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Problem and iterative methods

Find a small number of eigenvalues and eigenvectors of:

Az =Xz, AeC,zeC"

m A is large, sparse, nonsymmetric
m [terative solves

m Power method

m Simultaneous iteration
m Arnoldi method

m Jacobi-Davidson method

m The first three of these involve repeated application of the matrix A to
a vector

Generally convergence to largest/outlying eigenvector



Shift-invert strategy

= Wish to find a few eigenvalues close to a shift o




Shift-invert strategy

= Wish to find a few eigenvalues close to a shift o

m Problem becomes 1

73

A—o

m each step of the iterative method involves repeated application of
A= (A—-oI)"" to a vector

m Inner iterative solve:

(A=cl) 'z =

(A-ocly==
using Krylov method for linear systems.

m leading to inner-outer iterative method.



Shift-invert strategy

This talk:
Inner iteration and preconditioning

Fixed shifts only

Inverse iteration and Arnoldi method
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Inexact inverse iteration



The algorithm

Inexact inverse iteration

fori:lto‘... do
choose 7

solve ‘ ‘ ‘ ‘
I(4=oDy® -2 = ld¥) <=,
(%)
Rescale z('t1) = %,
ly@]|

Update A0 = x(i+1)HAx(i+1)’
Test: eigenvalue residual Pl — (A— )\(i+1)1)$(i+1)'
end for



The algorithm

Inexact inverse iteration

forizlto‘... do
choose 7

solve _ ‘ ‘ _
I(4=oDy® -2 = ld¥) <=,
(%)
Rescale 21 = %,
Iy

Update A0 = x(i+1)HA$(i+1)’
Test: eigenvalue residual Pl — (A— )\(i+1)])w(i+l)'
end for

Convergence rates

If ‘ ‘
@ =]

then convergence rate is linear (same convergence rate as for exact solves).



The inner iteration for (A —ol)y =«

Standard GMRES theory for yo = 0 and A diagonalisable

lz = (A= olye|| < £(W) min max_[p(A;)|lz]l
pEPE j=1,...,n

where \; are eigenvalues of A — ol and (A — aI) =WAW .



The inner iteration for (A —ol)y =«

Standard GMRES theory for yo = 0 and A diagonalisable

lz = (A= olye|| < £(W) min max_[p(A;)|lz]l
pEPE j=1,...,n

where \; are eigenvalues of A — ol and (A — aI) =WAW .

Number of inner iterations

kZCl—l-Czlog@

for ||z — (A—oal)ys|| < 7.



The inner iteration for (A —ol)y =«

More detailed GMRES theory for yo = 0

- A2 — A .
o — (4 - oDyl < R 222 e max ()12

A1 PEPK—1I=2,.--,

where \; are eigenvalues of A — 1.

Number of inner iterations

k> G+ Chlog 1210

where O projects onto the space not spanned by the eigenvector.



The inner iteration for (A —ol)y =«

Good news!

: (@)
jAQ) > C} + Chlog %,
7@

where 7 = C||7?||. Tteration number approximately constant!



The inner iteration for (A —ol)y =«

Good news!

) )

where 7 = C||r?||. Tteration number approximately constant!

Bad news :-(

For a standard preconditioner P
(A— o.[)p—lg(i) = ® p—lg(i) _ y(i)

IIQ || c

i)

Y > ¢y + ¢ log
7(2)

=0/ +C%lo

where 7 = C||r(?||. Tteration number increases!



Convection-Diffusion operator

Finite difference discretisation on a 32 x 32 grid of the convection-diffusion
operator
—Au +5ug 4 5uy = du on  (0,1)%
with homogeneous Dirichlet boundary conditions (961 x 961 matrix).
m smallest eigenvalue: A1 =~ 32.18560954,
= Preconditioned GMRES with tolerance 7 = 0.01||r ||,

m standard and tuned preconditioner (incomplete LU).
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The inner iteration for (A —ol)P71j =2

How to overcome this problem
m Use a different preconditioner, namely one that satisfies
Pz = Az, P, =P+ (A- P)x(i)az(i)H

= minor modification and minor extra computational cost,
n [AP; ')Az = Az,



The inner iteration for (A —ol)P71j =2

How to overcome this problem
m Use a different preconditioner, namely one that satisfies
Piz'Y = 42, P;:=P+ (A— P)x(i)x(i)H

= minor modification and minor extra computational cost,
n [AP; ')Az = Az®.

Why does that work?

