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m The atmosphere is a complex system!
m Mathematical modelling, observations and mathematical Data
Assimilation help to understand this complex multi-scale system

=" Aspects of Tonosphere modelling”
Nathan (see talk later this afternoon)

The weather (NWP)

Figure: http://www.usoe.k12.ut.us
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Data Assimilation in NWP

Estimate the state of the atmosphere x; at a certain time/certain times i.

A priori information x?

Observations y

m background state (usual

previous forecast) Satellites

Ships and buoys

Surface stations

Models
= Airplanes
= a model how the atmosphere
evolves in time (imperfect)
Assimilation algorithms

Xi+1 = M (XZ)
= used to find an (approximate)
= a function linking model space state of the atmosphere x; at
and observation space times i (usually i = 0)
(imperfect)

= using this/these states a
yi = H(x;) forecast for future states. of the
atmosphere can be obtained
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Schematics of DA

State x

time

Figure: Background state xB



Schematics of DA
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time

Figure: Observations y



Schematics of DA

State x

time

Figure: Analysis x* (consistent with observations and model dynamics)



Data Assimilation in NWP

Underdeterminacy

m Size of the state vector x: 432 x 320 x 50 x 7 = O(107)
= Number of observations (size of y): O(10° — 10°)

m Operator H (nonlinear!) maps from state space into observations
space: y = H(x)

Notation

= x T True state
m x”: Background state (taken from previous forecast)

m x“': Analysis (estimation of the true state after the DA)
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Data Assimilation in NWP

We are looking for the state of the atmosphere x; at a certain time/certain

times 1.
Apriori information xZ

= background state (usual
previous forecast) has errors!

Models

m a model how the atmosphere
evolves in time (imperfect)

Xit+1 = M(x;) + error

= a function linking model space
and observation space
(imperfect)

yi = H(x;) + error

Observations y has errors!

m Satellites
m Ships and buoys
m Surface stations

= Airplanes

Assimilation algorithms

= used to find an (approximate)
state of the atmosphere x; at
times ¢ (usually 7 = 0)

= using this/these states a
forecast for future states of the
atmosphere can be obtained
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Error variables

Modelling the errors

m background error e® = x® — x™"™" of average €2 and covariance

B = (¢B —&B)(eB —€5)T

o

m observation error €€ =y — H(x™™"*%") of average °

and covariance

R = (e© —89)(e® — °)T

Assumptions

m Linearised observation operator: H(x) — H(x?) = H(x — x?)
m Nontrivial errors: B, R are positive definite
m Unbiased errors: xB — xTruth — y — H (xTruth) = (

m Uncorrelated errors: (xZ — x™)(y — H(xT*)T =0




Optimal least-squares estimater

Cost function minimisation (3D-Var)

Solution of the variational optimisation problem x* = arg minJ(x) where
Jx) = (x-x")"B(x—x")+(y-Hx)"R'(y - H(x)

JB(%) + Jo(x)

m B! expensive!



Optimal least-squares estimater

Cost function minimisation (3D-Var)

Solution of the variational optimisation problem x* = arg min.J(x) where
Jx) = (x—x")"B7(x-x")+(y - Hx)"R™(y - H(x))

JB (%) + Jo(x)

m B! expensive!
Interpolation equations

x* =xP + K(y — H(x")), where
K=BH"(HBH" +R)' K...gain matrix

m expensive!



