

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

Definitions

Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods

Inner-outer iterative methods for large sparse Eigenvalue computations

Melina Freitag

Department of Mathematical Sciences
University of Bath

Informal Postgraduate Seminar
University of Bath
21st March 2006

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

Definitions

Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods

1 Motivation

2 Definitions

3 Characteristic Polynomial

4 Eigenvalue algorithms based on similarity transformation

5 Iterative methods

6 Inner-outer iterative methods

Outline

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

Definitions

Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods

1 Motivation

2 Definitions

3 Characteristic Polynomial

4 Eigenvalue algorithms based on similarity transformation

5 Iterative methods

6 Inner-outer iterative methods

What is an eigenvalue?

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

Definitions

Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods

- eigenvalue comes from the German word **Eigenwert** (like liverwurst, only half of it has been translated).
- arises after simplification/discretisation/linearisation of a problem
- can be **meaningless intermediate values** of a computation method in order to find the solution of a problem
- sometimes the values have a **meaning for the problem** (stability analysis)

What is an eigenvalue?

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

Definitions

Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods

- eigenvalue comes from the German word **Eigenwert** (like liverwurst, only half of it has been translated).
- arises after simplification/discretisation/linearisation of a problem
- can be **meaningless intermediate values** of a computation method in order to find the solution of a problem
- sometimes the values have a **meaning for the problem** (stability analysis)

Millenium Footbridge

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

Definitions

Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods

On its opening day, the Millenium footbridge in London started to wobble under the weight of 100s of people, who, in turn also struggled to keep their balance. The bridge had to be closed. After fitting of 37 fluid-viscous dampers and 1 year and £5m later the problem was fixed.

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

Definitions

Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods

What had happened?

Some of the frequencies of the bridge were similar to the components of the pedestrians footsteps, causing vibration amplification. Finding these natural frequencies amounts to solving an eigenvalue problem.

- Structural dynamics
- Quantum Chemistry/Chemical Reactions
- Markov chain techniques/Google
- Stability analysis of dynamical systems/solution of differential equations

Outline

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

Definitions

Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods

1 Motivation

2 Definitions

3 Characteristic Polynomial

4 Eigenvalue algorithms based on similarity transformation

5 Iterative methods

6 Inner-outer iterative methods

A few definitions

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

Definitions

Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods

- **Eigenvalues** of $A \in \mathbb{R}^{n,n}$ are roots of $\det(A - \lambda I)$
- **Eigenvectors** are $x \neq 0$ such that $Ax = \lambda x$ for some eigenvalue $\lambda \in \mathbb{C}$
- **Schur Decomposition:** There exists an orthogonal matrix $Q \in \mathbb{C}^{n,n}$ ($Q^T Q = I$) s.t.

$$Q^T A Q = \begin{bmatrix} d_{11} & \cdots & & d_{1n} \\ 0 & d_{22} & \cdots & d_{2n} \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & \cdots & d_{nn} \end{bmatrix}$$

A few definitions

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

Definitions

Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods

- **Eigenvalues** of $A \in \mathbb{R}^{n,n}$ are roots of $\det(A - \lambda I)$
- **Eigenvectors** are $x \neq 0$ such that $Ax = \lambda x$ for some eigenvalue $\lambda \in \mathbb{C}$
- **Schur Decomposition:** There exists an orthogonal matrix $Q \in \mathbb{C}^{n,n}$ ($Q^T Q = I$) s.t.

$$Q^T A Q = \begin{bmatrix} d_{11} & \cdots & & d_{1n} \\ 0 & d_{22} & \cdots & d_{2n} \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & \cdots & d_{nn} \end{bmatrix}$$

Outline

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

Definitions

Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods

1 Motivation

2 Definitions

3 Characteristic Polynomial

4 Eigenvalue algorithms based on similarity transformation

5 Iterative methods

6 Inner-outer iterative methods

Why not calculating the roots of the characteristic polynomial?

