

Preconditioned inverse iteration and shift-invert Arnoldi method

Melina Freitag

Department of Mathematical Sciences
University of Bath

CSC Seminar
Max-Planck-Institute for Dynamics of Complex Technical Systems
Magdeburg
3rd May 2011

joint work with Alastair Spence (Bath)

- 1 Introduction
- 2 Inexact inverse iteration
- 3 Inexact Shift-invert Arnoldi method
- 4 Inexact Shift-invert Arnoldi method with implicit restarts
- 5 Conclusions

Outline

- 1** Introduction
- 2** Inexact inverse iteration
- 3** Inexact Shift-invert Arnoldi method
- 4** Inexact Shift-invert Arnoldi method with implicit restarts
- 5** Conclusions

Problem and iterative methods

Find a small number of eigenvalues and eigenvectors of:

$$Ax = \lambda x, \quad \lambda \in \mathbb{C}, x \in \mathbb{C}^n$$

- A is large, sparse, **nonsymmetric**

Problem and iterative methods

Find a small number of eigenvalues and eigenvectors of:

$$Ax = \lambda x, \quad \lambda \in \mathbb{C}, x \in \mathbb{C}^n$$

- A is large, sparse, **nonsymmetric**
- Iterative solves
 - Power method
 - Simultaneous iteration
 - Arnoldi method
 - Jacobi-Davidson method
- repeated application of the matrix A to a vector
- Generally **convergence to largest/outlying eigenvector**

Problem and iterative methods

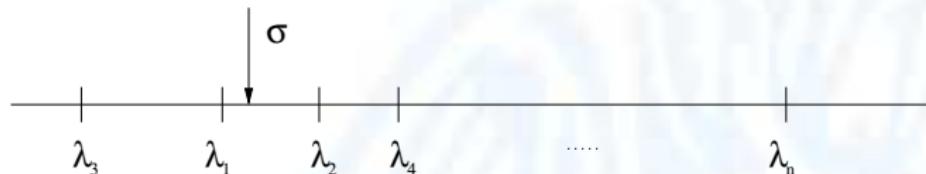
Find a small number of eigenvalues and eigenvectors of:

$$Ax = \lambda x, \quad \lambda \in \mathbb{C}, x \in \mathbb{C}^n$$

- A is large, sparse, **nonsymmetric**
- Iterative solves
 - **Power method**
 - Simultaneous iteration
 - **Arnoldi method**
 - Jacobi-Davidson method
- The first three of these involve repeated application of the matrix A to a vector
- Generally **convergence to largest/outlying eigenvector**

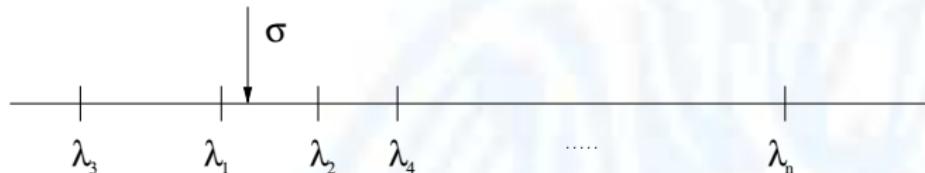
Shift-invert strategy

- Wish to find a few eigenvalues close to a shift σ



Shift-invert strategy

- Wish to find a few eigenvalues close to a shift σ



- Problem becomes

$$(A - \sigma I)^{-1}x = \frac{1}{\lambda - \sigma}x$$

- each step of the iterative method involves repeated application of $\mathcal{A} = (A - \sigma I)^{-1}$ to a vector

- **Inner iterative solve:**

$$(A - \sigma I)y = x$$

using Krylov method for linear systems.

- leading to **inner-outer iterative method**.

Shift-invert strategy

This talk:

Inner iteration and preconditioning

Fixed shifts only

Inverse iteration and Arnoldi method

Outline

- 1 Introduction
- 2 Inexact inverse iteration
- 3 Inexact Shift-invert Arnoldi method
- 4 Inexact Shift-invert Arnoldi method with implicit restarts
- 5 Conclusions

The algorithm

Inexact inverse iteration

for $i = 1$ to \dots **do**

choose $\tau^{(i)}$

solve

$$\|(A - \sigma I)y^{(i)} - x^{(i)}\| = \|d^{(i)}\| \leq \tau^{(i)},$$

Rescale $x^{(i+1)} = \frac{y^{(i)}}{\|y^{(i)}\|}$,

Update $\lambda^{(i+1)} = x^{(i+1)H} A x^{(i+1)}$,

Test: eigenvalue residual $r^{(i+1)} = (A - \lambda^{(i+1)} I)x^{(i+1)}$.

end for

The algorithm

Inexact inverse iteration

for $i = 1$ to \dots **do**

choose $\tau^{(i)}$

solve

$$\|(A - \sigma I)y^{(i)} - x^{(i)}\| = \|d^{(i)}\| \leq \tau^{(i)},$$

Rescale $x^{(i+1)} = \frac{y^{(i)}}{\|y^{(i)}\|}$,

Update $\lambda^{(i+1)} = x^{(i+1)H} A x^{(i+1)}$,

Test: eigenvalue residual $r^{(i+1)} = (A - \lambda^{(i+1)} I)x^{(i+1)}$.

end for

Convergence rates

If

$$\tau^{(i)} = C\|r^{(i)}\|$$

then convergence rate is **linear** (same convergence rate as for exact solves).

The inner iteration for $(A - \sigma I)y = x$

Standard GMRES theory for $y_0 = 0$ and A diagonalisable

$$\|x - (A - \sigma I)\mathbf{y}_k\| \leq \kappa(W) \min_{p \in \mathcal{P}_k} \max_{j=1, \dots, n} |p(\lambda_j)| \|x\|$$

where λ_j are eigenvalues of $A - \sigma I$ and $(A - \sigma I) = W\Lambda W^{-1}$.

The inner iteration for $(A - \sigma I)y = x$

Standard GMRES theory for $y_0 = 0$ and A diagonalisable

$$\|x - (A - \sigma I)\mathbf{y}_k\| \leq \kappa(W) \min_{p \in \mathcal{P}_k} \max_{j=1, \dots, n} |p(\lambda_j)| \|x\|$$

where λ_j are eigenvalues of $A - \sigma I$ and $(A - \sigma I) = W\Lambda W^{-1}$.

Number of inner iterations

$$k \geq C_1 + C_2 \log \frac{\|x\|}{\tau}$$

for $\|x - (A - \sigma I)\mathbf{y}_k\| \leq \tau$.

The inner iteration for $(A - \sigma I)y = x$

More detailed GMRES theory for $y_0 = 0$

$$\|x - (A - \sigma I)\mathbf{y}_k\| \leq \tilde{\kappa}(W) \frac{|\lambda_2 - \lambda_1|}{\lambda_1} \min_{p \in \mathcal{P}_{k-1}} \max_{j=2, \dots, n} |p(\lambda_j)| \|\mathcal{Q}x\|$$

where λ_j are eigenvalues of $A - \sigma I$.

Number of inner iterations

$$k \geq C'_1 + C'_2 \log \frac{\|\mathcal{Q}x\|}{\tau},$$

where \mathcal{Q} projects onto the space *not* spanned by the eigenvector.

The inner iteration for $(A - \sigma I)y = x$

Good news!

$$k^{(i)} \geq C'_1 + C'_2 \log \frac{C_3 \|r^{(i)}\|}{\tau^{(i)}},$$

where $\tau^{(i)} = C \|r^{(i)}\|$. Iteration number approximately constant!

The inner iteration for $(A - \sigma I)y = x$

Good news!

$$k^{(i)} \geq C'_1 + C'_2 \log \frac{C_3 \|r^{(i)}\|}{\tau^{(i)}},$$

where $\tau^{(i)} = C\|r^{(i)}\|$. Iteration number approximately constant!

