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Motivation

What is an eigenvalue?

m eigenvalue comes from the German word Eigenwert (like
liverwurst, only half of it has been translated).

m arises after simplification /discretisation/linearisation of a
problem

m can be meaningless intermediate values of a computation
method in order to find the solution of a problem

m sometimes the values have a meaning for the problem
(stability analysis)
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Motivation

On its opening day, the Millenium footbridge in London started
to wobble under the weight of 100s of people, who, in turn also
struggled to keep their balance. The bridge had to be closed.
After fitting of 37 fluid-viscous dampers and 1 year and £5m
later the problem was fixed.
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What had happened?

Some of the frequencies of the bridge were similar to the
components of the pedestrians footsteps, causing vibration
amplification. Finding these natural frequencies amounts to
solving an eigenvalue problem.

Structural dynamics
Quantum Chemistry/Chemical Reactions

Markov chain techniques/Google

Stability analysis of dynamical systems/solution of
differential equations
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Definitions

A few definitions

m Eigenvalues of A € R™" are roots of det(A — \I)

m Eigenvectors are z # 0 such that Ax = Az for some
eigenvalue A € C
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Definitions

m Eigenvalues of A € R™" are roots of det(A — \I)

m Eigenvectors are x # 0 such that Az = Az for some
eigenvalue A € C
m Schur Decomposition: There exists an orthogonal matrix

QeChm (QTQ =1) st.

G din
QT AQ = 0 din -+ dog

0 0

0 0 dnn,
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Characteristic
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Why not calculating the roots of the characteristic
BATH . 1o
polynomial’

g...

det(A) =

, permutation

2.

O'GSn

(Sg“(U) H ai,a’(i))
i=1
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Why not calculating the roots of the characteristic
polynomial?

det(A) = > (sgn(a)l—[ai,cr(z'))
=1

O'GSn
o ..., permutation

m contains n! summands, not very handy
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polynomial of degree larger then 5
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Characteristic
Polynomial

Why not calculating the roots of the characteristic
polynomial?

it 5 (o)
=1

0ESh
o ..., permutation
m contains n! summands, not very handy

m there exists no formula for calculation the roots of a
polynomial of degree larger then 5

m calculating the roots numerically is unstable
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n
det(A) = E sgn(o) H i 0(5)
o€ESn i=1
Characteristic o ..., permutation
Polynomial
m contains n! summands, not very handy

there exists no formula for calculation the roots of a
polynomial of degree larger then 5

calculating the roots numerically is unstable

m Back to matrices!
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m Schur Form:
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algorithms
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similarity
transformation

Algorithms based on the idea of calculating the

Schur Form

m Schur Form:

QT AQ =

m Similarity transformation does not change the eigenvalues:

det(QTAQ — \I)

QU
=

o o O

dln

d1 dop,
0 :

0 U

det(QTAQ — QTAQ)
det(QT)det(A — \)det(Q)
det(A — \I)
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algorithms
based on
similarity
transformation

Algorithms based on the idea of calculating the

Schur Form

m Schur Form:

QT AQ =

m Similarity transformation does not change the eigenvalues:

det(QTAQ — \I)

m QR Algorithm

QU
=
=

o o O

i,
dign - don
0 S
0 - dy,

det(QTAQ — QTAQ)
det(QT)det(A — \)det(Q)
det(A — \I)



BATH QR-Algorithm |

Large sparse
Eigenvalue

computations m Basic QR-iteration: given Ay := A compute

Melina Freitag

Factor A; = Q;R;
Ay = RiQs

Eigenvalue
algorithms
based on
similarity
transformation

(QR decomposition)



BATH QR-Algorithm |

Large sparse
Eigenvalue

computations m Basic QR-iteration: given Ay := A compute

Melina Freitag

Factor A; = @Q;R; (QR decomposition)
Aipn = RiQ;

m A; and A have the same eigenvalues and we hope that

Eiger.lvalue d].l e dln
algorithms

based on 0 dl]_ d2n
similarity ) o

transformation Az — R = 0 O :
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Factor A; = @Q;R; (QR decomposition)
Aipn = RiQ;

m A; and A have the same eigenvalues and we hope that

Eigenvalue 000

algorithms d(]jl d Ellln

based on . e

similarity A — R _ 11 2n

transformation (] - 0 0 c
0 0 e

m Work for calculating all the eigenvalues and eigenvectors
of a matrix in O(n?) operations



Large sparse
Eigenvalue
computations

Melina Freitag

Eigenvalue
algorithms
based on
similarity
transformation

QR-Algorithm |

Problem Fill-in for large sparse matrices

Figure: Sparse matrix

Figure: One step of QR
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m Only a few eigenvalues (largest, smallest) are required

m QR algorithm is too expensive in terms of storage and
computation time
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Large sparse matrices

m Only a few eigenvalues (largest, smallest) are required

m QR algorithm is too expensive in terms of storage and
computation time

m need iterative methods!
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Large sparse matrices

m Only a few eigenvalues (largest, smallest) are required

m QR algorithm is too expensive in terms of storage and
computation time

m need iterative methods!

