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1 Some basics

We have the following standard eigenvalue problem:
Ax = .

We use a so called Galerkin approach to solve it:

e Suppose we have a subspace S which generates an orthogonal basis ¢y, . . ., gk

o With Qy == [q1,-..,q] € R™*, a matrix with orthogonal columns: Galerkin
condition: find s and 6 such that

ri=AQrs —0Qrs L{q1,....x} =S, yeS
NSNS
y y

or
Q1 AQys = 0s,
Hj, is the orthogonal projection of A onto &

Definition 1.1. (0, Qxs) = (0,y) is called a Ritz pair associated with the subspace
(search space) S = span{q,...,q}. (0,y) with Ritz residual r approzimates the
eigenpair (A, x) of A.

In practice we want k << n!
e Generate an orthonormal system ¢y, ..., g, and we wish to add g1
e find an expansion vector v for the subspace Qy

e expand the subspace by orthogonalisation of v against ¢y, ..., ¢ (modified
Gram-Schmidt)

e solve the slightly bigger projected problem

QkH+1AQk+1S = 0s,

Remark 1.1. Modified Gram-Schmidt and repeated Gram-Schmidt (for reorthog-
onalisation) are used in practice.

There are different choices for the expansion vector v, assuming we have the initial
subspace span{q; }.

e Arnoldi’s method: v = Aqy, then H := QH AQ), is upper Hessenberg
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Algorithm 1 Subspace iteration
choose initial subspace ()1
for j=1,2do
W, — AQ;, H; — Qij
Compute desired eigenpair (0, s) of H;, with ||s]| =1
y— Qs
r— Ay — 0y
Stop if satisfied
Compute an expansion vector v
Expand subspace Q)11 — ModGS[Q;,v]
end for

e Lanczos’ method: (for A= A") v = Aq, then H := QP AQy, is tridiagonal

e for both these methods the search space span{Q;} = span{qi, Aqi, ..., A¥"1q;}
is a so-called Krylov subspace

e Arnoldi and Lanczos favour extremal eigenvalues:

e Shift-and-Invert Arnoldi: v = (A — 71)"'qx: approach favours eigenvalues
close to 7

e for large problems (A—71)v = g4 is expensive and has to be done accurately!!

2 Davidson’s method

e expand the search space span{q, ..., q} in the direction
v=(Dy—0I)"'r
where D, is the diagonal of A.
® (i1 is obtained by orthogonalisation of v w.r.t. span{Qy}.
e used for strongly diagonal dominant matrices
e problem: for diagonal matrices
v=(Da—0I)"'r =y € span{Q,}

does not lead to the expansion of the search space span{Q);}.



Algorithm 2 Davidson’s method
choose ¢; with ||¢1]] = 1, @1 = [¢1]
for j =1,2do

w; = Ag;
for k=1toj—1do
bj = g w;
bir = g wy,
end for
bjj = ¢j w;
Compute largest eigenpair (6, s) of B, with ||s|| =1
y=Qjs
r= Ay — 0y
v=(Ds—0I)"'r
V=10 — Qijv
gj+1 = ﬁ
Qj+1 = [Qj, i)

end for

3 Jacobi’s method

e Let A be diagonal dominant and o = ay; the largest diagonal element. The
« is an approximation of the largest eigenvalue A and e; is an approximation
for the corresponding eigenvector q.

1 a 'l [1 1
=0 L
e interested in eigenvalue that is close to o and in corresponding eigenvector
q = [1,27]" with z the component of ¢ orthogonal to e;

e Hence the problem

e equivalent is

A= a+tclz
(F—=X)z = —b
e apply Jacobi iteration with z; =0
Qk = o+ CTZk

where D is the diagonal entry of F.
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e at all stages we look for the orthogonal complement to the initial approx-

imation ¢ = ey, not taking into account that better approximations ¢, =
[1, 217" become available at each state (it may be more efficient to calculate

q— (¢"ar)aw)-

The Jacobi-Davidson method

We try to find an optimal expansion of the subspace!

Jacobi and Davidson attempt to find corrections to some initially given eigen-
vector approximation , they both use fixed operators

Jacobi-Davidson: find the orthogonal complement for current approximation
Yy, with respect to the desired eigenvector A

let y, be an approximation to the eigenvector of A and 6}, the corresponding
Ritz value, i.e. yx € S, where S is a low k-dimensional subspace (the search
space)

interested in seeing what happens in the subspace y;-
orthogonal projection of A onto that subspace is given by (with |lyx|| = 1)
B = (I =y ) AU — ).

B is the restriction of A to the subspace orthogonal to yi. (Note that for
yr = e; we have that I is the restriction of B with respect to e ).

with 0), = y Ayy, it follows that

A= B+ Ayl + gyl A — Oyl

Look for an eigenvalue A of A close to 6, we want to have the correction
v L yp (orthogonal correction) such that

Alyr +v) = My +v),
or with By, =0

(B=M)v=—r+ (A= 0 — y{ Av)yx



e Since LHS and r are orthogonal to y; the last term must be zero and hence
the correction satisfies
(B—=X)v=—r
or

(I — yryi (A= AD(I — yeyf o = —r-

e replace unknown A by known 6, if approximate eigenvalue is already good
enough or by some target 7

e JD Correction equation:

(I - ykyif)(A — O I)(I — ykyf) vU=-T (1)

(. S/

-~
B—0,1

i.e. A — 0,1 is restricted to the orthogonal complement of

e expand the subspace by v (using GS or modification) and compute new Ritz
pair in expanded subspace

e Combination of the Jacobi approach of looking for the orthogonal comple-
ment of a given eigenvector approximation and Davidson’s algorithm for
expanding the subspace in which the eigenvector approximations are con-
structed

Remark 4.1. Modified Gram-Schmidt and repeated Gram-Schmidt (for reorthog-
onalisation) are used in practice.