Bad news :-(

For a standard preconditioner P

$$(A - \sigma I)P^{-1}\tilde{y}^{(i)} = x^{(i)} \quad P^{-1}\tilde{y}^{(i)} = y^{(i)}$$

$$k^{(i)} \geq C''_1 + C''_2 \log \frac{\|\tilde{Q}x^{(i)}\|}{\tau^{(i)}} = C''_1 + C''_2 \log \frac{C}{\tau^{(i)}},$$

where $\tau^{(i)} = C\|r^{(i)}\|$. Iteration number increases!

Convection-Diffusion operator

Finite difference discretisation on a 32×32 grid of the convection-diffusion operator

$$-\Delta u + 5u_x + 5u_y = \lambda u \quad \text{on } (0, 1)^2,$$

with homogeneous Dirichlet boundary conditions (961×961 matrix).

- smallest eigenvalue: $\lambda_1 \approx 32.18560954$,
- Preconditioned GMRES with tolerance $\tau^{(i)} = 0.01\|r^{(i)}\|$,
- standard and tuned preconditioner (incomplete LU).

Convection-Diffusion operator

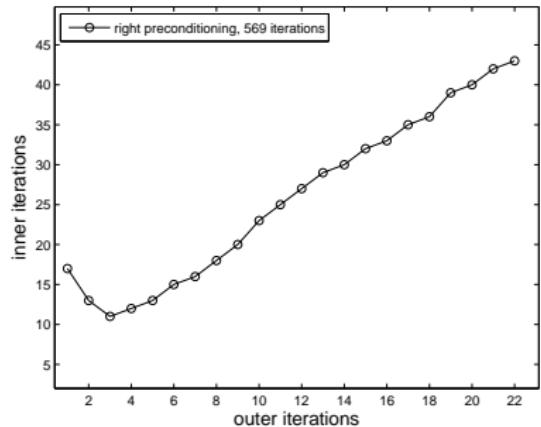


Figure: Inner iterations vs outer iterations

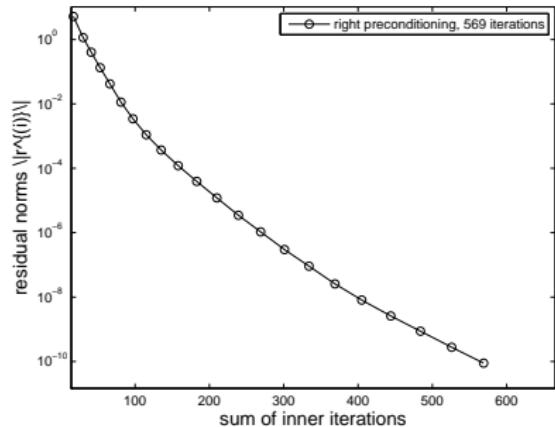


Figure: Eigenvalue residual norms vs total number of inner iterations

The inner iteration for $(A - \sigma I)P^{-1}\tilde{y} = x$

How to overcome this problem

- Use a different preconditioner, namely one that satisfies

$$\mathbb{P}_i x^{(i)} = Ax^{(i)}, \quad \mathbb{P}_i := P + (A - P)x^{(i)}x^{(i)H}$$

- minor modification and **minor extra computational cost**,
- $[A\mathbb{P}_i^{-1}]Ax^{(i)} = Ax^{(i)}$.

The inner iteration for $(A - \sigma I)P^{-1}\tilde{y} = x$

How to overcome this problem

- Use a different preconditioner, namely one that satisfies

$$\mathbb{P}_i x^{(i)} = Ax^{(i)}, \quad \mathbb{P}_i := P + (A - P)x^{(i)}x^{(i)H}$$

- minor modification and **minor extra computational cost**,
- $[A\mathbb{P}_i^{-1}]Ax^{(i)} = Ax^{(i)}$.

Why does that work?

Assume we have found eigenvector x_1

$$Ax_1 = \mathbb{P}x_1 = \lambda_1 x_1 \quad \Rightarrow \quad (A - \sigma I)\mathbb{P}^{-1}x_1 = \frac{\lambda_1 - \sigma}{\lambda_1}x_1$$

and convergence of Krylov method applied to $(A - \sigma I)\mathbb{P}^{-1}\tilde{y} = x_1$ in one iteration. For general $x^{(i)}$

$$k^{(i)} \geq C_1'' + C_2'' \log \frac{C_3 \|r^{(i)}\|}{\tau^{(i)}}, \quad \text{where} \quad \tau^{(i)} = C \|r^{(i)}\|.$$

Convection-Diffusion operator

Finite difference discretisation on a 32×32 grid of the convection-diffusion operator

$$-\Delta u + 5u_x + 5u_y = \lambda u \quad \text{on } (0, 1)^2,$$

with homogeneous Dirichlet boundary conditions (961×961 matrix).

- smallest eigenvalue: $\lambda_1 \approx 32.18560954$,
- Preconditioned GMRES with tolerance $\tau^{(i)} = 0.01\|r^{(i)}\|$,
- standard and tuned preconditioner (incomplete LU).

Convection-Diffusion operator

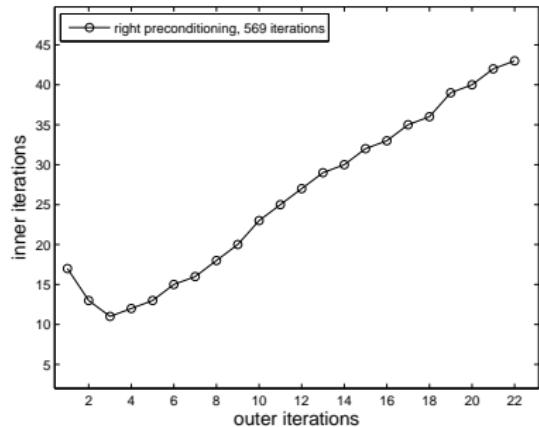


Figure: Inner iterations vs outer iterations

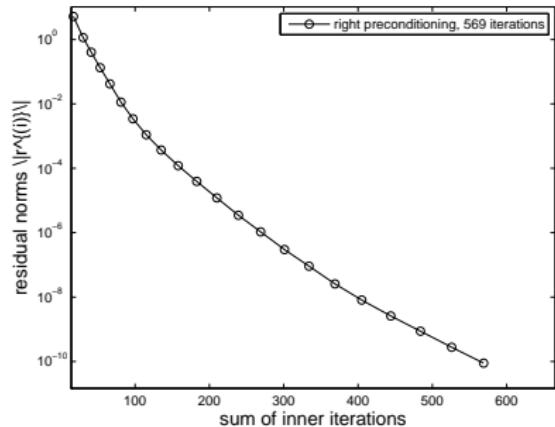


Figure: Eigenvalue residual norms vs total number of inner iterations

Convection-Diffusion operator

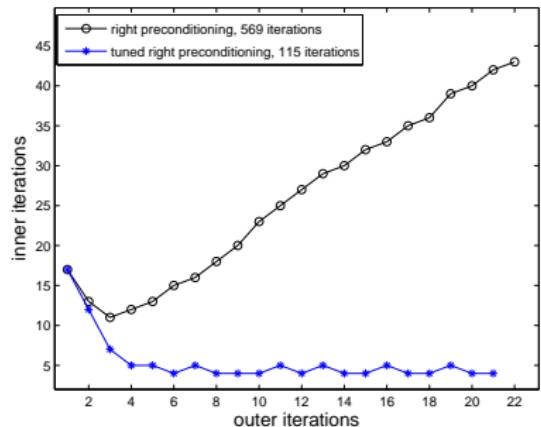


Figure: Inner iterations vs outer iterations

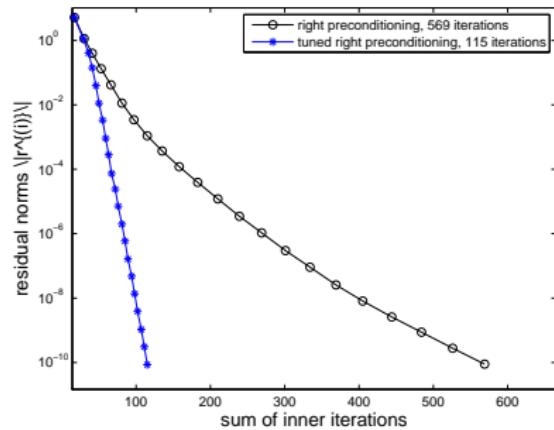


Figure: Eigenvalue residual norms vs total number of inner iterations

Outline

- 1 Introduction
- 2 Inexact inverse iteration
- 3 Inexact Shift-invert Arnoldi method
- 4 Inexact Shift-invert Arnoldi method with implicit restarts
- 5 Conclusions