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

Definitions

Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods

$$\det(A) = \sum_{\sigma \in S_n} \left(\operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)} \right)$$

$\sigma \dots$, permutation

- contains $n!$ summands, **not very handy**
- there exists no formula for calculating the roots of a polynomial of degree larger than 5
- calculating the roots numerically is unstable
- Back to matrices!

Why not calculating the roots of the characteristic polynomial?

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

Definitions

Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods

$$\det(A) = \sum_{\sigma \in S_n} \left(\operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)} \right)$$

$\sigma \dots$, permutation

- contains $n!$ summands, **not very handy**
- there exists no formula for calculating the roots of a polynomial of degree larger than 5
- calculating the roots numerically is unstable
- Back to matrices!

Why not calculating the roots of the characteristic polynomial?

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

Definitions

Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods

$$\det(A) = \sum_{\sigma \in S_n} \left(\operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)} \right)$$

$\sigma \dots$, permutation

- contains $n!$ summands, **not very handy**
- there exists no formula for calculation the roots of a polynomial of degree larger then 5
- calculating the roots numerically is unstable
- Back to matrices!

Why not calculating the roots of the characteristic polynomial?

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

Definitions

Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods

$$\det(A) = \sum_{\sigma \in S_n} \left(\operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)} \right)$$

$\sigma \dots$, permutation

- contains $n!$ summands, **not very handy**
- there exists no formula for calculation the roots of a polynomial of degree larger then 5
- calculating the roots numerically is unstable
- Back to matrices!

Why not calculating the roots of the characteristic polynomial?

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

Definitions

Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods

$$\det(A) = \sum_{\sigma \in S_n} \left(\operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)} \right)$$

$\sigma \dots$, permutation

- contains $n!$ summands, **not very handy**
- there exists no formula for calculation the roots of a polynomial of degree larger then 5
- calculating the roots numerically is unstable
- Back to matrices!

Outline

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

Definitions

Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods

1 Motivation

2 Definitions

3 Characteristic Polynomial

4 Eigenvalue algorithms based on similarity transformation

5 Iterative methods

6 Inner-outer iterative methods

Algorithms based on the idea of calculating the Schur Form

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

Definitions

Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods

■ Schur Form:

$$Q^T A Q = \begin{bmatrix} d_{11} & \cdots & & d_{1n} \\ 0 & d_{11} & \cdots & d_{2n} \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & \cdots & d_{nn} \end{bmatrix}$$

■ Similarity transformation does not change the eigenvalues:

$$\begin{aligned} \det(Q^T A Q - \lambda I) &= \det(Q^T A Q - Q^T \lambda Q) \\ &= \det(Q^T) \det(A - \lambda I) \det(Q) \\ &= \det(A - \lambda I) \end{aligned}$$

■ QR Algorithm

Algorithms based on the idea of calculating the Schur Form

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

Definitions

Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods

■ Schur Form:

$$Q^T A Q = \begin{bmatrix} d_{11} & \cdots & & d_{1n} \\ 0 & d_{11} & \cdots & d_{2n} \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & \cdots & d_{nn} \end{bmatrix}$$

■ Similarity transformation does not change the eigenvalues:

$$\begin{aligned} \det(Q^T A Q - \lambda I) &= \det(Q^T A Q - Q^T \lambda Q) \\ &= \det(Q^T) \det(A - \lambda I) \det(Q) \\ &= \det(A - \lambda I) \end{aligned}$$

■ QR Algorithm

Algorithms based on the idea of calculating the Schur Form

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

Definitions

Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods

■ Schur Form:

$$Q^T A Q = \begin{bmatrix} d_{11} & \cdots & & d_{1n} \\ 0 & d_{11} & \cdots & d_{2n} \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & \cdots & d_{nn} \end{bmatrix}$$

■ Similarity transformation does not change the eigenvalues:

$$\begin{aligned} \det(Q^T A Q - \lambda I) &= \det(Q^T A Q - Q^T \lambda Q) \\ &= \det(Q^T) \det(A - \lambda I) \det(Q) \\ &= \det(A - \lambda I) \end{aligned}$$

