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Introduction
Four dimensional data assimilation aims to minimise the cost func-
tion

J(xg) =(xp — XOB)TB_l(X() = X(?)—F

> (v — Hi(x:)" Ry (s — Hix))

i=0
subject to model dynamics x;, = M_.;x, where X Is the sought-
after initial state. X{)B is the initial background state and B, R;
are covariance matrices. The observations are given by y; and H,
is the observation operator.
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Fig. 1: 4DVar (Copyright:ECMWF)

Tikhonov regularisation
The operator A in the operator equation

Ax = b.

it is well-posed if
® a solution to the operator equation exits
e the solution is unique
e the solution is stable (A ™! continuous)

Equation is ill-posed if it is not well-posed. In finite dimensions
existence and uniqueness can be imposed, but

e discrete problem becomes ill-conditioned
e singular values of A decay to zero = A ! is unstable!

Use regularisation parameter « to stabilise the problem

X, = arg min {HAX — b|* + OzHXHQ}
= (A'A + o) 'A'D.

Using the SVD of A = UXV! the regularised solution in
Tikhonov regularisation is given by

X, = (A"A +aol)'A'b
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Linking 4DVar and Tikhonov regularisation
Rewrite the cost function as

J(xg) =(x9 — XOB)TB_l(XO — X(j)B)—l—

(v — H(x)) 'R (y — H(x))

where y = [yl,...,y!]! and

N

H = [H], (H\M(t1,10))", .. (HoM(tn, o))"

and R is block diagonal with R,; on diagonal. Linearise about x
then the solution to the optimisation problem is given by

%= xP ¢ (B~ + TR 'HTR 4,

d = H(x) - y)
Assume B = 021 and R = 03I and H = UXV7’. Then the
optimal analysis can be written as
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where 112 = —-. For nondiagonal covariance matrices variable
o
B

transformation with B = 03F 3, R = oc2Fpand z = Fl—gl/2

x) gives

J(z) = 1i°||z];

where (1> can be interpreted as a regularisation parameter.
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Results from image deblurring
In image processing, Li-norm regularisation and Total Variation
regularisation provides edge preserving image deblurring!
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Fig. 2: Blurred Fig. 2: Tikhonov Fig. 2: Li-norm

picture regularisation regularisation

e 4DVar/Tikhonov regularisation smears out sharp fronts

e [.;-norm/ TV regularisation beneficial in data assimilation

L1 regularisation within 4DVar
Burger's equation

0
az:UWLf(U)x:O, f(u):%’lf

with initial conditions

Ut + U

2 U < r <285

w(x,0) =
(@0 RO 2.0 < 1 i

Discretising

2 0<z(j) < 2.5

z(j) = 10(j — 1/2)Ax; 0.5 2.5 < z(4) < 10.

U°(x(5)) =

with Az = W%o and 7 = 1,...,N. The exact solution is obtained

using the method of characteristics (Riemann problem)

y

2 0<x <25+ st

u(x,t) = 4
0.5 2.5+st <z <10,

where s = 1.25 The numerical solution (which introduces model
error) is obtained using

e the Lax-Friedrich method (smearing out the shock)

At n n
—(F(U}) — FU)

n 1 n n
U; e §(Uj—1 + U? )
e the Lax-Wendroff method (oscillations near the shock).
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We use 3 regularisation methods:

4DVar
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L1-regularisation

1 il
JU) = 5\125 - 2°15+ 5 3 1Y — H(U)II%
= |

where p = 1 (or p = 1.0001) and Z = (aB)~'/?U.
TV regularisation

1 1 -
JU") = 3ID(Z5 = 2 + 5 X IIY: — Hi( U,
1=

where D is a matrix approximating the first derivative.
o At = 0.001
e length of the assimilation window: 100 time steps
e perfect observations

@ use use quadratic programming tools for p = 1.
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Lax-Friedrich method

4DVar - observations everywhere
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Fig. 3: t =0 Fig. 3: t =50 Fig. 3: ¢t =200
L1/TV regularisation - observations everywhere
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Fig. 4: t =0
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Fig. 5: 4DVar/Tikhonov. Fig. 5: L;/TV regularisation.

4DVar - observations every 2 time steps and 20 points in space

-2
000000000000

-2
000000000000

-2
000000000000

Fig. 6: ¢t =0 Fig. 6: ¢t =50 Fig. 6: ¢ = 200
Li/TV regularisation - observations every 2 time steps and 20
points In space
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Fig. 7: t =0
Root mean square error

Fig. 7: t =50 Fig. 7: t =200
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Fig. 8: 4DVar/Tikhonowv.

Lax-Wendroff method

Root mean square error (observations everywhere)

Fig. 8: L,/TV regularisation.
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Fig. 9: 4DVar/Tikhonov.
Root mean square error (observations every 2 time steps and 20
points in space)

Fig. 9: L;/TV regularisation.
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Fig. 10: 4DVar/Tikhonov. Fig. 10: L;/TV regularisation.

Observations

@ 4DVar is very sensitive to the regularisation parameter «,
whereas Li-norm and TV regularisation are very robust with
respect to different values of .

e experiments with noisy observations and/or different B ma-
trices give similar results.

e TV regularisation converges (generally) faster than Li-norm
regularisation.

Conclusions
Both L;-norm and TV regularisation recover discontinuity better

than 4DVar.
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