The algorithm

Arnoldi's method

- Arnoldi method constructs an orthogonal basis of k -dimensional Krylov subspace

$$\mathcal{K}_k(\mathcal{A}, q^{(1)}) = \text{span}\{q^{(1)}, \mathcal{A}q^{(1)}, \mathcal{A}^2q^{(1)}, \dots, \mathcal{A}^{k-1}q^{(1)}\},$$

$$\mathcal{A}Q_k = Q_k H_k + q_{k+1} h_{k+1,k} e_k^H = Q_{k+1} \begin{bmatrix} H_k \\ h_{k+1,k} e_k^H \end{bmatrix}$$

$$Q_k^H Q_k = I.$$

The algorithm

Arnoldi's method

- Arnoldi method constructs an orthogonal basis of k -dimensional Krylov subspace

$$\mathcal{K}_k(\mathcal{A}, q^{(1)}) = \text{span}\{q^{(1)}, \mathcal{A}q^{(1)}, \mathcal{A}^2q^{(1)}, \dots, \mathcal{A}^{k-1}q^{(1)}\},$$

$$\mathcal{A}Q_k = Q_k H_k + q_{k+1} h_{k+1,k} e_k^H = Q_{k+1} \begin{bmatrix} H_k \\ h_{k+1,k} e_k^H \end{bmatrix}$$

$$Q_k^H Q_k = I.$$

- Eigenvalues of H_k are eigenvalue approximations of (outlying) eigenvalues of \mathcal{A}

$$\|r_k\| = \|\mathcal{A}x - \theta x\| = \|(\mathcal{A}Q_k - Q_k H_k)u\| = |h_{k+1,k}| |e_k^H u|,$$

The algorithm

Arnoldi's method

- Arnoldi method constructs an orthogonal basis of k -dimensional Krylov subspace

$$\mathcal{K}_k(\mathcal{A}, q^{(1)}) = \text{span}\{q^{(1)}, \mathcal{A}q^{(1)}, \mathcal{A}^2q^{(1)}, \dots, \mathcal{A}^{k-1}q^{(1)}\},$$

$$\mathcal{A}Q_k = Q_k H_k + q_{k+1} h_{k+1,k} e_k^H = Q_{k+1} \begin{bmatrix} H_k \\ h_{k+1,k} e_k^H \end{bmatrix}$$

$$Q_k^H Q_k = I.$$

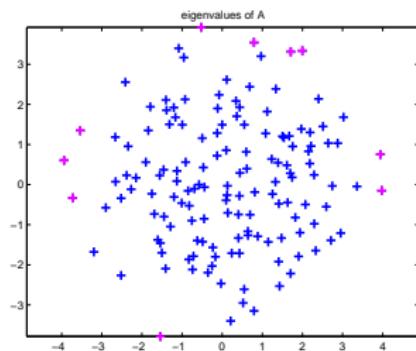
- Eigenvalues of H_k are eigenvalue approximations of (outlying) eigenvalues of \mathcal{A}

$$\|r_k\| = \|\mathcal{A}x - \theta x\| = \|(\mathcal{A}Q_k - Q_k H_k)u\| = |h_{k+1,k}| |e_k^H u|,$$

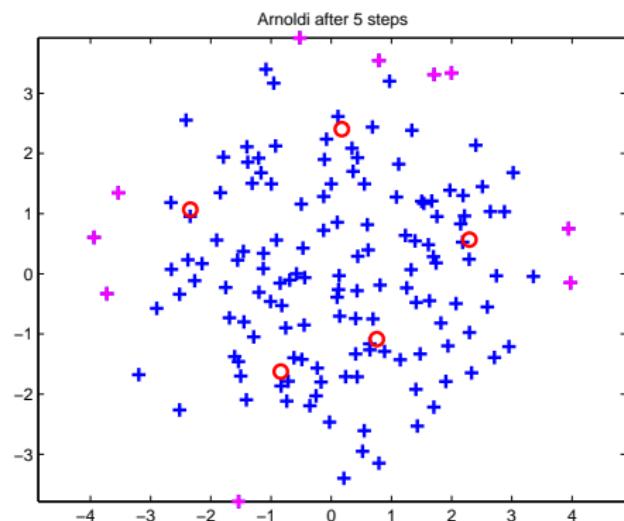
- at each step, application of \mathcal{A} to q_k : $\mathcal{A}q_k = \tilde{q}_{k+1}$

Example

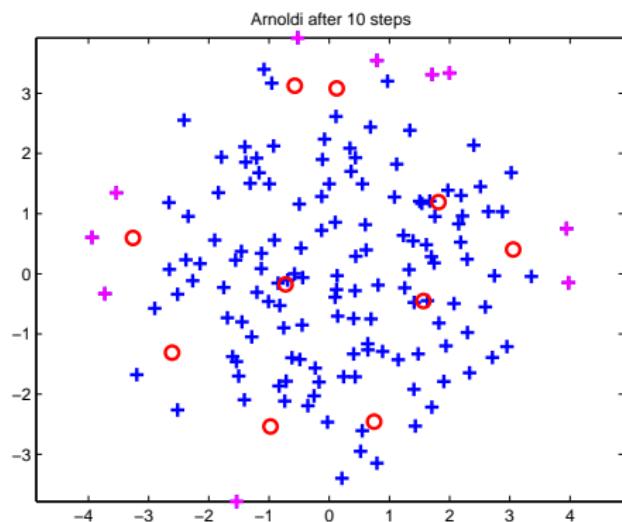
random complex matrix of dimension $n = 144$ generated in MATLAB:
 $G=\text{numgrid}('N', 14)$; $B=\text{delsq}(G)$; $A=\text{sprandn}(B)+i*\text{sprandn}(B)$