Assume we have found eigenvector x1

A —oO
A1

Aacl =Px1 = 121 = (A = UI)P71x1 = apil
and convergence of Krylov method applied to (A — ol YP~'§ =z in one
iteration. For general z®

Cs|lr™]

G Where O =o|r?.
(i

kD > ) + ¢ log



Convection-Diffusion operator

Finite difference discretisation on a 32 x 32 grid of the convection-diffusion
operator
—Au +5ug 4 5uy = du on  (0,1)%
with homogeneous Dirichlet boundary conditions (961 x 961 matrix).
m smallest eigenvalue: A1 =~ 32.18560954,
= Preconditioned GMRES with tolerance 7 = 0.01||r ||,

m standard and tuned preconditioner (incomplete LU).
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Convection-Diffusion op
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The algorithm

Arnoldi’s method

m Arnoldi method constructs an orthogonal basis of k-dimensional
Krylov subspace
ICk (A7 q(l)) = Spa‘n{q(l) ) Aq(1)7 A2q(1)7 coey Ak_lq(l)}7
H Hy,
AQk = QrHi + gr+1hrt1,kek = Qrt1 A H
k+1,k€E

QHQr =1

m Eigenvalues of Hy are eigenvalue approximations of (outlying)
eigenvalues of A

7|l = | Az — 62| = [|(AQk — QuHy)ul| = |hus1,k]lek ul,

m at each step, application of A to gx: Agr = Gr+1



random complex matrix of dimension n = 144 generated in MATLAB:
G=numgrid(’N’,14) ;B=delsq(G) ; A=sprandn(B)+i*sprandn(B)

eigenvalues of A
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after 5 Arnoldi steps

Arnoldi after 5 steps
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after 10 Arnoldi steps

Arnoldi after 10 steps
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after 15 Arnoldi steps

Arnoldi after 15 steps
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after 20 Arnoldi steps

Arnoldi after 20 steps
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after 25 Arnoldi steps

Arnoldi after 25 steps
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after 30 Arnoldi steps

Arnoldi after 30 steps
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The algorithm: take o = 0

Shift-Invert Arnoldi’s method A := A~}

m Arnoldi method constructs an orthogonal basis of k-dimensional
Krylov subspace
Ki(A™Y,¢M) = span{g™, A7 ¢, (A7), ... (A7 ¢ W),
-1 H Hk
A" Qr = QuHr + gr+1hit1,€k = Qi1 h H
k+1,k€k

QY Qr=1.
= Eigenvalues of Hy, are eigenvalue approximations of (outlying)
eigenvalues of A~!

Irell = 1A™" 2 — 6zll = (A7 Qx — QrHr)ull = [hrsrkllex ul,

m at each step, application of A™* to gr: A7 qr = Gra1



Inexact solves

Inexact solves (Simoncini 2005), Bouras and Frayssé (2000)

m Wish to solve B
llar — Agrs1ll = lldill < 7%



Inexact solves

Inexact solves (Simoncini 2005), Bouras and Frayssé (2000)

m Wish to solve B
llar — Agrs1ll = lldill < 7%

m leads to inexact Arnoldi relation

_ H, H
A 1Qk=Qk+1 [ hes k :|+Dk=Qk+1 [ L keH ] + [di] ... |dk]

H
1,k€L k+1,k€k



Inexact solves

Inexact solves (Simoncini 2005), Bouras and Frayssé (2000)

m Wish to solve B
gk — A1l = [|dill < 7%

m leads to inexact Arnoldi relation

A7T'Qr = Qa1 [ hk+Hk } + Dy = Qr11 [ h o ] + [da] . .. |dx]

H H
1,k€L k+1,k€k
m u eigenvector of Hy:

7kl = (A~ Qr — QrHi)ull = |his1,x]ler u| + Diu,



Inexact solves

Inexact solves (Simoncini 2005), Bouras and Frayssé (2000)
m Wish to solve B
lax — AGetrll = lldnll < 7

m leads to inexact Arnoldi relation

_ H, H
A 1Qk = Qk+1 [ hk+1:€kH :| + Dy = Qk+1 [ hk+1z€kH ] + [di] ... |dk]

m u eigenvector of Hy:
Irell = (A Qx — QeHr)ull = |huyr,xlled ul + Dyu,

m Linear combination of the columns of Dy

k
Dyu = Zdlul, if w, small, then [|d;|| allowed to be large!
=1



Inexact solves

Inexact solves (Simoncini 2005), Bouras and Frayssé (2000)
Linear combination of the columns of Dy

k
Dyu = Z diwg, if w  small, then ||di|| allowed to be large!
=1

1
ldiwll < ze = [[Diull <e

and
[wi] < C(LE)||r—a|l 3o
leads to i
llgr — Adryall = ||del|
1

ldill = C ==
[l

Solve tolerance can be relaxed.



