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Find a small number of eigenvalues and eigenvectors of:

Ax = λx, λ ∈ C, x ∈ C
n

A is large, sparse, nonsymmetric

Iterative solves
Power method
Simultaneous iteration
Arnoldi method
Jacobi-Davidson method

The first three of these involve repeated application of the matrix A to
a vector

Generally convergence to largest/outlying eigenvector
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Shift-invert strategy

Wish to find a few eigenvalues close to a shift σ

λ λ λλ 4 λn

σ

1 23

Problem becomes

(A− σI)−1
x =

1

λ− σ
x

each step of the iterative method involves repeated application of
A = (A− σI)−1 to a vector

Inner iterative solve:
(A− σI)y = x

using Krylov method for linear systems.

leading to inner-outer iterative method.



Shift-invert strategy

This talk:
Inner iteration and preconditioning

Fixed shifts only

Inverse iteration and Arnoldi method
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The algorithm

Inexact inverse iteration

for i = 1 to . . . do

choose τ (i)

solve
‖(A− σI)y(i) − x

(i)‖ = ‖d(i)‖ ≤ τ
(i)
,

Rescale x(i+1) =
y(i)

‖y(i)‖
,

Update λ(i+1) = x(i+1)HAx(i+1),
Test: eigenvalue residual r(i+1) = (A− λ(i+1)I)x(i+1).

end for



The algorithm

Inexact inverse iteration

for i = 1 to . . . do

choose τ (i)

solve
‖(A− σI)y(i) − x

(i)‖ = ‖d(i)‖ ≤ τ
(i)
,

Rescale x(i+1) =
y(i)

‖y(i)‖
,

Update λ(i+1) = x(i+1)HAx(i+1),
Test: eigenvalue residual r(i+1) = (A− λ(i+1)I)x(i+1).

end for

Convergence rates

If
τ
(i) = C‖r(i)‖

then convergence rate is linear (same convergence rate as for exact solves).



The inner iteration for (A− σI)y = x

Standard GMRES theory for y0 = 0 and A diagonalisable

‖x− (A− σI)yk‖ ≤ κ(W ) min
p∈Pk

max
j=1,...,n

|p(λj)|‖x‖

where λj are eigenvalues of A− σI and (A− σI) = WΛW−1.



The inner iteration for (A− σI)y = x

Standard GMRES theory for y0 = 0 and A diagonalisable

‖x− (A− σI)yk‖ ≤ κ(W ) min
p∈Pk

max
j=1,...,n

|p(λj)|‖x‖

where λj are eigenvalues of A− σI and (A− σI) = WΛW−1.

Number of inner iterations

k ≥ C1 + C2 log
‖x‖

τ

for ‖x− (A− σI)yk‖ ≤ τ .



The inner iteration for (A− σI)y = x

More detailed GMRES theory for y0 = 0

‖x− (A− σI)yk‖ ≤ κ̃(W )
|λ2 − λ1|

λ1
min

p∈Pk−1

max
j=2,...,n

|p(λj)|‖Qx‖

where λj are eigenvalues of A− σI .

Number of inner iterations

k ≥ C
′

1 +C
′

2 log
‖Qx‖

τ
,

where Q projects onto the space not spanned by the eigenvector.



The inner iteration for (A− σI)y = x

Good news!

k
(i) ≥ C

′

1 + C
′

2 log
C3‖r

(i)‖

τ (i)
,

where τ (i) = C‖r(i)‖. Iteration number approximately constant!



The inner iteration for (A− σI)y = x

Good news!

k
(i) ≥ C

′

1 + C
′

2 log
C3‖r

(i)‖

τ (i)
,

where τ (i) = C‖r(i)‖. Iteration number approximately constant!

Bad news :-(

For a standard preconditioner P

(A− σI)P−1
ỹ
(i) = x

(i)
P

−1
ỹ
(i) = y

(i)

k
(i) ≥ C

′′

1 + C
′′

2 log
‖Q̃x(i)‖

τ (i)
= C

′′

1 + C
′′

2 log
C

τ (i)
,

where τ (i) = C‖r(i)‖. Iteration number increases!



Convection-Diffusion operator

Finite difference discretisation on a 32× 32 grid of the convection-diffusion
operator

−∆u+ 5ux + 5uy = λu on (0, 1)2,

with homogeneous Dirichlet boundary conditions (961× 961 matrix).

smallest eigenvalue: λ1 ≈ 32.18560954,

Preconditioned GMRES with tolerance τ (i) = 0.01‖r(i)‖,

standard and tuned preconditioner (incomplete LU).



