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⇒”Aspects of Ionosphere modelling”
Nathan (see talk later this afternoon)

The weather (NWP)
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Assimilation algorithms

used to find an (approximate)
state of the atmosphere xi at
times i (usually i = 0)

using this/these states a
forecast for future states of the
atmosphere can be obtained
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Schematics of DA

Figure: Background state xB



Schematics of DA

Figure: Observations y



Schematics of DA

Figure: Analysis xA (consistent with observations and model dynamics)



Data Assimilation in NWP

Underdeterminacy

Size of the state vector x: 432 × 320 × 50 × 7 = O(107)

Number of observations (size of y): O(105 − 106)

Operator H (nonlinear!) maps from state space into observations
space: y = H(x)

Notation

xTruth: True state

xB: Background state (taken from previous forecast)

xA: Analysis (estimation of the true state after the DA)
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Data Assimilation in NWP

We are looking for the state of the atmosphere xi at a certain time/certain
times i.

Apriori information xB

background state (usual
previous forecast) has errors!

Models

a model how the atmosphere
evolves in time (imperfect)

xi+1 = M(xi) + error

a function linking model space
and observation space
(imperfect)

yi = H(xi) + error

Observations y has errors!

Satellites

Ships and buoys

Surface stations

Airplanes

Assimilation algorithms

used to find an (approximate)
state of the atmosphere xi at
times i (usually i = 0)

using this/these states a
forecast for future states of the
atmosphere can be obtained



Error variables

Modelling the errors

background error εB = xB − xTruth of average εB and covariance

B = (εB − εB)(εB − εB)T

observation error εO = y − H(xTruth) of average εO and covariance

R = (εO − εO)(εO − εO)T
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Modelling the errors

background error εB = xB − xTruth of average εB and covariance

B = (εB − εB)(εB − εB)T

observation error εO = y − H(xTruth) of average εO and covariance

R = (εO − εO)(εO − εO)T

Assumptions

Linearised observation operator: H(x) − H(xB) = H(x− xB)

Nontrivial errors: B, R are positive definite

Unbiased errors: xB − xTruth = y − H(xTruth) = 0

Uncorrelated errors: (xB − xTruth)(y − H(xTruth))T = 0



Optimal least-squares estimater

Cost function minimisation (3D-Var)

Solution of the variational optimisation problem xA = arg minJ(x) where

J(x) = (x − x
B)T

B
−1(x− x

B) + (y − H(x))T
R

−1(y − H(x))

= JB(x) + JO(x)

B−1 expensive!



Optimal least-squares estimater

Cost function minimisation (3D-Var)

Solution of the variational optimisation problem xA = arg minJ(x) where

J(x) = (x − x
B)T

B
−1(x− x

B) + (y − H(x))T
R

−1(y − H(x))

= JB(x) + JO(x)

B−1 expensive!

Interpolation equations

x
A = x

B + K(y − H(xB)), where

K = BH
T (HBH

T + R)−1
K . . . gain matrix

expensive!



Four-dimensional variational assimilation (4D-Var)

Minimise the cost function

J(x0) = (x0 − x
B)T

B
−1(x0 − x

B) +
nX

i=0

(yi − Hi(xi))
T
R

−1
i (yi − Hi(xi))

subject to model dynamics xi = M0→ix0
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Minimise the cost function

J(x0) = (x0 − x
B)T

B
−1(x0 − x

B) +
nX

i=0

(yi − Hi(xi))
T
R

−1
i (yi − Hi(xi))

subject to model dynamics xi = M0→ix0

Figure: Copyright:ECMWF



Example - Three-Body Problem

Motion of three bodies in a plane, two position (q) and two momentum (p)
coordinates for each body α = 1, 2, 3