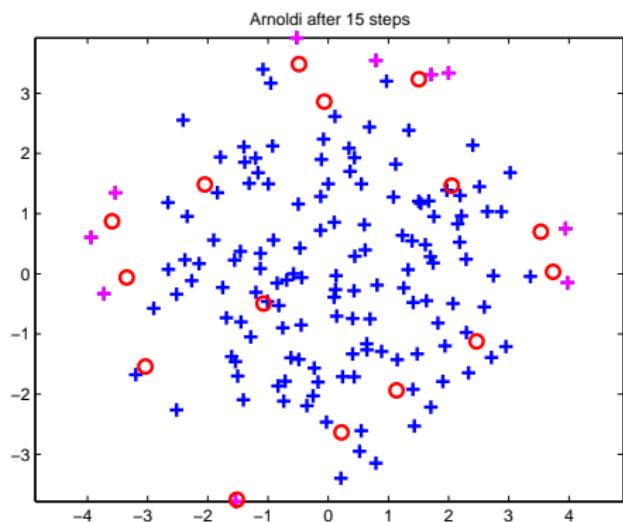
after 5 Arnoldi steps



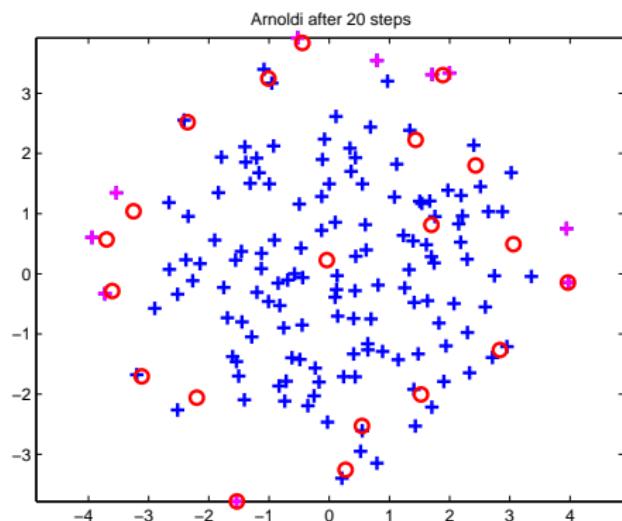
after 10 Arnoldi steps



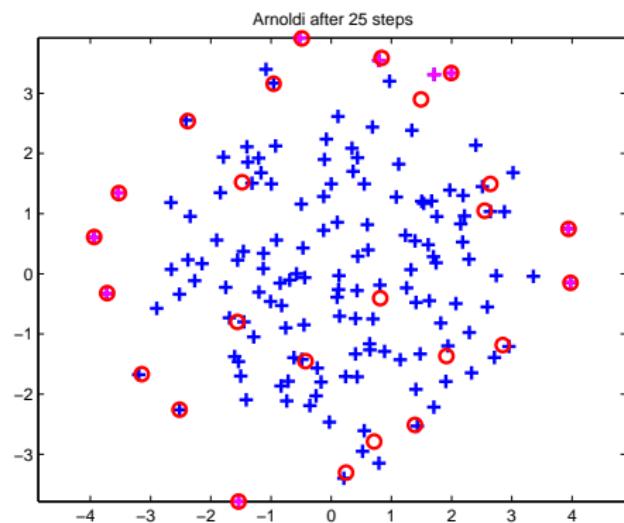
after 15 Arnoldi steps



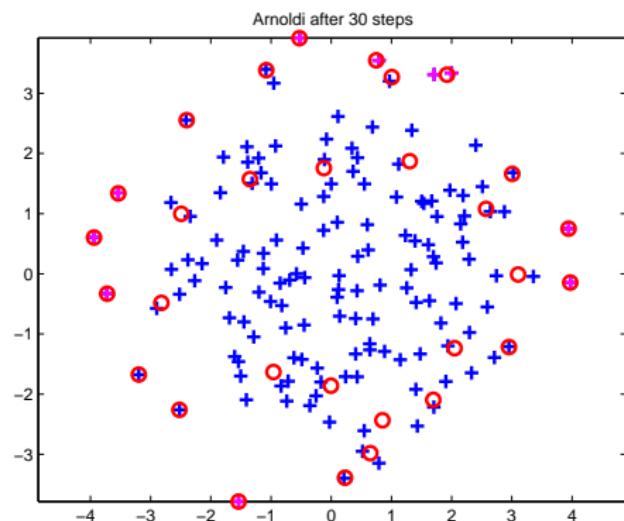
after 20 Arnoldi steps



after 25 Arnoldi steps



after 30 Arnoldi steps



The algorithm: take $\sigma = 0$

Shift-Invert Arnoldi's method $\mathcal{A} := A^{-1}$

- Arnoldi method constructs an orthogonal basis of k -dimensional Krylov subspace

$$\mathcal{K}_k(A^{-1}, q^{(1)}) = \text{span}\{q^{(1)}, A^{-1}q^{(1)}, (A^{-1})^2q^{(1)}, \dots, (A^{-1})^{k-1}q^{(1)}\},$$

$$A^{-1}Q_k = Q_k H_k + q_{k+1} h_{k+1,k} e_k^H = Q_{k+1} \begin{bmatrix} H_k \\ h_{k+1,k} e_k^H \end{bmatrix}$$

$$Q_k^H Q_k = I.$$

- Eigenvalues of H_k are eigenvalue approximations of (outlying) eigenvalues of A^{-1}

$$\|r_k\| = \|A^{-1}x - \theta x\| = \|(A^{-1}Q_k - Q_k H_k)u\| = |h_{k+1,k}| |e_k^H u|,$$

- at each step, application of A^{-1} to q_k : $A^{-1}q_k = \tilde{q}_{k+1}$

Inexact solves

Inexact solves (Simoncini 2005), Bouras and Frayssé (2000)

- Wish to solve

$$\|q_k - A\tilde{q}_{k+1}\| = \|\tilde{d}_k\| \leq \tau_k$$

Inexact solves

Inexact solves (Simoncini 2005), Bouras and Frayssé (2000)

- Wish to solve

$$\|q_k - A\tilde{q}_{k+1}\| = \|\tilde{d}_k\| \leq \tau_k$$

- leads to **inexact Arnoldi relation**

$$A^{-1}Q_k = Q_{k+1} \begin{bmatrix} H_k \\ h_{k+1,k}e_k^H \end{bmatrix} + \textcolor{red}{D}_k = Q_{k+1} \begin{bmatrix} H_k \\ h_{k+1,k}e_k^H \end{bmatrix} + [d_1 | \dots | d_k]$$

Inexact solves

Inexact solves (Simoncini 2005), Bouras and Frayssé (2000)

- Wish to solve

$$\|q_k - A\tilde{q}_{k+1}\| = \|\tilde{d}_k\| \leq \tau_k$$

- leads to **inexact Arnoldi relation**

$$A^{-1}Q_k = Q_{k+1} \begin{bmatrix} H_k \\ h_{k+1,k}e_k^H \end{bmatrix} + \mathcal{D}_k = Q_{k+1} \begin{bmatrix} H_k \\ h_{k+1,k}e_k^H \end{bmatrix} + [d_1 | \dots | d_k]$$

- u eigenvector of H_k :

$$\|r_k\| = \|(A^{-1}Q_k - Q_k H_k)u\| = |h_{k+1,k}| |e_k^H u| + \mathcal{D}_k u,$$

Inexact solves

Inexact solves (Simoncini 2005), Bouras and Frayssé (2000)

- Wish to solve

$$\|q_k - A\tilde{q}_{k+1}\| = \|\tilde{d}_k\| \leq \tau_k$$

- leads to **inexact Arnoldi relation**

$$A^{-1}Q_k = Q_{k+1} \begin{bmatrix} H_k \\ h_{k+1,k}e_k^H \end{bmatrix} + \mathbf{D}_k = Q_{k+1} \begin{bmatrix} H_k \\ h_{k+1,k}e_k^H \end{bmatrix} + [d_1 | \dots | d_k]$$

- u eigenvector of H_k :

$$\|r_k\| = \|(A^{-1}Q_k - Q_k H_k)u\| = |h_{k+1,k}| |e_k^H u| + \mathbf{D}_k u,$$

- Linear combination of the columns of D_k

$$\mathbf{D}_k u = \sum_{l=1}^k d_l u_l, \quad \text{if } u_l \text{ small, then } \|d_l\| \text{ allowed to be large!}$$

Inexact solves

Inexact solves (Simoncini 2005), Bouras and Frayssé (2000)

Linear combination of the columns of D_k

$$\mathbf{D}_k u = \sum_{l=1}^k d_l u_l, \quad \text{if } u_l \text{ small, then } \|d_l\| \text{ allowed to be large!}$$

$$\|d_l u_l\| \leq \frac{1}{k} \varepsilon \Rightarrow \|\mathbf{D}_k u\| < \varepsilon$$

and

$$|u_l| \leq C(l, k) \|r_{l-1}\| \quad \star$$

leads to

$$\|q_k - A\tilde{q}_{k+1}\| = \|\tilde{d}_k\|$$

$$\|\tilde{d}_k\| = C \frac{1}{\|r_{k-1}\|} \quad \diamond$$

Solve tolerance can be relaxed.