Convection-Diffusion operator

2 4 6 8 10 12 14 16 18 20 22

5

10

15

20

25

30

35

40

45

outer iterations

in
ne

r 
ite

ra
tio

ns

 

 

right preconditioning, 569 iterations

Figure: Inner iterations vs outer
iterations

100 200 300 400 500 600

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

sum of inner iterations

re
si

du
al

 n
or

m
s 

\|r
^{

(i)
}\

|

 

 
right preconditioning, 569 iterations

Figure: Eigenvalue residual norms vs
total number of inner iterations



The inner iteration for (A− σI)P−1ỹ = x

How to overcome this problem

Use a different preconditioner, namely one that satisfies

Pix
(i) = Ax

(i)
, Pi := P + (A− P )x(i)

x
(i)H

minor modification and minor extra computational cost,

[AP
−1
i ]Ax(i) = Ax(i).



The inner iteration for (A− σI)P−1ỹ = x

How to overcome this problem

Use a different preconditioner, namely one that satisfies

Pix
(i) = Ax

(i)
, Pi := P + (A− P )x(i)

x
(i)H

minor modification and minor extra computational cost,

[AP
−1
i ]Ax(i) = Ax(i).

Why does that work?

Assume we have found eigenvector x1

Ax1 = Px1 = λ1x1 ⇒ (A− σI)P−1
x1 =

λ1 − σ

λ1
x1

and convergence of Krylov method applied to (A− σI)P−1ỹ = x1 in one
iteration. For general x(i)

k
(i) ≥ C

′′

1 + C
′′

2 log
C3‖r

(i)‖

τ (i)
, where τ

(i) = C‖r(i)‖.



Convection-Diffusion operator

Finite difference discretisation on a 32× 32 grid of the convection-diffusion
operator

−∆u+ 5ux + 5uy = λu on (0, 1)2,

with homogeneous Dirichlet boundary conditions (961× 961 matrix).

smallest eigenvalue: λ1 ≈ 32.18560954,

Preconditioned GMRES with tolerance τ (i) = 0.01‖r(i)‖,

standard and tuned preconditioner (incomplete LU).
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The algorithm

Arnoldi’s method

Arnoldi method constructs an orthogonal basis of k-dimensional
Krylov subspace

Kk(A, q
(1)) = span{q(1),Aq

(1)
,A2

q
(1)

, . . . ,Ak−1
q
(1)},

AQk = QkHk + qk+1hk+1,ke
H
k = Qk+1

[
Hk

hk+1,ke
H
k

]

Q
H
k Qk = I.
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The algorithm

Arnoldi’s method

Arnoldi method constructs an orthogonal basis of k-dimensional
Krylov subspace

Kk(A, q
(1)) = span{q(1),Aq

(1)
,A2

q
(1)

, . . . ,Ak−1
q
(1)},

AQk = QkHk + qk+1hk+1,ke
H
k = Qk+1

[
Hk

hk+1,ke
H
k

]

Q
H
k Qk = I.

Eigenvalues of Hk are eigenvalue approximations of (outlying)
eigenvalues of A

‖rk‖ = ‖Ax− θx‖ = ‖(AQk −QkHk)u‖ = |hk+1,k||e
H
k u|,

at each step, application of A to qk: Aqk = q̃k+1



Example

random complex matrix of dimension n = 144 generated in Matlab:
G=numgrid(’N’,14);B=delsq(G);A=sprandn(B)+i*sprandn(B)
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eigenvalues of A



after 5 Arnoldi steps

−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

Arnoldi after 5 steps



after 10 Arnoldi steps
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The algorithm: take σ = 0

Shift-Invert Arnoldi’s method A := A−1

Arnoldi method constructs an orthogonal basis of k-dimensional
Krylov subspace

Kk(A
−1

, q
(1)) = span{q(1), A−1

q
(1)

, (A−1)2q(1), . . . , (A−1)k−1
q
(1)},

A
−1

Qk = QkHk + qk+1hk+1,ke
H
k = Qk+1

[
Hk

hk+1,ke
H
k

]

Q
H
k Qk = I.

Eigenvalues of Hk are eigenvalue approximations of (outlying)
eigenvalues of A−1

‖rk‖ = ‖A−1
x− θx‖ = ‖(A−1

Qk −QkHk)u‖ = |hk+1,k||e
H
k u|,

at each step, application of A−1 to qk: A
−1qk = q̃k+1
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Inexact solves

Inexact solves (Simoncini 2005), Bouras and Frayssé (2000)

Linear combination of the columns of Dk

Dku =
k∑

l=1

dlul, if ul small, then ‖dl‖ allowed to be large!