The inner iteration for AP_l(ij = Qi

Preconditioning
GMRES convergence bound

llgr = AP~ Ghya|| = - min max [p(ui)|llgx|
p€ll; i=1,...,n

depending on



The inner iteration for AP~1§ 11 =qk

Preconditioning
GMRES convergence bound

llgr = AP~ Ghya|| = - min max [p(ui)|llgx|
p€ll; i=1,...,n

depending on

m the eigenvalue clustering of AP~!
= the condition number

m the right hand side (initial guess)



The inner iteration for AP_l(ij = Qi

Preconditioning
m Introduce preconditioner P and solve
AP ' = qx, P lGkr1 = qrna
using GMRES



The inner iteration for AP~1§ 11 =qk

Preconditioning
m Introduce preconditioner P and solve
AP ' = qx, P lGkr1 = qrna
using GMRES

Tuned Preconditioner

using a tuned preconditioner for Arnoldi’s method

PrQr = AQr; given by Pr =P+ (A— P)QkaH



The inner iteration for Ag = ¢

Theorem (Properties of the tuned preconditioner)

Let P with P = A+ E be a preconditioner for A and assume k steps of
Arnoldi’s method have been carried out; then k eigenvalues of AIF’;I are
equal to one:

[AP, 'AQk = AQx

and n — k eigenvalues are close to the corresponding eigenvalues of AP™1.



The inner iteration for Ag = ¢

Theorem (Properties of the tuned preconditioner)

Let P with P = A+ E be a preconditioner for A and assume k steps of
Arnoldi’s method have been carried out; then k eigenvalues of AP;I are
equal to one:

[AP,]AQk = AQx

and n — k eigenvalues are close to the corresponding eigenvalues of AP™1.

Implementation

m Sherman-Morrison-Woodbury.

= Only minor extra costs (one back substitution per outer iteration)



Numerical Example

shermanb.mtx nonsymmetric matrix from the Matrix Market library
(3312 x 3312).

m smallest eigenvalue: \; ~ 4.69 x 1072,

m Preconditioned GMRES as inner solver (both fixed tolerance and
relaxation strategy),

= standard and tuned preconditioner (incomplete LU).



No tuning and standard precondition
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Tuning the preconditioner
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Relaxation
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Tuning and relaxation strategy
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Ritz values of exact and inexact Arnoldi

Exact eigenvalues

Ritz values (exact Arnoldi)

Ritz values (inexact Arnoldi, tuning)

+4.69249563e-02
+1.25445378e-01
+4.02658363e-01
+5.79574381e-01
+6.18836405e-01

14.692495630-02
+1.25445378e-01
+4.02658347¢-01
+5.79625498¢-01
+6.18798666¢-01

+4.69249563e-02
+1.25445378e-01
+4.02658244e-01
+5.79817301e-01
+6.18650849e-01

Table: Ritz values of exact Arnoldi’s method and inexact Arnoldi’s method with

the tuning strategy compared to exact eigenvalues closest to zero after 14

shift-invert Arnoldi steps.



Outline

Inexact Shift-invert Arnoldi method with implicit restarts



Implicitly restarted Arnoldi (Sorensen (1992))

Exact shifts
= take an k + p step Arnoldi factorisation
AQkip = QurpHrtp + Qotpr1hkipti b tpisp
m Compute A(Hg+,) and select p shifts for an implicit QR iteration

(1)
m implicit restart with new starting vector zj(l) = p(.Ai)q(l)
Ip(A)g™ |l



Implicitly restarted Arnoldi (Sorensen (1992))

Exact shifts
= take an k + p step Arnoldi factorisation
AQkip = QurpHrtp + Qotpr1hkipti b tpisp
m Compute A(Hgyp) and select p shifts for an implicit QR iteration

(1)
m implicit restart with new starting vector zj(l) = p(.Ai)q(l)
Ip(A)g™ |l

Aim of IRA

AQy = QrHp, + @1 i1k en
——

—0



Relaxation strategy for IRA

Theorem
For any given € € R with ¢ > 0 assume that

@}
—— if 1>k,
ja < AR ¥ o

€ otherwise.

Then
[AQmU — @mU®O — Rp|| < e.

m Very technical

m Relaxation strategy also works for IRA!