m Examples: Power method, Inverse iteration, Rayleigh

Quotient lteration, Subspace iteration, Lanczos method,
Arnoldi’'s method
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Concepts of the Power method

m Given zg

Yi+1
Tit1

Ait1

= Ax;

= Yir1/ ||yt
= 25, Azi
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L | A2

m convergence to A\; with linear rate m <1
1

Iterative
methods
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Tiy1 = Yir1/l|lyirll
T
Aiv1 = T Az
L | A2
m convergence to A\; with linear rate m <1
1

m only needs one matrix-vector multiplication at each step

Iterative
methods
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Yit1 = Aw;
Tiy1 = Yir1/l|lyirll
T
Aiv1 = T Az
L | A2
m convergence to A\; with linear rate m <1
1

m only needs one matrix-vector multiplication at each step

Iterative

s m Inverse Iteration is power method applied to (A — JI)_1
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Yi+1 = A:L‘i
Tit1 = Yir1/ |yt
T
Aiv1 = T Az
L | Aa|
m convergence to A\; with linear rate m <1
1
m only needs one matrix-vector multiplication at each step
treretive m Inverse Iteration is power method applied to (4 — o)~}
m Rayleigh Quotient iteration with special shift

Oir1 = :r;fFHA:ziH (quadratic/cubic convergence)
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m Power method with initial vector ¢ computes
q,Aq, ..., Akq

m idea of Arnoldi's method: retain past information: after k
steps we have k + 1 vectors ¢, Aq, . .., AFq
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Eigemvalue m Power method with initial vector ¢ computes
computations
Melina Freitag q’ Aq’ 2o Akq
m idea of Arnoldi's method: retain past information: after k
steps we have k + 1 vectors ¢, Aq, . .., AFq
m Given q1, ||q1l2 = 1 On subsequent steps k = 1,2,...,m
take
k
o1 = Age — Y qihyn
=1
where hjy, is the Gram-Schmidt coefficient
peae hjr =< Aqy,q; >. Normalise

Qry1 = where  hpyq1p = | @r+1l|2

hk+1.k



Large sparse
Eigenvalue
computations

Melina Freitag

Iterative
methods

Definition

For any j the space span{q, Aq, ..., A7~1q} is called the jth
Krylov subspace associated with A and ¢ and is denoted by
K;i(A,q).

Matrix representation

The Arnoldi process can be written in the form

T
AN = W W A Gl i i,

where H,, is square upper Hessenberg.
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Concepts of Lanczos/ Arnoldi's method Il

m For the Lanczos process: H,, is tridiagonal (three term
recurrence)

m Approximate eigenvalues and eigenvectors of A can be
found from eigenvalues and eigenvectors of much smaller

matrix H,,:
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computations m For the Lanczos process: H,, is tridiagonal (three term
Melina Freitag recu rrence)

m Approximate eigenvalues and eigenvectors of A can be
found from eigenvalues and eigenvectors of much smaller
matrix H,,:

Let @y, Hy, and hypq1,m be generated by the Arnoldi process.
Let i be an eigenvalue of H,,, with associated eigenvector x
normalised so that ||z|s=1. Let y = Q,,x € C™. Then

Iterative
methods

| Ay — pyll2 = |hm+1,m”xM|u

where x,,, denotes the mth (and last) component of z.
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Example

random complex matrix of dimension n = 144 generated in

MATLAB:

eigenvalues of A

approximation of outer eigenvalues first!
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after 5 Arnoldi steps

Arnoldi after 5 steps
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Arnoldi after 10 steps
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after 15 Arnoldi steps

Arnoldi after 15 steps
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after 20 Arnoldi steps

Arnoldi after 20 steps
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after 30 Arnoldi

Arnoldi after 30 steps
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after 35 Arnoldi

steps

Arnoldi after 35 steps

0900
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after 40 Arnoldi steps

Arnoldi after 40 steps
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1
(A-—ol) 'z =

)\—ax

m "outer” eigenvalues are the one closest to o
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[
Axr = Mz
1
A—ol) ez = x
( ) P
m "outer” eigenvalues are the one closest to o
m Problem: requires a solution of a linear system at each
step:
(A—olu=1»b
Inner-outer . . . . . .
iterative m Solve is done iteratively (since A is large and sparse) using

methods

MINRES, GMRES, other iterative methods
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Large sparse matrices

m The solve will be inexact

m How does the inexact inner solve influence the
convergence property of the outer solve?

m For inexact inverse iteration:
(A—ol)y; = x; + res;

If residual res; is chosen to decrease in the same manner
as the eigenvalue residual decreases the convergence rate
from exact solves is recovered

m Ongoing research: Situation for Krylov methods
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