‖dlul‖ ≤
1

k
ε ⇒ ‖Dku‖ < ε

and
|ul| ≤ C(l, k)‖rl−1‖ ⋆

leads to
‖qk − Aq̃k+1‖ = ‖d̃k‖

‖d̃k‖ = C
1

‖rk−1‖
⋄

Solve tolerance can be relaxed.



The inner iteration for AP−1q̃k+1 = qk

Preconditioning

GMRES convergence bound

‖qk − AP
−1

q̃
l
k+1‖ = κ min

p∈Πl

max
i=1,...,n

|p(µi)|‖qk‖

depending on



The inner iteration for AP−1q̃k+1 = qk

Preconditioning

GMRES convergence bound

‖qk − AP
−1

q̃
l
k+1‖ = κ min

p∈Πl

max
i=1,...,n

|p(µi)|‖qk‖

depending on

the eigenvalue clustering of AP−1

the condition number

the right hand side (initial guess)
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Preconditioning

Introduce preconditioner P and solve

AP
−1

q̃k+1 = qk, P
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q̃k+1 = qk+1

using GMRES



The inner iteration for AP−1q̃k+1 = qk

Preconditioning

Introduce preconditioner P and solve

AP
−1

q̃k+1 = qk, P
−1

q̃k+1 = qk+1

using GMRES

Tuned Preconditioner

using a tuned preconditioner for Arnoldi’s method

PkQk = AQk; given by Pk = P + (A− P )QkQ
H
k



The inner iteration for Aq̃ = q

Theorem (Properties of the tuned preconditioner)

Let P with P = A+ E be a preconditioner for A and assume k steps of

Arnoldi’s method have been carried out; then k eigenvalues of AP
−1
k are

equal to one:

[AP
−1
k ]AQk = AQk

and n− k eigenvalues are close to the corresponding eigenvalues of AP−1.



The inner iteration for Aq̃ = q

Theorem (Properties of the tuned preconditioner)

Let P with P = A+ E be a preconditioner for A and assume k steps of

Arnoldi’s method have been carried out; then k eigenvalues of AP
−1
k are

equal to one:

[AP
−1
k ]AQk = AQk

and n− k eigenvalues are close to the corresponding eigenvalues of AP−1.

Implementation

Sherman-Morrison-Woodbury.

Only minor extra costs (one back substitution per outer iteration)



Numerical Example

sherman5.mtx nonsymmetric matrix from the Matrix Market library
(3312 × 3312).

smallest eigenvalue: λ1 ≈ 4.69× 10−2,

Preconditioned GMRES as inner solver (both fixed tolerance and
relaxation strategy),

standard and tuned preconditioner (incomplete LU).



No tuning and standard preconditioner
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Tuning the preconditioner
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Relaxation
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Tuning and relaxation strategy
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Ritz values of exact and inexact Arnoldi

Exact eigenvalues Ritz values (exact Arnoldi) Ritz values (inexact Arnoldi, tuning)
+4.69249563e-02 +4.69249563e-02 +4.69249563e-02
+1.25445378e-01 +1.25445378e-01 +1.25445378e-01
+4.02658363e-01 +4.02658347e-01 +4.02658244e-01
+5.79574381e-01 +5.79625498e-01 +5.79817301e-01
+6.18836405e-01 +6.18798666e-01 +6.18650849e-01

Table: Ritz values of exact Arnoldi’s method and inexact Arnoldi’s method with
the tuning strategy compared to exact eigenvalues closest to zero after 14
shift-invert Arnoldi steps.
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Implicitly restarted Arnoldi (Sorensen (1992))

Exact shifts

take an k + p step Arnoldi factorisation

AQk+p = Qk+pHk+p + qk+p+1hk+p+1,k+pe
H
k+p

Compute Λ(Hk+p) and select p shifts for an implicit QR iteration

implicit restart with new starting vector q̂(1) =
p(A)q(1)

‖p(A)q(1)‖



Implicitly restarted Arnoldi (Sorensen (1992))

Exact shifts

take an k + p step Arnoldi factorisation

AQk+p = Qk+pHk+p + qk+p+1hk+p+1,k+pe
H
k+p

Compute Λ(Hk+p) and select p shifts for an implicit QR iteration

implicit restart with new starting vector q̂(1) =
p(A)q(1)

‖p(A)q(1)‖

Aim of IRA

AQk = QkHk + qk+1 hk+1,k
︸ ︷︷ ︸

→ 0

e
H
k



Relaxation strategy for IRA

Theorem

For any given ε ∈ R with ε > 0 assume that

‖dl‖ ≤







ε
C

‖Rk‖
if l > k,

ε otherwise.
⋄

Then

‖AQmU −QmUΘ−Rm‖ ≤ ε.