Tuning

Tuning for implicitly restarted Arnoldi’s method
m Introduce preconditioner P and solve
AP;@H-I = (qk, P;16k+1 = gk+1
using GMRES and a tuned preconditioner

PrQr = AQy; given by Py =P+ (A— P)QirQr



Tuning

Why does tuning help?
m Assume we have found an approximate invariant subspace, that is

AT Qr = QrHy + Qk+1hk+1,kekH
—

~0



Tuning

Why does tuning help?
m Assume we have found an approximate invariant subspace, that is
AT Qr = QrHy + qk+1hk+1,k6kH
T/
m let A~! have the upper Hessenberg form

1 7H 41 1 Hy, Ti2
A =
[ Qr Qrt ] [ Qr Qr" ] herixeren Toa |
where [ Qr Qut ] is unitary and Hy € C** and Thy € C* %"k are
upper Hessenberg.



Tuning

Why does tuning help?

m Assume we have found an approximate invariant subspace, that is
AT Qr = QrHy + Qk+1hk+1,k61€1
N——
~0
m let A~! have the upper Hessenberg form

LojE =t i Hy, Tio
A =
[ Qr Qrt ] [ Qr Qr" ] herixeren Toa |
where [ Qx Qx| is unitary and Hy, € C** and To, € C" %" " are
upper Hessenberg.

If hk+1,k ;é 0 then

I+ QF AP, ' Qi

[ Qk QkL ]HA]PD;I [ Qk le ] = o T2_21( i_HPQi_),l + %




Tuning

Why does tuning help?

m Assume we have found an approximate invariant subspace, that is
AT Qr = QrHy + Qk+1hk+1,k61€1
N——
~0
m let A~! have the upper Hessenberg form

[ Qe Qr* ]HA*I[ Qr Qwt )= ok %z g

= H
hiy1,k€1ek

where [ Qr Qwnt ] is unitary and Hy € C** and The € C"%"F are
upper Hessenberg.

If hk+1,k = 0 then

[@ @t 1747 [ Qe @t )= | pipuipihys

I QHEAP;'Qf ]



Tuning

Another advantage of tuning
m System to be solved at each step of Arnoldi’s method is

AP G = iy Py Gkt = G
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Tuning

Another advantage of tuning
m System to be solved at each step of Arnoldi’s method is
AP o = ak, Pi e = G
= Assuming invariant subspace found then (A™*Qx = Qx Hy):
A]P’,:lqk = qr

m the right hand side of the system matrix is an eigenvector of the
system!



Tuning

Another advantage of tuning
m System to be solved at each step of Arnoldi’s method is
AP o = ak, Pi e = G
= Assuming invariant subspace found then (A™*Qx = Qx Hy):
A]P’,:lqk = qr

m the right hand side of the system matrix is an eigenvector of the
system!

m Krylov methods converge in one iteration



Tuning

Another advantage of tuning

m In practice:
AT'Qr = QrHy + qrr1hrrker

and
AP, g — qrll = O(lhet1kl)
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Another advantage of tuning

m In practice:
AT'Qr = QrHy + qrr1hrrker

and
AP, g — qrll = O(lhet1kl)

m number of iterations decreases as the outer iteration proceeds



Tuning

Another advantage of tuning

m In practice:
AT'Qr = QrHy + qrr1hrrker

and
=il
AP, gk — arll = O(|h&+1,])
m number of iterations decreases as the outer iteration proceeds

m Rigorous analysis quite technical.



Numerical Example

shermanb.mtx nonsymmetric matrix from the Matrix Market library
(3312 x 3312).

m k = 8 eigenvalues closest to zero
m IRA with exact shifts p =4

m Preconditioned GMRES as inner solver (fixed tolerance and relaxation
strategy),

m standard and tuned preconditioner (incomplete LU).



No tuning and standard precondition
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Tuning
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Relaxation
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Tuning and relaxation strategy
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Numerical Example

qc2534 .mtx matrix from the Matrix Market library.
m k = 6 eigenvalues closest to zero
= IRA with exact shifts p =4

m Preconditioned GMRES as inner solver (fixed tolerance and relaxation
strategy),

m standard and tuned preconditioner (incomplete LU).



Tuning and relaxation strategy
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Conclusions

m For eigenvalue computations it is advantageous to consider small rank
changes to the standard preconditioners

m Works for any preconditioner

m Works for SI versions of Power method, Simultaneous iteration,
Arnoldi method

m Inexact inverse iteration with a special tuned preconditioner is
equivalent to the Jacobi-Davidson method (without subspace
expansion)

m For Arnoldi method best results are obtained when relaxation and
tuning are combined
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