The inner iteration for $AP^{-1}\tilde{q}_{k+1} = q_k$

Preconditioning

GMRES convergence bound

$$\|q_k - AP^{-1}\tilde{q}_{k+1}^l\| = \kappa \min_{p \in \Pi_l} \max_{i=1, \dots, n} |p(\mu_i)| \|q_k\|$$

depending on

The inner iteration for $AP^{-1}\tilde{q}_{k+1} = q_k$

Preconditioning

GMRES convergence bound

$$\|q_k - AP^{-1}\tilde{q}_{k+1}^l\| = \kappa \min_{p \in \Pi_l} \max_{i=1, \dots, n} |p(\mu_i)| \|q_k\|$$

depending on

- the eigenvalue clustering of AP^{-1}
- the condition number
- the right hand side (initial guess)

The inner iteration for $AP^{-1}\tilde{q}_{k+1} = q_k$

Preconditioning

- Introduce preconditioner P and solve

$$AP^{-1}\tilde{q}_{k+1} = q_k, \quad P^{-1}\tilde{q}_{k+1} = q_{k+1}$$

using GMRES

The inner iteration for $AP^{-1}\tilde{q}_{k+1} = q_k$

Preconditioning

- Introduce preconditioner P and solve

$$AP^{-1}\tilde{q}_{k+1} = q_k, \quad P^{-1}\tilde{q}_{k+1} = q_{k+1}$$

using GMRES

Tuned Preconditioner

using a **tuned** preconditioner for Arnoldi's method

$$\mathbb{P}_k Q_k = A Q_k; \quad \text{given by} \quad \mathbb{P}_k = P + (A - P)Q_k Q_k^H$$

The inner iteration for $A\tilde{q} = q$

Theorem (Properties of the tuned preconditioner)

Let P with $P = A + E$ be a preconditioner for A and assume k steps of Arnoldi's method have been carried out; then k eigenvalues of $A\mathbb{P}_k^{-1}$ are equal to one:

$$[A\mathbb{P}_k^{-1}]AQ_k = AQ_k$$

and $n - k$ eigenvalues are close to the corresponding eigenvalues of AP^{-1} .

The inner iteration for $A\tilde{q} = q$

Theorem (Properties of the tuned preconditioner)

Let P with $P = A + E$ be a preconditioner for A and assume k steps of Arnoldi's method have been carried out; then k eigenvalues of $A\mathbb{P}_k^{-1}$ are equal to one:

$$[A\mathbb{P}_k^{-1}]AQ_k = AQ_k$$

and $n - k$ eigenvalues are close to the corresponding eigenvalues of AP^{-1} .

Implementation

- Sherman-Morrison-Woodbury.
- Only minor extra costs (one back substitution per outer iteration)

Numerical Example

`sherman5.mtx` nonsymmetric matrix from the Matrix Market library (3312×3312).

- smallest eigenvalue: $\lambda_1 \approx 4.69 \times 10^{-2}$,
- Preconditioned GMRES as inner solver (both fixed tolerance and relaxation strategy),
- standard and tuned preconditioner (incomplete LU).