■ QR Algorithm

QR-Algorithm I

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

Definitions

Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods

- Basic QR-iteration: given $A_0 := A$ compute

$$\begin{aligned} \text{Factor } A_i &= Q_i R_i \quad (\text{QR decomposition}) \\ A_{i+1} &= R_i Q_i \end{aligned}$$

- A_i and A have the same eigenvalues and we hope that

$$A_i \rightarrow R = \begin{bmatrix} d_{11} & \cdots & & d_{1n} \\ 0 & d_{11} & \cdots & d_{2n} \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & \cdots & d_{nn} \end{bmatrix}$$

- Work for calculating all the eigenvalues and eigenvectors of a matrix in $\mathcal{O}(n^3)$ operations

- Basic QR-iteration: given $A_0 := A$ compute

$$\begin{aligned} \text{Factor } A_i &= Q_i R_i \quad (\text{QR decomposition}) \\ A_{i+1} &= R_i Q_i \end{aligned}$$

- A_i and A have the same eigenvalues and we hope that

$$A_i \rightarrow R = \begin{bmatrix} d_{11} & \cdots & & d_{1n} \\ 0 & d_{11} & \cdots & d_{2n} \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & \cdots & d_{nn} \end{bmatrix}$$

- Work for calculating all the eigenvalues and eigenvectors of a matrix in $\mathcal{O}(n^3)$ operations

- Basic QR-iteration: given $A_0 := A$ compute

Factor $A_i = Q_i R_i$ (QR decomposition)

$$A_{i+1} = R_i Q_i$$

- A_i and A have the same eigenvalues and we hope that

$$A_i \rightarrow R = \begin{bmatrix} d_{11} & \cdots & & d_{1n} \\ 0 & d_{11} & \cdots & d_{2n} \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & \cdots & d_{nn} \end{bmatrix}$$

- Work for calculating all the eigenvalues and eigenvectors of a matrix in $\mathcal{O}(n^3)$ operations

QR-Algorithm II

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

Definitions

Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods

Problem **Fill-in** for large sparse matrices

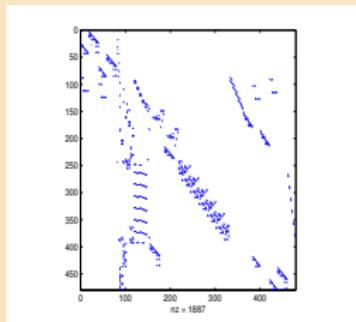


Figure: Sparse matrix

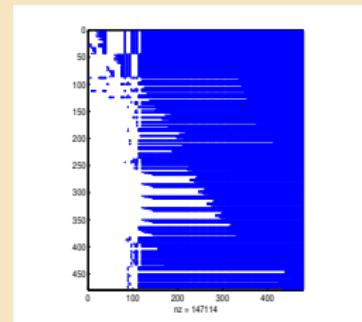


Figure: One step of QR

Outline

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

Definitions

Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods

1 Motivation

2 Definitions

3 Characteristic Polynomial

4 Eigenvalue algorithms based on similarity transformation

5 Iterative methods

6 Inner-outer iterative methods

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

Definitions

Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods

- Only a **few eigenvalues** (largest, smallest) are required
- QR algorithm is too **expensive in terms of storage and computation time**
- need iterative methods!
- Examples: Power method, Inverse iteration, Rayleigh Quotient Iteration, Subspace iteration, Lanczos method, Arnoldi's method

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

Definitions

Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods

- Only a **few eigenvalues** (largest, smallest) are required
- QR algorithm is too **expensive in terms of storage and computation time**
- **need iterative methods!**
- Examples: Power method, Inverse iteration, Rayleigh Quotient Iteration, Subspace iteration, Lanczos method, Arnoldi's method

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

Definitions

Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods

- Only a **few eigenvalues** (largest, smallest) are required
- QR algorithm is too **expensive in terms of storage and computation time**
- need iterative methods!
- Examples: Power method, Inverse iteration, Rayleigh Quotient Iteration, Subspace iteration, Lanczos method, Arnoldi's method