Very technical

Relaxation strategy also works for IRA!



Tuning

Tuning for implicitly restarted Arnoldi’s method

Introduce preconditioner P and solve

AP
−1
k q̃k+1 = qk, P

−1
k q̃k+1 = qk+1

using GMRES and a tuned preconditioner

PkQk = AQk; given by Pk = P + (A− P )QkQ
H
k



Tuning

Why does tuning help?

Assume we have found an approximate invariant subspace, that is

A
−1

Qk = QkHk + qk+1hk+1,ke
H
k

︸ ︷︷ ︸

≈0
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Why does tuning help?

Assume we have found an approximate invariant subspace, that is

A
−1

Qk = QkHk + qk+1hk+1,ke
H
k

︸ ︷︷ ︸

≈0

let A−1 have the upper Hessenberg form

[
Qk Qk

⊥
]H

A
−1 [

Qk Qk
⊥

]
=

[
Hk T12

hk+1,ke1ek
H T22

]

,

where
[
Qk Qk

⊥
]
is unitary and Hk ∈ C

k,k and T22 ∈ C
n−k,n−k are

upper Hessenberg.

If hk+1,k 6= 0 then

[
Qk Qk

⊥
]H

AP
−1
k

[
Qk Qk

⊥
]
=

[

I + ⋆ QH
k AP
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Tuning

Why does tuning help?

Assume we have found an approximate invariant subspace, that is

A
−1

Qk = QkHk + qk+1hk+1,ke
H
k

︸ ︷︷ ︸

≈0

let A−1 have the upper Hessenberg form

[
Qk Qk

⊥
]H

A
−1 [

Qk Qk
⊥

]
=

[
Hk T12

hk+1,ke1ek
H T22

]

,

where
[
Qk Qk

⊥
]
is unitary and Hk ∈ C

k,k and T22 ∈ C
n−k,n−k are

upper Hessenberg.

If hk+1,k = 0 then

[
Qk Qk

⊥
]H

AP
−1
k

[
Qk Qk

⊥
]
=

[

I QH
k AP

−1
k Q⊥

k

0 T−1
22 (Q⊥

k

H
PQ⊥

k )
−1

]
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Another advantage of tuning

System to be solved at each step of Arnoldi’s method is

AP
−1
k q̃k+1 = qk, P

−1
k q̃k+1 = q̃k

Assuming invariant subspace found then (A−1Qk = QkHk):

AP
−1
k qk = qk

the right hand side of the system matrix is an eigenvector of the
system!

Krylov methods converge in one iteration
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Tuning

Another advantage of tuning

In practice:
A

−1
Qk = QkHk + qk+1hk+1,ke

H
k

and
‖AP

−1
k qk − qk‖ = O(|hk+1,k|)

number of iterations decreases as the outer iteration proceeds

Rigorous analysis quite technical.



Numerical Example

sherman5.mtx nonsymmetric matrix from the Matrix Market library
(3312 × 3312).

k = 8 eigenvalues closest to zero

IRA with exact shifts p = 4

Preconditioned GMRES as inner solver (fixed tolerance and relaxation
strategy),

standard and tuned preconditioner (incomplete LU).
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Relaxation
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Tuning and relaxation strategy
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Numerical Example

qc2534.mtx matrix from the Matrix Market library.

k = 6 eigenvalues closest to zero

IRA with exact shifts p = 4

Preconditioned GMRES as inner solver (fixed tolerance and relaxation
strategy),

standard and tuned preconditioner (incomplete LU).



Tuning and relaxation strategy
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Conclusions

For eigenvalue computations it is advantageous to consider small rank
changes to the standard preconditioners

Works for any preconditioner

Works for SI versions of Power method, Simultaneous iteration,
Arnoldi method

Inexact inverse iteration with a special tuned preconditioner is
equivalent to the Jacobi-Davidson method (without subspace
expansion)

For Arnoldi method best results are obtained when relaxation and
tuning are combined
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