No tuning and standard preconditioner

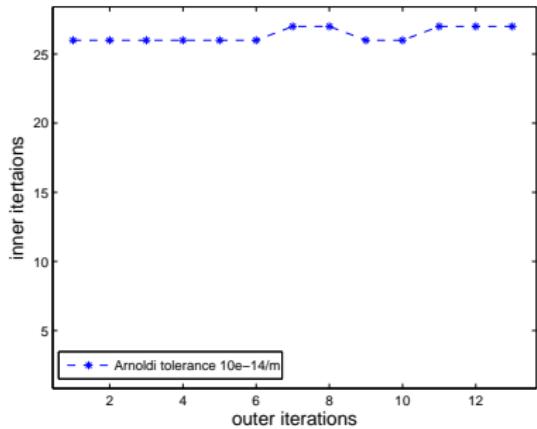


Figure: Inner iterations vs outer iterations

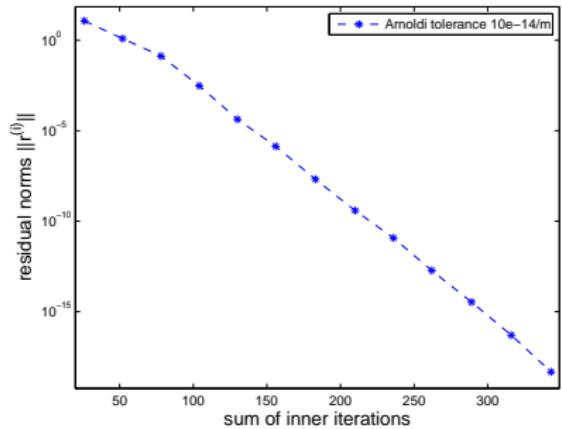


Figure: Eigenvalue residual norms vs total number of inner iterations

Tuning the preconditioner

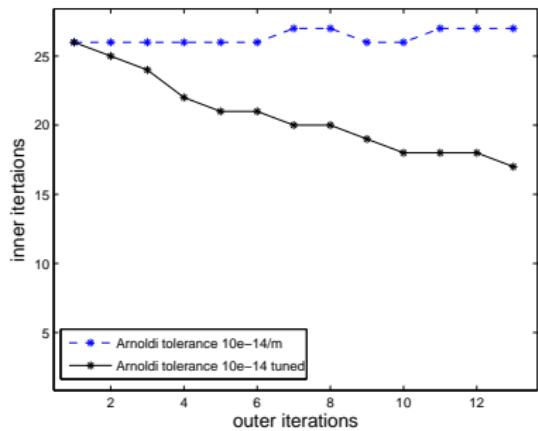


Figure: Inner iterations vs outer iterations

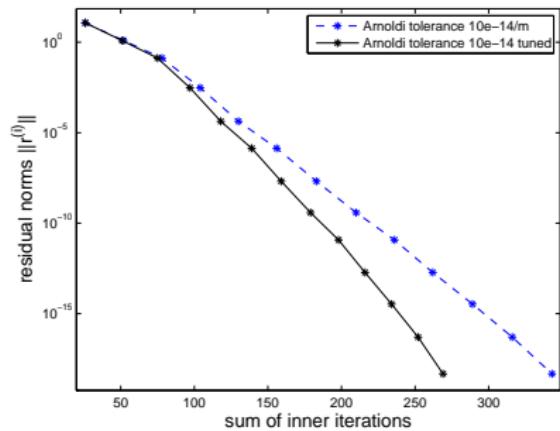


Figure: Eigenvalue residual norms vs total number of inner iterations

Relaxation

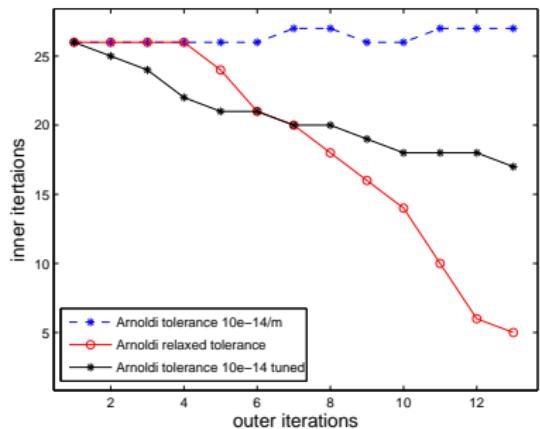


Figure: Inner iterations vs outer iterations

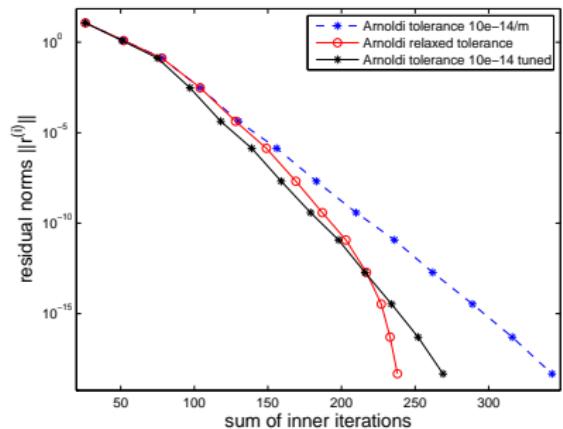


Figure: Eigenvalue residual norms vs total number of inner iterations

Tuning and relaxation strategy

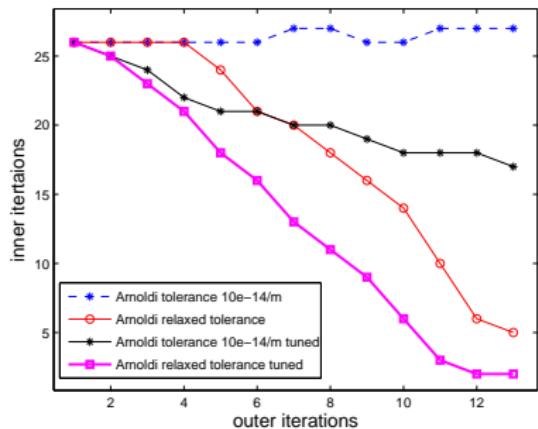


Figure: Inner iterations vs outer iterations



Figure: Eigenvalue residual norms vs total number of inner iterations

Ritz values of exact and inexact Arnoldi

Exact eigenvalues	Ritz values (exact Arnoldi)	Ritz values (inexact Arnoldi, tuning)
+4.69249563e-02	+ <u>4.69249563</u> e-02	+ <u>4.69249563</u> e-02
+1.25445378e-01	+ <u>1.25445378</u> e-01	+ <u>1.25445378</u> e-01
+4.02658363e-01	+ <u>4.02658347</u> e-01	+ <u>4.02658244</u> e-01
+5.79574381e-01	+ <u>5.79625498</u> e-01	+ <u>5.79817301</u> e-01
+6.18836405e-01	+ <u>6.18798666</u> e-01	+ <u>6.18650849</u> e-01

Table: Ritz values of exact Arnoldi's method and inexact Arnoldi's method with the tuning strategy compared to exact eigenvalues closest to zero after 14 shift-invert Arnoldi steps.

Outline

- 1 Introduction
- 2 Inexact inverse iteration
- 3 Inexact Shift-invert Arnoldi method
- 4 Inexact Shift-invert Arnoldi method with implicit restarts
- 5 Conclusions

Implicitly restarted Arnoldi (Sorensen (1992))

Exact shifts

- take an $k + p$ step Arnoldi factorisation

$$\mathcal{A}Q_{k+p} = Q_{k+p}H_{k+p} + q_{k+p+1}h_{k+p+1,k+p}e_{k+p}^H$$

- Compute $\Lambda(H_{k+p})$ and select p shifts for an implicit QR iteration
- implicit restart with new starting vector $\hat{q}^{(1)} = \frac{p(\mathcal{A})q^{(1)}}{\|p(\mathcal{A})q^{(1)}\|}$

Implicitly restarted Arnoldi (Sorensen (1992))

Exact shifts

- take an $k + p$ step Arnoldi factorisation

$$\mathcal{A}Q_{k+p} = Q_{k+p}H_{k+p} + q_{k+p+1}h_{k+p+1,k+p}e_{k+p}^H$$

- Compute $\Lambda(H_{k+p})$ and select p shifts for an implicit QR iteration
- implicit restart with new starting vector $\hat{q}^{(1)} = \frac{p(\mathcal{A})q^{(1)}}{\|p(\mathcal{A})q^{(1)}\|}$

Aim of IRA

$$\mathcal{A}Q_k = Q_kH_k + q_{k+1} \underbrace{h_{k+1,k}}_{\rightarrow 0} e_k^H$$

Relaxation strategy for IRA

Theorem

For any given $\varepsilon \in \mathbb{R}$ with $\varepsilon > 0$ assume that

$$\|d_l\| \leq \begin{cases} \varepsilon \frac{C}{\|R_k\|} & \text{if } l > k, \\ \varepsilon & \text{otherwise.} \end{cases} \quad \diamond$$

Then

$$\|\mathcal{A}Q_m U - Q_m U \Theta - R_m\| \leq \varepsilon.$$

- Very technical
- Relaxation strategy also works for IRA!

Tuning

Tuning for implicitly restarted Arnoldi's method

- Introduce preconditioner P and solve

$$A\mathbb{P}_k^{-1}\tilde{q}_{k+1} = q_k, \quad \mathbb{P}_k^{-1}\tilde{q}_{k+1} = q_{k+1}$$

using GMRES and a **tuned** preconditioner

$$\mathbb{P}_k Q_k = A Q_k; \quad \text{given by} \quad \mathbb{P}_k = P + (A - P) Q_k Q_k^H$$

Tuning

Why does tuning help?

- Assume we have found an approximate invariant subspace, that is

$$A^{-1}Q_k = Q_k H_k + \underbrace{q_{k+1} h_{k+1,k} e_k^H}_{\approx 0}$$

Tuning

Why does tuning help?

- Assume we have found an approximate invariant subspace, that is

$$A^{-1}Q_k = Q_k H_k + \underbrace{q_{k+1} h_{k+1,k} e_k^H}_{\approx 0}$$

- let A^{-1} have the upper Hessenberg form

$$[Q_k \ Q_k^\perp]^H A^{-1} [Q_k \ Q_k^\perp] = \begin{bmatrix} H_k & T_{12} \\ h_{k+1,k} e_k e_k^H & T_{22} \end{bmatrix},$$

where $[Q_k \ Q_k^\perp]$ is unitary and $H_k \in \mathbb{C}^{k,k}$ and $T_{22} \in \mathbb{C}^{n-k, n-k}$ are upper Hessenberg.

Tuning

Why does tuning help?

- Assume we have found an approximate invariant subspace, that is

$$A^{-1}Q_k = Q_k H_k + \underbrace{q_{k+1} h_{k+1,k} e_k^H}_{\approx 0}$$

- let A^{-1} have the upper Hessenberg form

$$[Q_k \ Q_k^\perp]^H A^{-1} [Q_k \ Q_k^\perp] = \begin{bmatrix} H_k & T_{12} \\ h_{k+1,k} e_k e_k^H & T_{22} \end{bmatrix},$$

where $[Q_k \ Q_k^\perp]$ is unitary and $H_k \in \mathbb{C}^{k,k}$ and $T_{22} \in \mathbb{C}^{n-k, n-k}$ are upper Hessenberg.

If $h_{k+1,k} \neq 0$ then

$$[Q_k \ Q_k^\perp]^H A \mathbb{P}_k^{-1} [Q_k \ Q_k^\perp] = \begin{bmatrix} I + \star & Q_k^H A \mathbb{P}_k^{-1} Q_k^\perp \\ \star & T_{22}^{-1} (Q_k^\perp)^H P Q_k^\perp + \star \end{bmatrix}$$

Tuning

Why does tuning help?