Four-dimensional variational assimilation (4D-Var)

Minimise the cost function

J(x0) = (x0 —x7) B~} (x0 — x7) + Y (yi — Hi(x:))"R;  (y: — Hi(x:))
1=0

subject to model dynamics x; = Mq_.;xo



Four-dimensional variational assimilation (4D-Var)

Minimise the cost function

n

J(x0) = (x0 —x7) B~} (x0 — x7) + Y (yi — Hi(x:))"R;  (y: — Hi(x:))

subject to model dynamics x; = Mq_.;xo
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Example - Three-Body Problem

Motion of three bodies in a plane, two position (q) and two momentum (p)
coordinates for each body a =1,2,3

(< ©
)
Jk A ) -t

Equations of motion

H(q,p) = lefa XX

a<B |qa asl
dqa _ OH
dt ~ Opa
dpa OH

dt B 0qa



Example - Three-Body problem

m solver: partitioned Runge-Kutta scheme with time step A = 0.001
m observations are taken as noise from the truth trajectory

m background is given from a perturbed initial condition

m assimilation window is taken 300 time steps

= minimisation of cost function J using a Gauss-Newton method
VJ(X()) =0
VVJI(xh)Ax) = —VJ(x}), xIt!=x}+ Ax)

m subsequent forecast is take 5000 time steps



ample- Three-Body problem

Solution for position of the sun
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Figure: Truth trajectory



ample- Three-Body problem

Solution for position of the sun
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Figure: Truth trajectory with observations and background



ample- Three-Body problem
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Example- Three-Body problem

RMS error
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Figure: RMS error



Example- Three-Body problem

0.2} | = — — sun before
— — — planet before
018 | — — — moon before
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planet after
0.14F | ——— moon after

RMS error
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Figure: RMS error



The Kalman Filter Algorithm

m Sequential data assimilation

m covariance matrices are updated at each step P¥, P4

State and error covariance forecast

State forecast xfll = Mi_H,ixf1

. F A T
Error covariance forecast Pjy; = Mip1,:Pi M, + Qs



The Kalman Filter Algorithm

m Sequential data assimilation

m covariance matrices are updated at each step P¥, P4

State and error covariance forecast

State forecast xﬂl = Mi_H,ixf1

. F AT
Error covariance forecast P,y = M;11:P;i M1, +Q:
State and error covariance analysis

Kalman gain K; = PIH] (H,P/H] +R;)"
x{ + Ki(y: — Hix/)
(I-K;H,)P/

State analysis xf1

. q A
Error covariance of analysis Pj



Example - Three-Body Problem

m same setup as before

m Compare using B = I with using a flow-dependent matrix B which was
generated by a Kalman Filter before the assimilation starts (see G.

Inverarity (2007))



cample - Three-Body Problem

RMS error
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Figure: 4D-Var with B =1
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Figure: 4D-Var with B = P4
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Problems with Data Assimilation

m DA is computational very expensive, one cycle is much more expensive
than the actual forecast (many applications of the tangent linear model
and adjoint)

m estimation of the B-matrix is hard

= in operational DA B is about 107 x 107

m B should be flow-dependent but in practice often static

# B needs to be modeled and diagonalised since B~ too expensive to
compute (”control variable transform”)

= many assumptions are not valid

m errors non-Gaussian, data have biases

m forward model operator M is not exact and also non-linear and system
dynamics are chaotic

= minimisation of the cost function needs close initial guess, small
assimilation window

m model error not included
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Model error and perturbation error
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Figure: One assimilation window (6 hours)

xf - xPuth =  Mappr (XE)A) - M(Xgmth)

Mappr (XE)A) — Mapp: (Xg‘mth) + Mappr (Xg\wth) - M(Xgmth)

Perturbation error Model error



Model error and perturbation error
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Control

Figure: Model error and perturbation error



Model error
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Figure: Perturbation error after 7 hours (Copyright: MetOffice)
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Figure: Perturbation error after 12 hours (Copyright: MetOffice)
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design a simple chaotic model of reduced order (Lorenz model)

include several time scales (to model the atmosphere)

include model error and analyse influence of this model error onto the
DA scheme

analyse the influence of the error made by the numerical
approximation (part of the model error) on the error in the DA scheme

investigate several assimilation algorithms and optimisation strategies
to reduce existing errors

improve the representation of multi-scale behaviour in the atmosphere
in existing DA methods

improve the forecast of small scale features (like convective storms)

Theme D: Numerical methods for multi-scale modelling
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