Concepts of the Power method

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

Definitions

Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods

■ Given x_0

$$y_{i+1} = Ax_i$$

$$x_{i+1} = y_{i+1} / \|y_{i+1}\|$$

$$\lambda_{i+1} = x_{i+1}^T Ax_{i+1}$$

- convergence to λ_1 with linear rate $\frac{|\lambda_2|}{|\lambda_1|} < 1$
- only needs one matrix-vector multiplication at each step
- Inverse Iteration is power method applied to $(A - \sigma I)^{-1}$
- Rayleigh Quotient iteration with special shift
 $\sigma_{i+1} = x_{i+1}^T Ax_{i+1}$ (quadratic/cubic convergence)

Concepts of the Power method

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

Definitions

Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods

■ Given x_0

$$y_{i+1} = Ax_i$$

$$x_{i+1} = y_{i+1} / \|y_{i+1}\|$$

$$\lambda_{i+1} = x_{i+1}^T Ax_{i+1}$$

■ convergence to λ_1 with linear rate $\frac{|\lambda_2|}{|\lambda_1|} < 1$

- only needs one matrix-vector multiplication at each step
- Inverse Iteration is power method applied to $(A - \sigma I)^{-1}$
- Rayleigh Quotient iteration with special shift
 $\sigma_{i+1} = x_{i+1}^T Ax_{i+1}$ (quadratic/cubic convergence)

Concepts of the Power method

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

Definitions

Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods

■ Given x_0

$$y_{i+1} = Ax_i$$

$$x_{i+1} = y_{i+1} / \|y_{i+1}\|$$

$$\lambda_{i+1} = x_{i+1}^T Ax_{i+1}$$

- convergence to λ_1 with linear rate $\frac{|\lambda_2|}{|\lambda_1|} < 1$
- only needs one matrix-vector multiplication at each step
- Inverse Iteration is power method applied to $(A - \sigma I)^{-1}$
- Rayleigh Quotient iteration with special shift
 $\sigma_{i+1} = x_{i+1}^T Ax_{i+1}$ (quadratic/cubic convergence)

Concepts of the Power method

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

Definitions

Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods

■ Given x_0

$$y_{i+1} = Ax_i$$

$$x_{i+1} = y_{i+1} / \|y_{i+1}\|$$

$$\lambda_{i+1} = x_{i+1}^T Ax_{i+1}$$

- convergence to λ_1 with **linear rate** $\frac{|\lambda_2|}{|\lambda_1|} < 1$
- only needs **one matrix-vector multiplication** at each step
- Inverse Iteration is power method applied to $(A - \sigma I)^{-1}$
- Rayleigh Quotient iteration with special shift
 $\sigma_{i+1} = x_{i+1}^T Ax_{i+1}$ (**quadratic/cubic convergence**)

Concepts of the Power method

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

Definitions

Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods

■ Given x_0

$$y_{i+1} = Ax_i$$

$$x_{i+1} = y_{i+1} / \|y_{i+1}\|$$

$$\lambda_{i+1} = x_{i+1}^T Ax_{i+1}$$

- convergence to λ_1 with **linear rate** $\frac{|\lambda_2|}{|\lambda_1|} < 1$
- only needs **one matrix-vector multiplication** at each step
- Inverse Iteration is power method applied to $(A - \sigma I)^{-1}$
- Rayleigh Quotient iteration with special shift
 $\sigma_{i+1} = x_{i+1}^T Ax_{i+1}$ (**quadratic/cubic convergence**)

Concepts of Lanczos/ Arnoldi's method I

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

Definitions

Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods

- Power method with initial vector q computes $q, Aq, \dots, A^k q$
- idea of Arnoldi's method: retain past information: after k steps we have $k + 1$ vectors $q, Aq, \dots, A^k q$
- Given q_1 , $\|q_1\|_2 = 1$ On subsequent steps $k = 1, 2, \dots, m$ take

$$\tilde{q}_{k+1} = Aq_k - \sum_{j=1}^k q_j h_{jk}$$

where h_{jk} is the Gram-Schmidt coefficient
 $h_{jk} = \langle Aq_k, q_j \rangle$. Normalise

$$q_{k+1} = \frac{\tilde{q}_{k+1}}{h_{k+1,k}} \quad \text{where} \quad h_{k+1,k} = \|\tilde{q}_{k+1}\|_2$$