- Assume we have found an approximate invariant subspace, that is

$$A^{-1}Q_k = Q_k H_k + \underbrace{q_{k+1} h_{k+1,k} e_k^H}_{\approx 0}$$

- let A^{-1} have the upper Hessenberg form

$$[Q_k \ Q_k^\perp]^H A^{-1} [Q_k \ Q_k^\perp] = \begin{bmatrix} H_k & T_{12} \\ h_{k+1,k} e_k e_k^H & T_{22} \end{bmatrix},$$

where $[Q_k \ Q_k^\perp]$ is unitary and $H_k \in \mathbb{C}^{k,k}$ and $T_{22} \in \mathbb{C}^{n-k, n-k}$ are upper Hessenberg.

If $h_{k+1,k} = 0$ then

$$[Q_k \ Q_k^\perp]^H A \mathbb{P}_k^{-1} [Q_k \ Q_k^\perp] = \begin{bmatrix} I & Q_k^H A \mathbb{P}_k^{-1} Q_k^\perp \\ 0 & T_{22}^{-1} (Q_k^\perp)^H P Q_k^\perp \end{bmatrix}$$

Tuning

Another advantage of tuning

- System to be solved at each step of Arnoldi's method is

$$A\mathbb{P}_k^{-1}\tilde{q}_{k+1} = \textcolor{red}{q_k}, \quad \mathbb{P}_k^{-1}\tilde{q}_{k+1} = \tilde{q}_k$$

Tuning

Another advantage of tuning

- System to be solved at each step of Arnoldi's method is

$$A\mathbb{P}_k^{-1}\tilde{q}_{k+1} = \textcolor{red}{q_k}, \quad \mathbb{P}_k^{-1}\tilde{q}_{k+1} = \tilde{q}_k$$

- Assuming invariant subspace found then ($A^{-1}Q_k = Q_k H_k$):

$$A\mathbb{P}_k^{-1}\textcolor{red}{q_k} = \textcolor{red}{q_k}$$

Tuning

Another advantage of tuning

- System to be solved at each step of Arnoldi's method is

$$A\mathbb{P}_k^{-1}\tilde{q}_{k+1} = \textcolor{red}{q_k}, \quad \mathbb{P}_k^{-1}\tilde{q}_{k+1} = \tilde{q}_k$$

- Assuming invariant subspace found then ($A^{-1}Q_k = Q_kH_k$):

$$A\mathbb{P}_k^{-1}\textcolor{red}{q_k} = \textcolor{red}{q_k}$$

- the right hand side of the system matrix is an eigenvector of the system!

Tuning

Another advantage of tuning

- System to be solved at each step of Arnoldi's method is

$$A\mathbb{P}_k^{-1}\tilde{q}_{k+1} = \textcolor{red}{q_k}, \quad \mathbb{P}_k^{-1}\tilde{q}_{k+1} = \tilde{q}_k$$

- Assuming invariant subspace found then ($A^{-1}Q_k = Q_kH_k$):

$$A\mathbb{P}_k^{-1}\textcolor{red}{q_k} = \textcolor{red}{q_k}$$

- the right hand side of the system matrix is an eigenvector of the system!
- Krylov methods converge in one iteration

Tuning

Another advantage of tuning

- In practice:

$$A^{-1}Q_k = Q_k H_k + q_{k+1} h_{k+1,k} e_k^H$$

and

$$\|A\mathbb{P}_k^{-1}q_k - q_k\| = \mathcal{O}(|h_{k+1,k}|)$$

Tuning

Another advantage of tuning

- In practice:

$$A^{-1}Q_k = Q_k H_k + q_{k+1} h_{k+1,k} e_k^H$$

and

$$\|A\mathbb{P}_k^{-1}q_k - q_k\| = \mathcal{O}(|h_{k+1,k}|)$$

- number of iterations decreases as the outer iteration proceeds

Tuning

Another advantage of tuning

- In practice:

$$A^{-1}Q_k = Q_k H_k + q_{k+1} h_{k+1,k} e_k^H$$

and

$$\|A\mathbb{P}_k^{-1}q_k - q_k\| = \mathcal{O}(|h_{k+1,k}|)$$

- number of iterations decreases as the outer iteration proceeds
- Rigorous analysis quite technical.

Numerical Example

`sherman5.mtx` nonsymmetric matrix from the Matrix Market library
(3312×3312).

- $k = 8$ eigenvalues closest to zero
- IRA with exact shifts $p = 4$
- Preconditioned GMRES as inner solver (fixed tolerance and relaxation strategy),
- standard and tuned preconditioner (incomplete LU).

