

Reading course on
Numerical Solution of Eigenvalue Problems

Lecture 5

The Jacobi-Davidson method

Melina Freitag

May 24, 2005

1 Some basics

We have the following standard eigenvalue problem:

$$Ax = \lambda x.$$

We use a so called **Galerkin approach** to solve it:

- Suppose we have a subspace \mathcal{S} which generates an orthogonal basis q_1, \dots, q_k
- With $Q_k := [q_1, \dots, q_k] \in \mathbb{R}^{n,k}$, a matrix with orthogonal columns: Galerkin condition: find s and θ such that

$$r := A \underbrace{Q_k s}_y - \theta \underbrace{Q_k s}_y \perp \{q_1, \dots, q_k\} = \mathcal{S}, \quad y \in \mathcal{S}$$

or

$$Q_k^H A Q_k s = \theta s,$$

H_k is the orthogonal projection of A onto \mathcal{S}

Definition 1.1. $(\theta, Q_k s) = (\theta, y)$ is called a Ritz pair associated with the subspace (search space) $\mathcal{S} = \text{span}\{q_1, \dots, q_k\}$. (θ, y) with Ritz residual r approximates the eigenpair (λ, x) of A .

In practice we want $k \ll n!$

- Generate an orthonormal system q_1, \dots, q_k and we wish to add q_{k+1}
- find an expansion vector v for the subspace Q_k
- expand the subspace by orthogonalisation of v against q_1, \dots, q_k (modified Gram-Schmidt)
- solve the slightly bigger projected problem

$$Q_{k+1}^H A Q_{k+1} s = \theta s,$$

Remark 1.1. Modified Gram-Schmidt and repeated Gram-Schmidt (for reorthogonalisation) are used in practice.

There are different choices for the expansion vector v , assuming we have the initial subspace $\text{span}\{q_1\}$.

- Arnoldi's method: $v = Aq_k$, then $H := Q_k^H A Q_k$ is upper Hessenberg

Algorithm 1 Subspace iteration

```
choose initial subspace  $Q_1$ 
for  $j = 1, 2$  do
   $W_j \rightarrow AQ_j, H_j \rightarrow Q_j^H W_j$ 
  Compute desired eigenpair  $(\theta, s)$  of  $H_j$ , with  $\|s\| = 1$ 
   $y \rightarrow Q_j s$ 
   $r \rightarrow Ay - \theta y$ 
  Stop if satisfied
  Compute an expansion vector  $v$ 
  Expand subspace  $Q_{j+1} \rightarrow \text{ModGS}[Q_j, v]$ 
end for
```

- Lanczos' method: (for $A = A^H$) $v = Aq_k$, then $H := Q_k^H A Q_k$ is tridiagonal
- for both these methods the search space $\text{span}\{Q_k\} = \text{span}\{q_1, Aq_1, \dots, A^{k-1}q_1\}$ is a so-called *Krylov subspace*
- Arnoldi and Lanczos favour extremal eigenvalues:
- Shift-and-Invert Arnoldi: $v = (A - \tau I)^{-1}q_k$: approach favours eigenvalues close to τ
- for large problems $(A - \tau I)v = q_k$ is expensive and has to be done accurately!!

2 Davidson's method

- expand the search space $\text{span}\{q_1, \dots, q_k\}$ in the direction

$$v = (D_A - \theta I)^{-1}r$$

where D_A is the diagonal of A .

- q_{k+1} is obtained by orthogonalisation of v w.r.t. $\text{span}\{Q_k\}$.
- used for strongly diagonal dominant matrices
- problem: for diagonal matrices

$$v = (D_A - \theta I)^{-1}r = y \in \text{span}\{Q_j\}$$

does not lead to the expansion of the search space $\text{span}\{Q_j\}$.

Algorithm 2 Davidson's method

```
choose  $q_1$  with  $\|q_1\| = 1$ ,  $Q_1 = [q_1]$ 
for  $j = 1, 2$  do
     $w_j = Aq_j$ 
    for  $k = 1$  to  $j - 1$  do
         $b_{kj} = q_k^H w_j$ 
         $b_{jk} = q_j^H w_k$ 
    end for
     $b_{jj} = q_j^H w_j$ 
    Compute largest eigenpair  $(\theta, s)$  of  $B$ , with  $\|s\| = 1$ 
     $y = Q_j s$ 
     $r = Ay - \theta y$ 
     $v = (D_A - \theta I)^{-1} r$ 
     $v = v - Q_j Q_j^H v$ 
     $q_{j+1} = \frac{v}{\|v\|}$ 
     $Q_{j+1} = [Q_j, q_{j+1}]$ 
end for
```