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

Definitions

Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods

- **Power method** with initial vector q computes $q, Aq, \dots, A^k q$
- idea of **Arnoldi's method**: retain past information: after k steps we have $k + 1$ vectors $q, Aq, \dots, A^k q$
- Given q_1 , $\|q_1\|_2 = 1$ On subsequent steps $k = 1, 2, \dots, m$ take

$$\tilde{q}_{k+1} = Aq_k - \sum_{j=1}^k q_j h_{jk}$$

where h_{jk} is the **Gram-Schmidt** coefficient
 $h_{jk} = \langle Aq_k, q_j \rangle$. Normalise

$$q_{k+1} = \frac{\tilde{q}_{k+1}}{h_{k+1,k}} \quad \text{where} \quad h_{k+1,k} = \|\tilde{q}_{k+1}\|_2$$

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

Definitions

Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods

Definition

For any j the space $\text{span}\{q, Aq, \dots, A^{j-1}q\}$ is called the j th **Krylov subspace** associated with A and q and is denoted by $\mathcal{K}_j(A, q)$.

Matrix representation

The Arnoldi process can be written in the form

$$AQ_m = Q_m H_m + q_{m+1} h_{m+1,m} e_m^T$$

where H_m is square upper Hessenberg.

- For the **Lanczos** process: H_m is **tridiagonal** (three term recurrence)
- Approximate eigenvalues and eigenvectors of A can be found from eigenvalues and eigenvectors of much smaller matrix H_m :

Let Q_m , H_m and $h_{m+1,m}$ be generated by the Arnoldi process. Let μ be an eigenvalue of H_m with associated eigenvector x normalised so that $\|x\|_2=1$. Let $y = Q_m x \in \mathbb{C}^n$. Then

$$\|Ay - \mu y\|_2 = |h_{m+1,m}| |x_m|,$$

where x_m denotes the m th (and last) component of x .

Concepts of Lanczos/ Arnoldi's method III

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

Definitions

Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods

- For the **Lanczos** process: H_m is **tridiagonal** (three term recurrence)
- Approximate eigenvalues and eigenvectors of A can be found from eigenvalues and eigenvectors of much smaller matrix H_m :

Let Q_m , H_m and $h_{m+1,m}$ be generated by the Arnoldi process.
Let μ be an eigenvalue of H_m with associated eigenvector x normalised so that $\|x\|_2=1$. Let $y = Q_m x \in \mathbb{C}^n$. Then

$$\|Ay - \mu y\|_2 = |h_{m+1,m}| |x_m|,$$

where x_m denotes the m th (and last) component of x .

Concepts of Lanczos/ Arnoldi's method III

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

Definitions

Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods

- For the **Lanczos** process: H_m is **tridiagonal** (three term recurrence)
- Approximate eigenvalues and eigenvectors of A can be found from eigenvalues and eigenvectors of much smaller matrix H_m :

Let Q_m , H_m and $h_{m+1,m}$ be generated by the Arnoldi process. Let μ be an eigenvalue of H_m with associated eigenvector x normalised so that $\|x\|_2=1$. Let $y = Q_m x \in \mathbb{C}^n$. Then

$$\|Ay - \mu y\|_2 = |h_{m+1,m}| |x_m|,$$

where x_m denotes the m th (and last) component of x .