Equations of motion

H(q,p) =
1

2

X

α

|pα|
2

mα

−
X X

α<β

mαmβ

|qα − qβ|

dqα

dt
=

∂H

∂pα

dpα

dt
= −

∂H

∂qα



Example - Three-Body problem

solver: partitioned Runge-Kutta scheme with time step h = 0.001

observations are taken as noise from the truth trajectory

background is given from a perturbed initial condition

assimilation window is taken 300 time steps

minimisation of cost function J using a Gauss-Newton method

∇J(x0) = 0

∇∇J(xj
0)∆x

j
0 = −∇J(xj

0), x
j+1
0 = x

j
0 + ∆x

j
0

subsequent forecast is take 5000 time steps



Example- Three-Body problem

Figure: Truth trajectory
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The Kalman Filter Algorithm

Sequential data assimilation

covariance matrices are updated at each step PF , PA

State and error covariance forecast

State forecast x
F
i+1 = Mi+1,ix

A
i

Error covariance forecast P
F
i+1 = Mi+1,iP

A
i M

T
i+1,i + Qi



The Kalman Filter Algorithm

Sequential data assimilation

covariance matrices are updated at each step PF , PA

State and error covariance forecast

State forecast x
F
i+1 = Mi+1,ix

A
i

Error covariance forecast P
F
i+1 = Mi+1,iP

A
i M

T
i+1,i + Qi

State and error covariance analysis

Kalman gain Ki = P
F
i H

T
i (HiP

F
i H

T
i + Ri)

−1

State analysis x
A
i = x

F
i + Ki(yi − Hix

F
i )

Error covariance of analysis P
A
i = (I− KiHi)P

F
i



Example - Three-Body Problem

same setup as before

Compare using B = I with using a flow-dependent matrix B which was
generated by a Kalman Filter before the assimilation starts (see G.
Inverarity (2007))
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and adjoint)



Problems with Data Assimilation

DA is computational very expensive, one cycle is much more expensive
than the actual forecast (many applications of the tangent linear model
and adjoint)

estimation of the B-matrix is hard
in operational DA B is about 107

× 107

B should be flow-dependent but in practice often static
B needs to be modeled and diagonalised since B−1 too expensive to
compute (”control variable transform”)



Problems with Data Assimilation

DA is computational very expensive, one cycle is much more expensive
than the actual forecast (many applications of the tangent linear model
and adjoint)

estimation of the B-matrix is hard
in operational DA B is about 107

× 107

B should be flow-dependent but in practice often static
B needs to be modeled and diagonalised since B−1 too expensive to
compute (”control variable transform”)

many assumptions are not valid
errors non-Gaussian, data have biases
forward model operator M is not exact and also non-linear and system
dynamics are chaotic
minimisation of the cost function needs close initial guess, small
assimilation window



Problems with Data Assimilation

DA is computational very expensive, one cycle is much more expensive
than the actual forecast (many applications of the tangent linear model
and adjoint)

estimation of the B-matrix is hard
in operational DA B is about 107

× 107

B should be flow-dependent but in practice often static
B needs to be modeled and diagonalised since B−1 too expensive to
compute (”control variable transform”)

many assumptions are not valid
errors non-Gaussian, data have biases
forward model operator M is not exact and also non-linear and system
dynamics are chaotic
minimisation of the cost function needs close initial guess, small
assimilation window

model error not included
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Model error and perturbation error

Figure: One assimilation window (6 hours)
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Model error and perturbation error

Figure: Model error and perturbation error



Model error

Figure: Perturbation error after 7 hours (Copyright: MetOffice)



Model error

Figure: Perturbation error after 12 hours (Copyright: MetOffice)



Model error

Figure: Model error after 12 hours (Copyright: MetOffice)
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Plan

design a simple chaotic model of reduced order (Lorenz model)

include several time scales (to model the atmosphere)

include model error and analyse influence of this model error onto the
DA scheme

analyse the influence of the error made by the numerical
approximation (part of the model error) on the error in the DA scheme

investigate several assimilation algorithms and optimisation strategies
to reduce existing errors

improve the representation of multi-scale behaviour in the atmosphere
in existing DA methods

improve the forecast of small scale features (like convective storms)

Theme D: Numerical methods for multi-scale modelling


	Outline
	Introduction
	Basic concepts
	Variational Data Assimilation
	Least square estimation
	Kalman Filter

	Problems
	Plan

