|| | n(A + E) =0, E € C"*"},
where n(A) := max{Re(\) | A € A(A)}

» E is destabilising perturbation: (A +E —wil)z =0, w € R,z € C".

» Measure for distance to instability of a matrix (Van Loan 1984):

we
where omin (A — wil) is the smallest singular value of A — wil

- Byers (1988): The 2n X 2n Hamiltonian matrix
A —al
H(a) = [al —AH] .
has pure imaginary eigenvalue if and only if « > B(A):
[A _a|] [V] = wi [V] wi is a defective eigenvalue
al —A"| |u| — u '

» Method: Use implicit determinant method to find smallest a such that
det(H(a) — iwl) =0

» Set up |
e e -

cH 0| [f(a,w)]|
» Solve for

0
0

Table: Results for Tolosa matrix

f(a,w)

fo(a, w)

Rightmost eigenvalues of the Tolosa matrix
T T T

500

NEWTON METHOD
| ||g(w('),a('))|| | fww(w(')’a(l))

400 -

oM a0
155.99992199998 | 0
155.99988299728 | 0.0019997968878 | 9.99903e-04
155.99984399453 | 0.0019997968253 | 1.60251e-06
155.99984399452 | 0.0019997968879 | 3.12541e-11
155.99984399452 | 0.0019997968878 | 3.78571e-16

300

-8.217446e-02
-4.108720e-02
-4.108718e-02
-4.108718e-02

200

100

A WDN P O||—

or WO *

—100
—200

Table: CPU times

—300

“Outer” iterations
—400 “Inner” iterations (Eigenvalue computation Total
500 . . . Algorithm for Hamiltonian matrix) CPU
-10° -10° -10! -10° 107 quantity | CPUtime || quantity | CPU time time
Boyd/Balakrishnan 3 67.52s 3 5.27s 72.79s
(d) Elgenvalues Of the Tolosa matrlx He/Watson > 33000 | > 2230s > 11 > 18s > 2248 s
Newton 4 2.01s 1 1.69s 3.7s
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