Example

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

Definitions

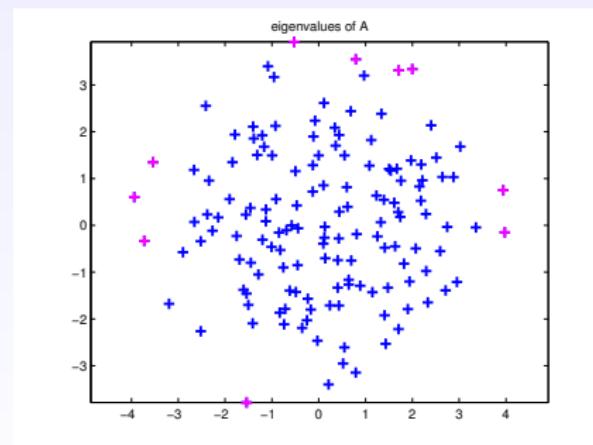
Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods

random complex matrix of dimension $n = 144$ generated in
MATLAB:



approximation of outer eigenvalues first!

after 5 Arnoldi steps

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

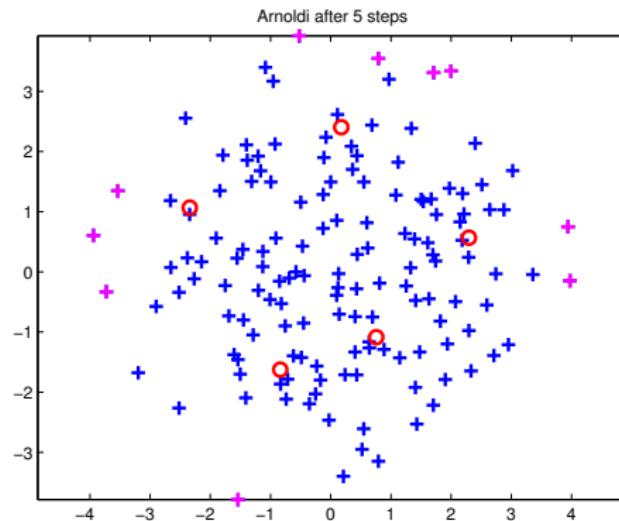
Definitions

Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods



after 10 Arnoldi steps

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

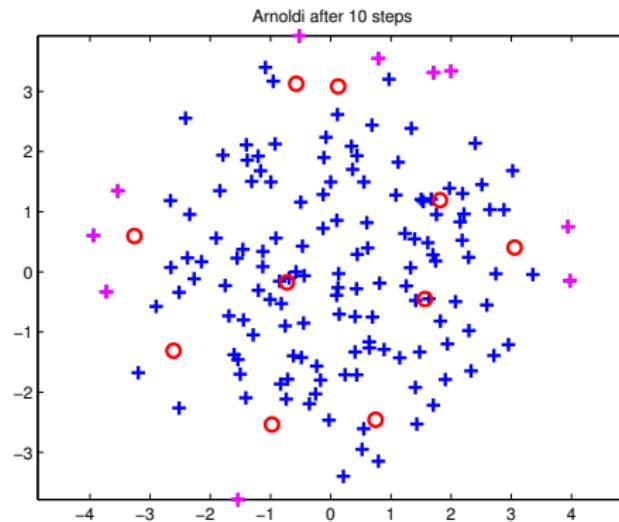
Definitions

Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods



after 15 Arnoldi steps

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

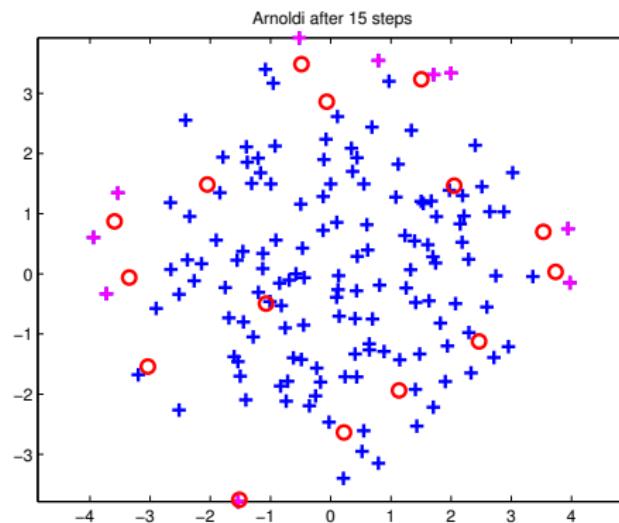
Definitions

Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods



after 20 Arnoldi steps

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

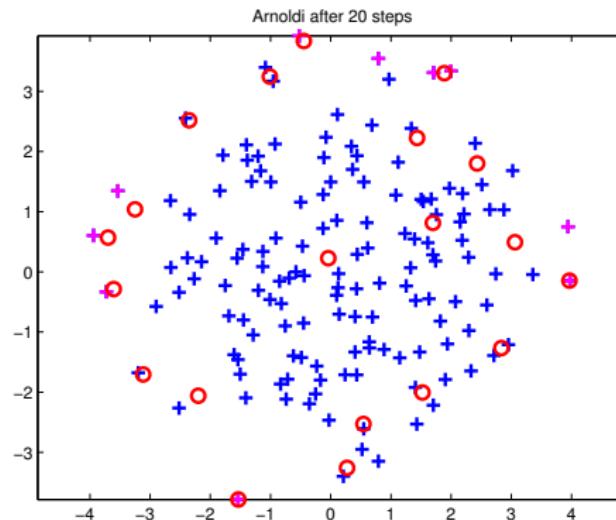
Definitions

Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods



after 25 Arnoldi steps

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

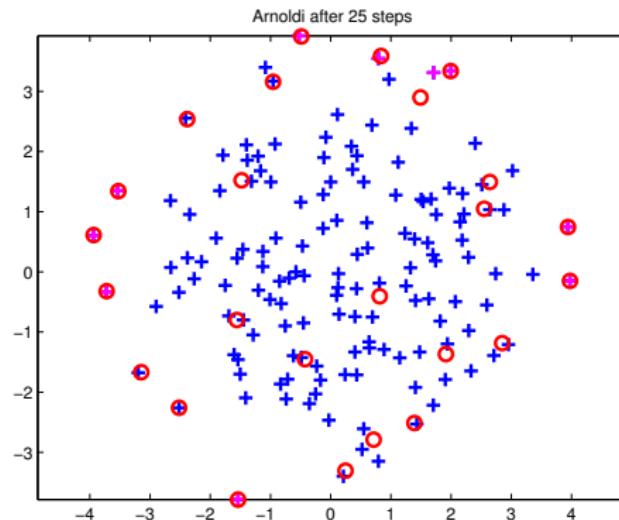
Definitions

Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods



after 30 Arnoldi steps

