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Introduction
Four dimensional data assimilation aims to minimise the cost func-
tion

J(x0) =(x0 − xB
0 )TB−1(x0 − xB

0 )+
n
∑

i=0

(yi − Hi(xi))
TR−1

i (yi − Hi(xi))

subject to model dynamics xi = M0→ix0, where x0 is the sought-
after initial state. xB

0 is the initial background state and B, Ri

are covariance matrices. The observations are given by yi and Hi

is the observation operator.

Fig. 1: 4DVar (Copyright:ECMWF)

Tikhonov regularisation
The operator A in the operator equation

Ax = b.

it is well-posed if

• a solution to the operator equation exits

• the solution is unique

• the solution is stable (A−1 continuous)

Equation is ill-posed if it is not well-posed. In finite dimensions
existence and uniqueness can be imposed, but

• discrete problem becomes ill-conditioned

• singular values of A decay to zero ⇒ A−1 is unstable!

Use regularisation parameter α to stabilise the problem

xα = arg min
{

‖Ax − b‖2 + α‖x‖2
}

= (ATA + αI)−1ATb.

Using the SVD of A = UΣVT the regularised solution in
Tikhonov regularisation is given by

xα = (ATA + αI)−1ATb

= Vdiag

(

s2
i

s2
i + α

1

si

)

UTb =
n
∑

i=1

s2
i

s2
i + α

uT
i b

si
vi.

Linking 4DVar and Tikhonov regularisation
Rewrite the cost function as

J(x0) =(x0 − xB
0 )TB−1(x0 − xB

0 )+

(ŷ − Ĥ(x0))
TR̂−1(ŷ − Ĥ(x0))

where ŷ = [yT
0 , . . . ,yT

n ]T and

Ĥ = [HT
0 , (H1M(t1, t0))

T , . . . (HnM(tn, t0))
T ]T

and R̂ is block diagonal with Ri on diagonal. Linearise about x0

then the solution to the optimisation problem is given by

x0 = xB
0 + (B−1 + ĤTR̂−1Ĥ)−1ĤTR̂−1d̂,

d̂ = Ĥ(xB
0 − ŷ)

Assume B = σ2
BI and R̂ = σ2

OI and Ĥ = UΣVT . Then the
optimal analysis can be written as

x0 = xB
0 +

∑

j

s2
j

µ2 + s2
j

uT
j d̂

sj
vj,

where µ2 =
σ2

O

σ2
B

. For nondiagonal covariance matrices variable

transformation with B = σ2
BFB, R̂ = σ2

OFR and z := F
−1/2
B (x0−

xB
0 ) gives

Ĵ(z) = µ2‖z‖2
2 + ‖F

−1/2
R d̂ − F

−1/2
R ĤF

−1/2
B z‖2

2

where µ2 can be interpreted as a regularisation parameter.

Results from image deblurring
In image processing, L1-norm regularisation and Total Variation
regularisation provides edge preserving image deblurring!

Fig. 2: Blurred

picture

Fig. 2: Tikhonov

regularisation

Fig. 2: L1-norm

regularisation

• 4DVar/Tikhonov regularisation smears out sharp fronts

•L1-norm/TV regularisation beneficial in data assimilation

L1 regularisation within 4DVar
Burger’s equation

ut + u
∂u

∂x
= u + f(u)x = 0, f(u) =

1

2
u2

with initial conditions

u(x, 0) =







2 0 ≤ x < 2.5

0.5 2.5 ≤ x ≤ 10.

Discretising

x(j) = 10(j − 1/2)∆x; U 0(x(j)) =







2 0 ≤ x(j) < 2.5

0.5 2.5 ≤ x(j) ≤ 10.

with ∆x = 1
100 and j = 1, . . . , N . The exact solution is obtained

using the method of characteristics (Riemann problem)

u(x, t) =







2 0 ≤ x < 2.5 + st

0.5 2.5 + st ≤ x ≤ 10,

where s = 1.25 The numerical solution (which introduces model
error) is obtained using

• the Lax-Friedrich method (smearing out the shock)

Un+1
j =

1

2
(Un

j−1 + Un
j+1) −

∆t

2∆x
(f(Un

j+1) − f(Un
j−1)).

• the Lax-Wendroff method (oscillations near the shock).

Un+1
j =Un

j −
∆t

2∆x
(f(Un

j+1) − f(Un
j−1))+

∆t2

2∆x2

(

Aj+1

2

(f(Un
j+1) − f(Un

j )) − Aj−1

2

(f(Un
j ) − f(Un

j−1))
)

.

We use 3 regularisation methods:
4DVar

J(U 0) =
1

2
‖U 0

B − U 0‖2
αB +

1

2

N
∑

i=1

‖Yi − Hi(Ui)‖
2
Ri

L1-regularisation

J(U 0) =
1

2
‖Z0

B − Z0‖p
p +

1

2

N
∑

i=1

‖Yi − Hi(Ui)‖
2
Ri

where p = 1 (or p = 1.0001) and Z = (αB)−1/2U .
TV regularisation

J(U 0) =
1

2
‖D(Z0

B − Z0)‖p
p +

1

2

N
∑

i=1

‖Yi − Hi(Ui)‖
2
Ri

where D is a matrix approximating the first derivative.

•∆t = 0.001

• length of the assimilation window: 100 time steps

• perfect observations

• use use quadratic programming tools for p = 1.

Acknowledgment
This research project is supported by

Lax-Friedrich method
4DVar - observations everywhere
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Fig. 3: t = 0
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Fig. 3: t = 50

0 1 2 3 4 5 6 7 8 9 10
−2

−1

0

1

2

3

4

 

 
Truth
Imperfect model
Final solution

Fig. 3: t = 200

L1/TV regularisation - observations everywhere
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Fig. 4: t = 0
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Fig. 4: t = 50
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Fig. 4: t = 200

Root mean square error
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Fig. 5: 4DVar/Tikhonov.
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Fig. 5: L1/TV regularisation.

4DVar - observations every 2 time steps and 20 points in space
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Fig. 6: t = 0
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Fig. 6: t = 50
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Fig. 6: t = 200

L1/TV regularisation - observations every 2 time steps and 20
points in space
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Fig. 7: t = 0
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Fig. 7: t = 50
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Fig. 7: t = 200

Root mean square error

0 20 40 60 80 100 120 140 160 180 200
1

1.5

2

2.5

3

3.5

4

4.5

Time step

R
M

S
 e

rr
or

 

 
before assimilation

Fig. 8: 4DVar/Tikhonov.
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Fig. 8: L1/TV regularisation.

Lax-Wendroff method
Root mean square error (observations everywhere)
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Fig. 9: 4DVar/Tikhonov.
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Fig. 9: L1/TV regularisation.

Root mean square error (observations every 2 time steps and 20
points in space)
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Fig. 10: 4DVar/Tikhonov.
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Fig. 10: L1/TV regularisation.

Observations

• 4DVar is very sensitive to the regularisation parameter α,
whereas L1-norm and TV regularisation are very robust with
respect to different values of α.

• experiments with noisy observations and/or different B ma-
trices give similar results.

•TV regularisation converges (generally) faster than L1-norm
regularisation.

Conclusions
Both L1-norm and TV regularisation recover discontinuity better
than 4DVar.
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