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Introduction

Consider the computation of a simple eigenvalue and cor-
responding eigenvector of a large sparse Hermitian positive
definite matrix using either inexact inverse iteration with a
fixed or Rayleigh quotient shift.

e large sparse linear systems solved approximately by
means of symmetrically preconditioned MINRES,

e preconditioners (incomplete Cholesky factorisation)
e derivation of a new tuned Cholesky preconditioner,
e analysis using the convergence theory for MINRES,

e comparison of spectral properties of the tuned with
those of the standard preconditioned matrix,

e perturbation and interlacing results.

Inexact inverse iteration (111) with fixed shift
Given o and x' with ||x?||= 1. Fori = 0,1,2, ...

e Choose 7%,
o Solve (A — o)y = x'%) inexactly, that is,

| (A— oDy —x < 7

| (¢)
e Compute x(it) — ¥
[y

e Compute \FD = x(+1)" Ax(i+1),
e Evaluate r'™*!) = (A — \(FUT)x(+D),
e Test for convergence.

*

Convergence rates

For a decreasing tolerance 71/ = C|r?|| = O(sin ")) and
close enough starting guesses the inexact method recovers
the rate of convergence achieved by exact solves.

e Fixed shift: linear convergence ([4], [1]).
¢ Rayleigh quotient shift: cubic convergence ([1], [5]).

Convergence theory of MINRES

e symmetric B has eigenvalues 11, . . ., i, and eigenvec-

tors wy, ..., w,, k' = 4] reduced condition number,
i
0]
| e |
0 My L K H,
e P+ orthogonal projection along w; onto
span{w,, ..., w,}.

If z,. IS the result of applying MINRES to Bz = b with
starting value z, = 0 then

k—1
=l (V=1
: |P-bl,

=2,..., n ‘,Ul‘ \/E —|— 1
| (1)
If, using ||Pb|| = |sin 61|, the number of inner iterations
satisfies
. ! A — A, in 61"
LD > 1 4 V! logZ‘ 1 ’ | log‘sm. ’ . (2
2 A — o )

then ||b —Bz,|| < 7%, The number of inner iterations does
not increase with i, if [\, — o] is fixed and 719 = O(sin %)),

Preconditioned inexact inverse iteration
Let A be Hermitian positive definite and consider the In-
complete Cholesky factorisation LL*, that Is,

A =LL"+ E. (3)
Solve
LA — aI)L‘*y“) — L %0 O =50 (4)

to atolerance 7(||L|| ! so that ||x'") — (A —oT)yW| < 700,
e does not change the linear outer rate of convergence
e number of Iterations

ki _ L||||L! 1
L (10%2% L | ‘ L] a )
1

Y > 1

increases for 79 — 0.

The tuned preconditioner
Solve the preconditioned Hermitian system

LA — oDy = LX),y =150 (6)

Inexactly, where L Is chosen such that the right hand side
of (6) is close to the eigenvector of L™ !(A — oI)L~* corre-
sponding to the eigenvalue closest to zero.

e reproduces the inner iteration behaviour observed for
unpreconditioned solves,

e requires the preconditioner LL* to satisfy
LL*x\) = Ax'Y. (7)

Then | |
IPHL x| < Cof|et|, (8)

and with 71 = C||r"|| we obtain

1
D > 14 @(10%251 &nl @)7 9)
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that IS no Increase with z.

Implementation
Let A be Hermitian positive definite and consider its in-
complete Cholesky factorisation LL*, A = LL* + E.

e /) approximate eigenvector from the sth iteration,
eul’) = Ex” = Ax"Y — LL*x" and v(") = L~1u®,

N . 1
e assume u' x £ 0, A/ 1= ————
u@ X<Z>
e assume |
1 + Ay v > g (10)
and set
. —1+4/1 ()3 (1) 3/ (7)
ol — v vV (11)
V<Z) V(Z)
If L In (6) IS chosen such that
, (12)

then LL*x") = Ax(,
e retains outer rate of convergence,
e provides cheap inner solves,

e Only one single extra back substitution with L per
outer iteration (Sherman-Morrison formula).

Numerical Example
Consider the matrix nos5. nt x from the Matrix Market.

e preconditioned 111 with decreasing tolerance
e fixed shift o = 100, finds third smallest eigenvalue
e Incomplete Cholesky factorisation with drop tol 0.1.
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Figure 2: Inner iterationsagainst outer iterationsfor
the standard and tuned Cholesky preconditioner

Spectral analysis - Perturbation
Comparison of the spectral properties of

L7 (A—-oDL™ and L'(A—-oI)L™"

Define S = L~}(A — ¢I)L—* and consider the two eigen-
value problems

SW = uw (13)
and
Sw' = (I +yvvhw' (14)
Then 4 and & are nonzero and
min |——| < [yv'v]|. 15
B vV (15)

Spectral analysis - Interlacing
Consider the two eigenvalue problems

L' (A —-oDL*w = uw (16)

and
LA — oD)L™"W = &w, (17)

and assume condition (10) holds. Suppose D = diag(u; <
... < ) € R™™, Transform the problem to a generalised
eigenproblem

Dt;, = &(1+ vyzz")t;, (18)

where ¢; are the eigenvalues, with §; < ... < ¢, and t; are
the corresponding eigenvectors. Also, let u; < ... < p, <
0 < ppr1 < ... < up, Where p is the number of negative
eigenvalues of L~ '(A — ¢I)L™*. Then

e The &; are the n zeros of f(£) =1 —&yz*(D —£I) 2.
o If v > 0, then

p <& < <& <<y < <0
and

0 < &pr1 < ppr1 < Epro < ppyo < .o < & < Uy,

that is the eigenvalues are shifted towards zero, while for
~v < 0 the eigenvalues are shifted away from zero

Figure 3: Interlacing property for v > 0
Using perturbation and interlacing results we obtain that

and In particular

kr, < k< k(1 [yvv)). (19)
Inexact RQ iteration
e preconditioned Il with decreasing/fixed tolerance
e find third smallest eigenvalue, Rayleigh quotient shift
e Incomplete Cholesky factorisation
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Figure4: Inner iterationsagainst outer iterationsfor
the standard and tuned Cholesky preconditioner

Conclusions
For 111 the tuning of the preconditioner reduces the number
of inner iterations for the iterative solves in each step.
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