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

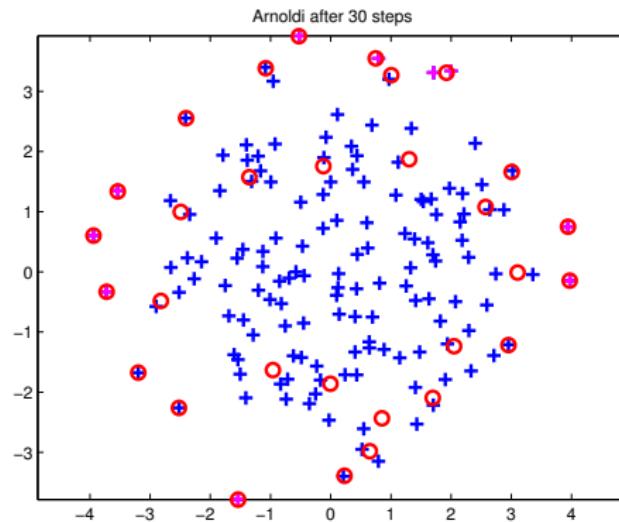
Definitions

Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods



after 35 Arnoldi steps

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

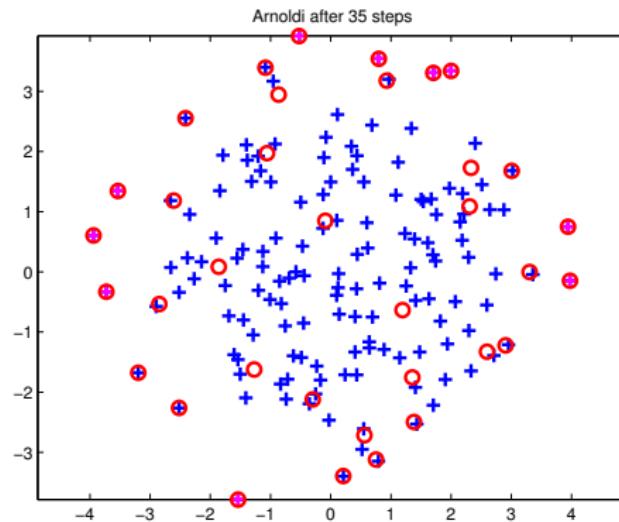
Definitions

Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods



after 40 Arnoldi steps

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

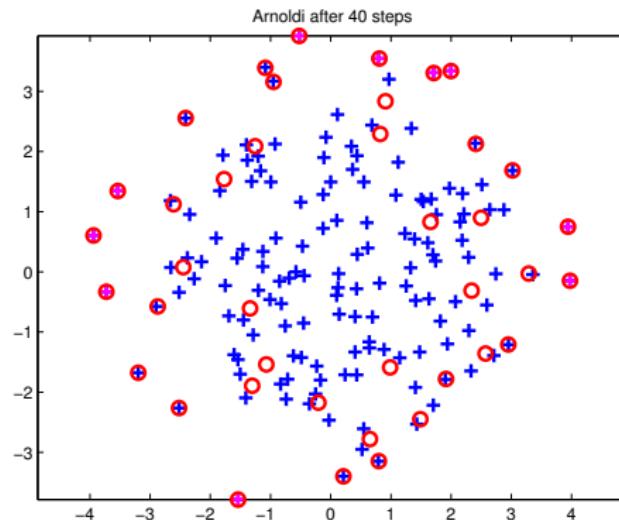
Definitions

Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods



Outline

Large sparse
Eigenvalue
computations

Melina Freitag

Outline

Motivation

Definitions

Characteristic
Polynomial

Eigenvalue
algorithms
based on
similarity
transformation

Iterative
methods

Inner-outer
iterative
methods

1 Motivation

2 Definitions

3 Characteristic Polynomial

4 Eigenvalue algorithms based on similarity transformation

5 Iterative methods

6 Inner-outer iterative methods

- interior eigenvalues: Shift-Invert Transformation

$$\begin{aligned} Ax &= \lambda x \\ (A - \sigma I)^{-1}x &= \frac{1}{\lambda - \sigma}x \end{aligned}$$

- "outer" eigenvalues are the one closest to σ
- Problem: requires a solution of a linear system at each step:
$$(A - \sigma I)u = b$$