5 Jacobi-Davidson as Newton-method/Rayleigh
quotient iteration

If we solve the correction equation (1) ezactly, then, since v L y; we have (I —
yry )v = v and
(A—0p)v = —r+ ay (2)

where a € C s.t. v L y,. Then
V= —(A — le)_lr + Oé(A - Gk])_lyk = —Yk + Oé(A - Qk.])_lyk..
The solution v is used to expand the search space.

e y; is already in the search space the expansion vector is effectively (A —
0x )" 'yx, which is the same as for inverse iteration for fixed 6 and the same
as for RQI for 0), = y}! Ayy (from Ritz residual r = Ayy — Orys.

b}



Algorithm 3 Jacobi-Davidson method

choose ¢; with ||¢1]] = 1, @1 = [¢1]
for j=1,2do
w; = Ag;
for k=1toj—1do
brj = di; w;
bir = q} wy
end for
bjj = q;'w;
Compute largest eigenpair (6, s) of B, with ||s|| =1
y=Q;s
r= Ay — 0y
if ||| < tol then
A=0,x=1y, STOP
end if
Solve (approximately)

(I = yy") (A= 0D)(I —yy" v = —r.

V=0 — QjQJHU

i+1 = ol

Qj+1 = [Qja %’H]
end for




e JD where we solve correction equation exactly is a subspace accelerated in-
verse iteration or RQI

e subspace acceleration: (A —6;1)~'y;, does not directly give the next approx-
imate eigenvector, a hopefully even better approximation is sought in the
subspace formed by S expanded by this new vector.

e convergence of RQI: quadratic or cubic for Hermitian matrices

e JD can also be viewed as a Newton’s method: equation (2):

(A—=0pl)v=—r+ays, vLuy

e =[]

e generally quadratic convergence (for Hermitian problems even cubic)

can be written as

Now, the key idea of JD is to solve the correction equation (1) only inezactly by
an iterative method.

e JD combined with an iterative solver: accelerated inexact Newton’s method
or accelerated inezact Inverse Iteration/RQI (quadr. convergence..)

e numerical observation: even for approximate solution of the correction equa-
tion (1) we get quite fast convergence
6 Solution of the correction equation
Iterative solvers are used to solve the large linear system:

e CG (Hermitian positive definit), MINRES (Hermitian), GMRES
e use preconditioner K for A — 0,1, i.e. K~'(A — 60,I) =~ I, but usually fixed

e have to restrict K to the same subspace
K = (I -y )K(I =y
e for a Krylov solver, in each step we have to find a vector z = K~ Aw, with

A= (I —yyt (A= 0.1 — yryt)
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First )
Aw = (I — ypyi VA = 0.1 — yryHw = (I — gy )g

with g = (A — 0, I)w, since yilw = 0.

Then solve )
Kz = (I—ywi)y,

and since z | y, we have
Kz=g— By, 2=K 'g—BK 'y

and with z L y, we get
_y Ky
YKty
so in each step of the Krylov solver the system K¢ = g has to be solved plus
Ky =y, at the beginning.

Interior eigenvalues - Harmonic Ritz values

Definition 7.1 (Harmonic Ritz value). Let 7 be a complez (target) value that is
not an eigenvalue of A. Then p is o Harmonic Ritz value of A with target T w.r.t.
the space S if (u — 1)~ is an ordinary Ritz value of (A — 7I)7%.

Revising the theory for Ritz values u satisfies this property if and only if
(u— 7)1 is an eigenvalue of Q¥ (A —71)71Q, where span{Q} is a basis of S

difficult to evaluate if A is large, because it involves solving a system
obtain harmonic Ritz value w.r.t. another subspace Y = (A —71)S

1 is a harmonic Ritz value of A with target 7 with respect to the space U if
and only if there is a u € U s.t.

(A—rD'u—(p—7)""u LU

with u = (A — 71)Qs, where s is uniquely determined we get

(A—puh)Qs L U

Let v = @s. Then v is called the harmonic Ritz vector associated with the
Ritz value p



o finally, with Y = (A — 71)Q € C™* we get
YHY s = (p—1)YHQs
which is a small (k x k) generalized eigenproblem, which has to be solved

e get u, the harmonic Ritz value and v = @)s the harmonic Ritz vector

Remarks

e Restarts: dispose the less promising vectors to reduce amount of storage,
suppose we have m = k 4+ j orthonormal vectors, the colums of the matrix
@ € C™™ and we want to discard j colums and keep k-dimensional subspace,
let H = Q" AQ and compute Schur decomposition B = UTUY, U unitary,
T upper triangular with Ritz values on the diagonal, order them in a way
s.t.

R VATRAY
r= [0 T’
where T}, contains the k most promising Ritz values, let Q = QU and

partition Q = [Ql, QQ], where Q; € C™* is the vector we keep (purging)

e Deflation: used if an eigenpair (A, x) is detected and we would like to find
other pairs, use only subspaces that are spanned by the remaining vector,
orthogonal deflation replaces A by (1 — zx)A(1 — x2f) after finding z,
project out the converged subspaces, natural in the Jacobi-Davidson context,
more general: replace A by (1 — ZZH)A(1 — ZZ1), where AZ = ZS is a
partial Schur decomposition of A with Z € C™* orthonormal Schur vectors
and S € CH* upper triangular with eigenvalues of A on diagonal

e Deflated Preconditioning: is not much harder than calculating just one
extremal eigenvalue, let (0, y) be the current Ritz pair, then with U = [Z, y|
we have

A= T -UU")(A-6D(1-UUT)

and for the preconditioner



