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Introduction
Find a small number of eigenvalues and eigenvectors of a nonsym-
metric matrix A:

Ax = λx, λ ∈ C, x ∈ C
n,

since A is large and sparse, iterative solves are used.

•Power method

• Simultaneous iteration

•Arnoldi method

These methods involve

• repeated application of the matrix A to a vector and

• they generally convergence to largest/outlying eigenvector.

Shift-invert strategy
If we wish to find a few eigenvalues close to a shift σ

n0 µ µ µ µ1 2 3

σ

then the problem becomes

(A − σI)−1x =
1

λ − σ
x

and each step of the iterative method involves repeated applica-
tion of (A − σI)−1 to a vector and hence an Inner iterative solve
becomes necessary:

(A − σI)y = x

This is usually done using Krylov subspace methods and hence this
approach leads to inner-outer iterative method.

Shift-Invert Arnoldi’s method with σ = 0
Arnoldi method constructs an orthogonal basis of k-dimensional
Krylov subspace

Kk(A
−1, q(1)) = span{q(1), A−1q(1), (A−1)2q(1), . . . , (A−1)k−1q(1)},

such that

A−1Qk = QkHk + qk+1hk+1,ke
H
k = Qk+1

[

Hk

hk+1,ke
H
k

]

where QH
k Qk = I. Eigenvalues of Hk are eigenvalue approxima-

tions of (outlying) eigenvalues of A−1

‖rk‖ = ‖A−1x − θx‖ = ‖(A−1Qk − QkHk)u‖ = |hk+1,k||e
H
k u|.

At each step, application of A−1 to qk is necessary.

Inexact solves
At each step of Arnoldi’s method we wish to solve

‖qk − Aq̃k+1‖ = ‖d̃k‖ ≤ τk

which leads to an inexact Arnoldi relation

A−1Qk = Qk+1

[

Hk

hk+1,ke
H
k

]

+Dk = Qk+1

[

Hk

hk+1,ke
H
k

]

+[d1| . . . |dk].

For an eigenvector of Hk we have:

‖rk‖ = ‖(A−1Qk − QkHk)u‖ = |hk+1,k||e
H
k u| + Dku,

and the linear combination of the columns of Dk

Dku =
k∑

l=1

dlul,

and if |ul| is small then ‖dl‖ is allowed to be large! (Simoncini
2005, Bouras and Frayssé 2000). One can show that

|ul| ≤ C(l, k)‖rl−1‖

which leads to
‖qk − Aq̃k+1‖ = ‖d̃k‖

and hence

‖d̃k‖ = C
1

‖rk−1‖

Preconditioning for the inner iteration
Introduce preconditioner P and solve

AP−1q̃k+1 = qk, P−1q̃k+1 = qk+1

using GMRES. The convergence bound for GMRES is

‖dl‖ = κ min
p∈Πl

max
i=1,...,n

|p(µi)|‖d0‖

depending on

• the eigenvalue clustering of AP−1

• the condition number

• the right hand side (initial guess)

We propose to use a tuned preconditioner for Arnoldi’s method,
that is a rank-k update of the standard preconditoner:

PkQk = AQk

given by
Pk = P + (A − P )QkQ

H
k .

Properties of the tuned preconditioner
Theorem: Let P with P = A + E be a preconditioner for A and
assume k steps of Arnoldi’s method have been carried out; then k

eigenvalues of AP
−1
k are equal to one:

[AP
−1
k ]AQk = AQk

and n − k eigenvalues are close to the corresponding eigenvalues
of AP−1. They are eigenvalues of L ∈ C

n−k×n−k with

‖L − I‖ ≤ C‖E‖.

Implementation:

• Sherman-Morrison-Woodbury.

•Only minor extra costs (one back substitution per outer iter-
ation).

Numerical Example
sherman5.mtx nonsymmetric matrix from the Matrix Market
library (3312 × 3312).

• smallest eigenvalue: λ1 ≈ 4.69 × 10−2,

•Preconditioned GMRES as inner solver

•Use both fixed tolerance and relaxation strategy,

•Use both standard and tuned preconditioner (incomplete LU
factorisation).
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Figure 2: Inner iterations vs outer iterations
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Figure 3: Eigenvalue residual norms vs total number of

inner iterations

Implicit restarts with exact shifts
We take an k + p step Arnoldi factorisation

A−1Qk+p = Qk+pHk+p + qk+p+1hk+p+1,k+pe
H
k+p

Then we compute Λ(Hk+p) and select p shifts for an implicit QR
iteration and restart implicitly with new starting vector q̂(1) =
p(A−1)q(1)

‖p(A−1)q(1)‖
(Sorensen 1992). The aim of IRA is

A−1Qk = QkHk + qk+1 hk+1,k
︸ ︷︷ ︸

→ 0

eH
k .

We can generalise the relaxation strategy to approximate invariant
subspaces.

Preconditioning for the inner iteration
Assume we have found an invariant subspace, that is

A−1Qk = QkHk.

Let A−1 have the upper Hessenberg form

[

Qk Qk
⊥

]H
A−1

[

Qk Qk
⊥

]

=

[

Hk T12

hk+1,ke1ek
H T22

]

,

where
[

Qk Qk
⊥

]

is unitary and Hk ∈ C
k,k and T22 ∈ C

n−k,n−k

are upper Hessenberg. If hk+1,k = 0 then

[

Qk Qk
⊥

]H
AP

−1
k

[

Qk Qk
⊥

]

=

[

I QH
k AP

−1
k Q⊥

k

0 T−1
22 (Q⊥

k

H
PQ⊥

k )−1

]

Also, if convergence to an invariant subspace has occured, the right
hand side of the system matrix is an eigenvector of the system, and
GMRES converges in one iteration.

Numerical Example

•sherman5.mtx, k = 8 eigenvalues closest to zero

• IRA with exact shifts p = 4

•Preconditioned GMRES as inner solver
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Figure 4: Inner iterations vs outer iterations
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Figure 5: Eigenvalue residual norms vs total number of

inner iterations

Conclusions
For eigencomputations it is advantageous to consider small rank
changes to the standard preconditioners. Best results are obtained
when relaxation and tuning are combined.
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