No tuning and standard preconditioner

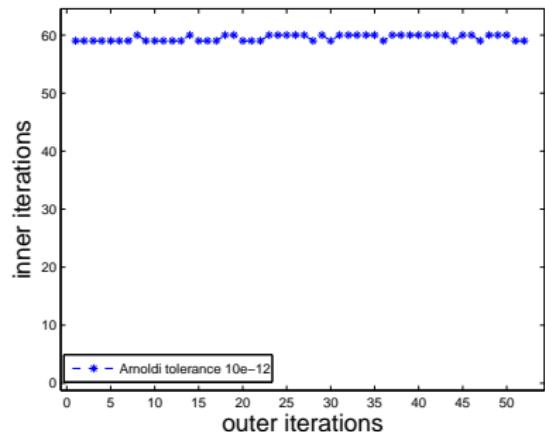


Figure: Inner iterations vs outer iterations

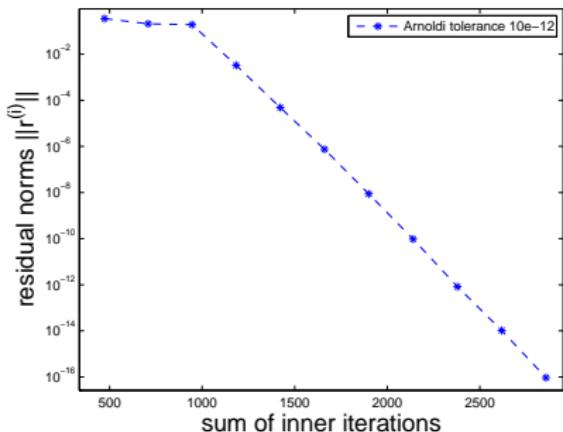


Figure: Eigenvalue residual norms vs total number of inner iterations

Tuning

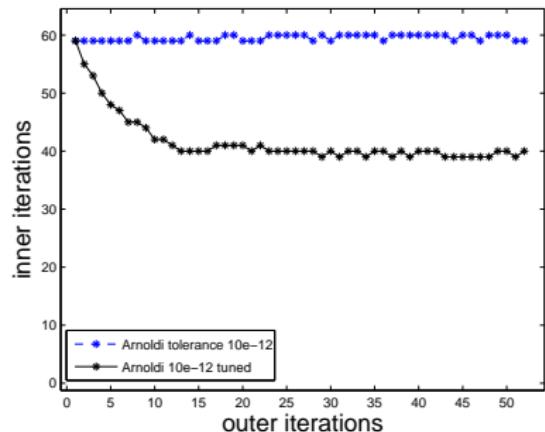


Figure: Inner iterations vs outer iterations

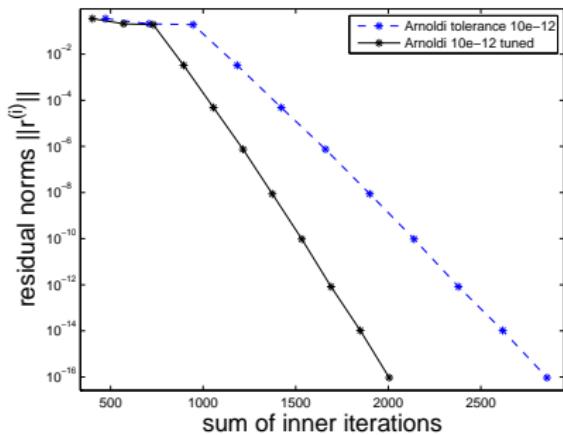


Figure: Eigenvalue residual norms vs total number of inner iterations

Relaxation

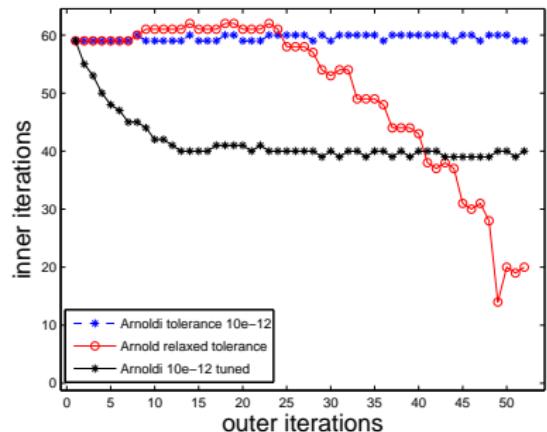
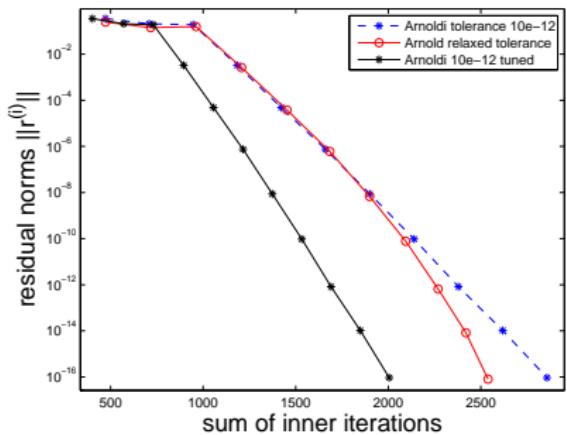


Figure: Inner iterations vs outer iterations

Figure: Eigenvalue residual norms vs total number of inner iterations

Tuning and relaxation strategy

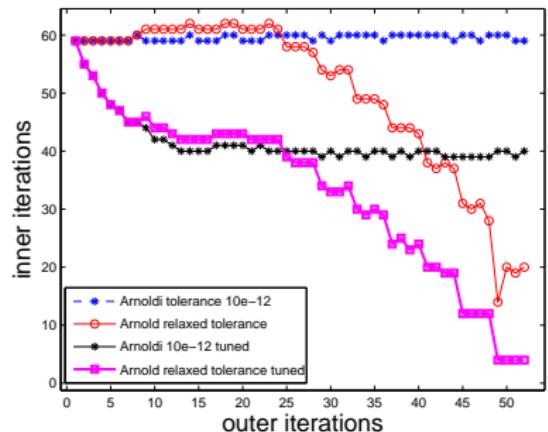


Figure: Inner iterations vs outer iterations

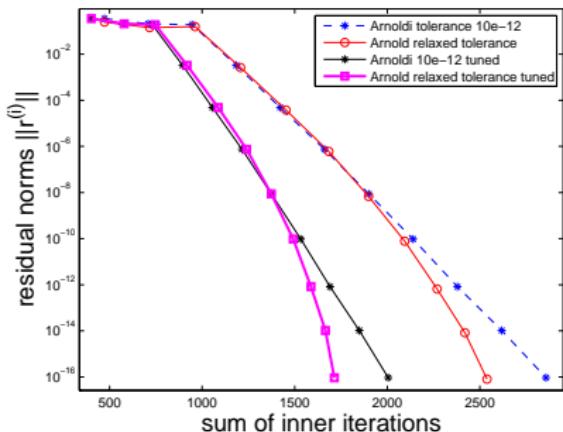


Figure: Eigenvalue residual norms vs total number of inner iterations

Numerical Example

`qc2534.mtx` matrix from the Matrix Market library.

- $k = 6$ eigenvalues closest to zero
- IRA with exact shifts $p = 4$
- Preconditioned GMRES as inner solver (fixed tolerance and relaxation strategy),
- standard and tuned preconditioner (incomplete LU).

Tuning and relaxation strategy

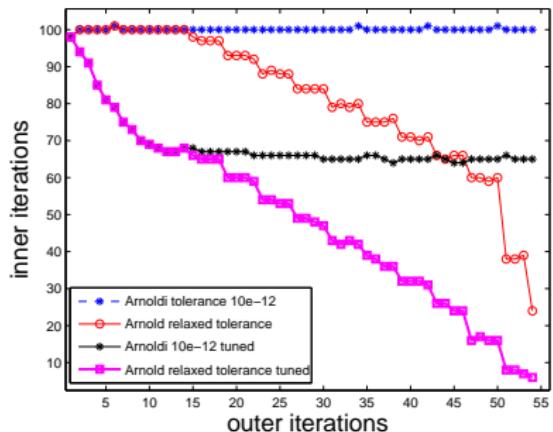


Figure: Inner iterations vs outer iterations

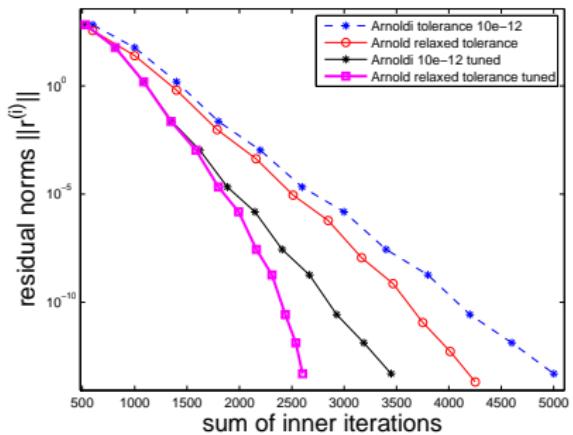


Figure: Eigenvalue residual norms vs total number of inner iterations

Outline

- 1 Introduction
- 2 Inexact inverse iteration
- 3 Inexact Shift-invert Arnoldi method
- 4 Inexact Shift-invert Arnoldi method with implicit restarts
- 5 Conclusions

Conclusions

- For eigenvalue computations it is advantageous to consider small rank changes to the standard preconditioners
- Works for any preconditioner
- Works for SI versions of Power method, Simultaneous iteration, Arnoldi method
- Inexact inverse iteration with a special tuned preconditioner is equivalent to the Jacobi-Davidson method (without subspace expansion)
- For Arnoldi method best results are obtained when relaxation and tuning are combined

- M. A. FREITAG AND A. SPENCE, *Rayleigh quotient iteration and simplified Jacobi-Davidson method with preconditioned iterative solves.*
- ———, *Convergence rates for inexact inverse iteration with application to preconditioned iterative solves*, BIT, 47 (2007), pp. 27–44.
- ———, *A tuned preconditioner for inexact inverse iteration applied to Hermitian eigenvalue problems*, IMA journal of numerical analysis, 28 (2008), p. 522.
- ———, *Shift-invert Arnoldi's method with preconditioned iterative solves*, SIAM Journal on Matrix Analysis and Applications, 31 (2009), pp. 942–969.
- F. XUE AND H. C. ELMAN, *Convergence analysis of iterative solvers in inexact rayleigh quotient iteration*, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 877–899.
- ———, *Fast inexact subspace iteration for generalized eigenvalue problems with spectral transformation*, Linear Algebra and its Applications, (2010).