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Problem formulation

Given: B = M ◦ J as Fredholm integral equation

[Bx ](s) =

∫ 1

0
k(s, t)x(t)dt, (0 ≤ s ≤ 1)

with

k(s, t) =

{

m(s), (0 ≤ t ≤ s ≤ 1)
0, (0 ≤ s ≤ t ≤ 1).

where m(s) has got a zero, for example m(s) = sα or

m(s) = e−
1

sα

Problem: finding the singular value asymptotics of B
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Problem formulation

well-known: singular values of integral operator J:

σn(J) =
2

π(2n − 1)

analytical results for the singular value decomposition (Chang
(1952), Reade (1984), minimax principle):

σn(B) = O(n−1)

only lower bounds on the degree of ill-posedness if m(s) has
got a zero
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Formulation as a Sturm-Liouville problem

Formulate

[Bx ](s) =

∫ s

0
m(s)x(t)dt, (0 ≤ s ≤ 1),

as a boundary value problem, using the eigenvalue equation
B∗Bu = σ2u:

σ2

(

u′(τ)

m2(τ)

)

′

= −u(τ), m(τ) 6= 0, u ∈ C 2[0, 1]

or
−(a(τ)u′(τ))′ = λu(τ), u(1) = u′(0) = 0,

where λ =
1

σ2
and a(τ) =

1

m2(τ)
.
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Finite difference methods for the Sturm-Liouville problem

Boundary value problem:

−(a(τ)u′(τ))′ = λu(τ)

u(1) = 0 and lim
τ→0

a(τ)u′(τ) = 0.

apply classical finite difference method:

(

ai+1 − ai−1

4h2
−

ai

h2

)

ui−1 +
2ai

h2
ui

+

(

ai−1 − ai+1

4h2
−

ai

h2

)

ui+1 = λui

right hand side τ0 := ε.
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Results for m(s) = s
α
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Figure: Computed eigenvalues of Sturm-Liouville problem −(au ′)′ = λu

for n = 500 and different values for α and exact eigenvalues for α = 0 in

logarithmic scales

λapprox
n (A) = (α + 1)2π2n2 + O(n)
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Results for m(s) = e
− 1

sα
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Figure: Computed eigenvalues of Sturm-Liouville problem −(au ′)′ = λu

for n = 100 and different values for α and exact eigenvalues for α = 0 in

logarithmic scales

λapprox
n (A) = f (α)n2 + O(n)
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Galerkin method for integral equations

[B(x)](s) =

∫ 1

0
k(s, t)x(t)dt, 0 ≤ s ≤ 1, 0 ≤ t ≤ 1

singular value expansion for square integrable kernels:

k(s, t) =

∞
∑

j=1

σjuj(t)vj(s), 0 ≤ s ≤ 1, 0 ≤ t ≤ 1.

algebraic singular value decomposition of A ∈ R
n,n:

A = UΣV T =
n

∑

j=1

sjujv
T
j ,

‖B‖2
HS :=

∞
∑

j=1

σ2
j < ∞ ‖A‖2

F :=
n

∑

i=1

n
∑

j=1

a2
ij =

n
∑

j=1

s2
j .
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Algorithm for Galerkin’s method

Choose {Ψj} and {Φj} orthonormal sets of basis functions in
It = (0, 1), Is = (0, 1).

Determine matrix A ∈ R
n,n with

aij = 〈BΦj ,Ψi〉L2(0,1) i , j = 1, . . . , n.

Compute the SVD of this matrix

Av = s(n)u.
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Matrix structure for m(s) = s
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Matrix structure for m(s) = s
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Matrix structure for m(s) = e
− 1

s

0
5

10
15

20
25

30

0

5

10

15

20

25

30
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Melina Freitag Numerical approaches to singular value asymptotics



Outline
Motivation

Sturm-Liouville problem
Numerical approaches

Conclusion

Finite difference methods for the Sturm-Liouville problem
Galerkin method for integral equations of the first kind
Summary of numerical results

Matrix structure for m(s) = e
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Approximation properties

Proposition Let

‖B‖2 :=

∫ 1

0

∫ 1

0
|k(s, t)|2dtds =

∞
∑

i=1

σ2
i .

Then
s
(n)
i ≤ s

(n+1)
i ≤ σi , i = 1, . . . , n.

Furthermore, the errors of the approximate singular values s
(n)
i are

bounded by

0 ≤ σi − s
(n)
i ≤ δn, i = 1, . . . , n,

where
δ2
n = ‖B‖2 − ‖A‖2

F .

Furthermore

s
(n)
i ≤ σi ≤ [(s

(n)
i )2 + δ2

n]
1
2 , i = 1, . . . , n.
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Results for m(s) = s
α
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Figure: Computed singular values of integral equation Bv = σu for n =

100 and different values for α in logarithmic scales

σapprox
n (B) ∼

1

(α + 1)πn
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Discrete singular values for n → ∞

m(s) = s, n = 100
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Discrete singular values for n → ∞

m(s) = s, n = 150
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Discrete singular values for n → ∞

m(s) = s, n = 200
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Discrete singular values for n → ∞

m(s) = s, n = 400
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Discrete singular values for n → ∞

m(s) = s, n = 1000
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Figure: Computed singular values of integral equation Bv = σu for n =

100 and different values for α in logarithmic scales

σapprox
n (B) ∼

1

g(α)n
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Further numerical approaches and summary

Rayleigh-Ritz method for symmetric kernel B ∗B

Orthonormal/Non-orthonormal basis functions

Generalized singular value problem/Generalized eigenproblem

Comparison yields

σn(B) =

∫ 1

0
m(s)ds · σn(J) =

∫ 1

0
m(s)ds ·

2

π(2n − 1)
,

for the integral operator B = M ◦ J.

Combination of analytical and numerical results:

Cn−1 = σapprox
n (B) ≤ σexact

n (B) ≤ Cn−1, n → ∞
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Conclusions

numerical computation of the SVD of the discretized problem
through various methods

error estimates and approximation properties

relationship

σn(B) =

∫ 1

0
m(s)ds · σn(J) =

∫ 1

0
m(s)ds ·

2

π(2n − 1)
,

for the integral operator B = M ◦ J.

no influence of decay rate of m(s) → 0
∫ 1
0 m(s)ds is important (generalization of the results by Vu

Kim Tuan and Gorenflo (1994)) for m(s) = s−α)
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