- Solve is done iteratively (since A is large and sparse) using MINRES, GMRES, other iterative methods

- interior eigenvalues: Shift-Invert Transformation
-

$$\begin{aligned} Ax &= \lambda x \\ (A - \sigma I)^{-1}x &= \frac{1}{\lambda - \sigma}x \end{aligned}$$

- "outer" eigenvalues are the ones closest to σ
- Problem: requires a solution of a linear system at each step:
$$(A - \sigma I)u = b$$
- Solve is done iteratively (since A is large and sparse) using MINRES, GMRES, other iterative methods

- The solve will be **inexact**
- How does the inexact inner solve influence the convergence property of the outer solve?
- For inexact inverse iteration:

$$(A - \sigma I)y_i = x_i + \text{res}_i$$

If residual res_i is chosen to **decrease** in the same manner as the eigenvalue residual decreases the **convergence rate from exact solves** is recovered

- Ongoing research: Situation for Krylov methods

- The solve will be **inexact**
- How does the inexact inner solve influence the convergence property of the outer solve?
- For inexact inverse iteration:

$$(A - \sigma I)y_i = x_i + \text{res}_i$$

If residual res_i is chosen to **decrease** in the same manner as the eigenvalue residual decreases the **convergence rate from exact solves** is recovered

- Ongoing research: Situation for Krylov methods