3 Jacobi's method

- Let A be diagonal dominant and $\alpha = a_{11}$ the largest diagonal element. The α is an approximation of the largest eigenvalue λ and e_1 is an approximation for the corresponding eigenvector q .
- Hence the problem

$$A \begin{bmatrix} 1 \\ z \end{bmatrix} = \begin{bmatrix} \alpha & c^T \\ b & F \end{bmatrix} \begin{bmatrix} 1 \\ z \end{bmatrix} = \lambda \begin{bmatrix} 1 \\ z \end{bmatrix}$$

- interested in eigenvalue that is close to α and in corresponding eigenvector $q = [1, z^T]^T$ with z the component of q orthogonal to e_1
- equivalent is

$$\begin{aligned} \lambda &= \alpha + c^T z \\ (F - \lambda I)z &= -b \end{aligned}$$

- apply Jacobi iteration with $z_1 = 0$

$$\begin{aligned} \theta_k &= \alpha + c^T z_k \\ (D - \theta_k I)z_{k+1} &= (D - F)z_k - b \end{aligned}$$

where D is the diagonal entry of F .

- at all stages we look for the orthogonal complement to the initial approximation $q_1 = e_1$, not taking into account that better approximations $q_k = [1, z_k^T]^T$ become available at each state (it may be more efficient to calculate $q - (q^T q_k) q_k$).

4 The Jacobi-Davidson method

We try to find an *optimal expansion* of the subspace!

- Jacobi and Davidson attempt to find corrections to some initially given eigenvector approximation, they both use fixed operators
- Jacobi-Davidson: find the orthogonal complement for current approximation y_k with respect to the desired eigenvector A
- let y_k be an approximation to the eigenvector of A and θ_k the corresponding Ritz value, i.e. $y_k \in \mathcal{S}$, where \mathcal{S} is a low k -dimensional subspace (the search space)
- interested in seeing what happens in the subspace y_k^\perp
- orthogonal projection of A onto that subspace is given by (with $\|y_k\| = 1$)

$$B = (I - y_k y_k^H) A (I - y_k y_k^H).$$

B is the restriction of A to the subspace orthogonal to y_k . (Note that for $y_k = e_1$ we have that F is the restriction of B with respect to e_1^\perp).

- with $\theta_k = y_k^H A y_k$ it follows that

$$A = B + A y_k y_k^H + y_k y_k^H A - \theta_k y_k y_k^H$$

- Look for an eigenvalue λ of A close to θ_k , we want to have the correction $v \perp y_k$ (orthogonal correction) such that

$$A(y_k + v) = \lambda(y_k + v),$$

or with $B y_k = 0$

$$(B - \lambda I)v = -r + (\lambda - \theta_k - y_k^H A v)y_k$$

- Since LHS and r are orthogonal to y_k the last term must be zero and hence the correction satisfies

$$(B - \lambda I)v = -r$$

or

$$(I - y_k y_k^H)(A - \lambda I)(I - y_k y_k^H)v = -r.$$

- replace unknown λ by known θ_k if approximate eigenvalue is already good enough or by some target τ
- *JD Correction equation:*

$$\underbrace{(I - y_k y_k^H)(A - \theta_k I)(I - y_k y_k^H)}_{B - \theta_k I} v = -r. \quad (1)$$

i.e. $A - \theta_k I$ is restricted to the orthogonal complement of y_k

- expand the subspace by v (using GS or modification) and compute new Ritz pair in expanded subspace
- Combination of the Jacobi approach of looking for the orthogonal complement of a given eigenvector approximation and Davidson's algorithm for expanding the subspace in which the eigenvector approximations are constructed

Remark 4.1. *Modified Gram-Schmidt and repeated Gram-Schmidt (for reorthogonalisation) are used in practice.*

5 Jacobi-Davidson as Newton-method/Rayleigh quotient iteration

If we solve the correction equation (1) *exactly*, then, since $v \perp y_k$ we have $(I - y_k y_k^H)v = v$ and

$$(A - \theta_k I)v = -r + \alpha y_k \quad (2)$$

where $\alpha \in \mathbb{C}$ s.t. $v \perp y_k$. Then

$$v = -(A - \theta_k I)^{-1}r + \alpha(A - \theta_k I)^{-1}y_k = -y_k + \alpha(A - \theta_k I)^{-1}y_k.$$

The solution v is used to expand the search space.

- y_k is already in the search space the expansion vector is effectively $(A - \theta_k I)^{-1}y_k$, which is the same as for *inverse iteration* for fixed θ_k and the same as for *RQI* for $\theta_k = y_k^H A y_k$ (from Ritz residual $r = A y_k - \theta_k y_k$.

Algorithm 3 Jacobi-Davidson method

```
choose  $q_1$  with  $\|q_1\| = 1$ ,  $Q_1 = [q_1]$ 
for  $j = 1, 2$  do
     $w_j = Aq_j$ 
    for  $k = 1$  to  $j - 1$  do
         $b_{kj} = q_k^H w_j$ 
         $b_{jk} = q_j^H w_k$ 
    end for
     $b_{jj} = q_j^H w_j$ 
    Compute largest eigenpair  $(\theta, s)$  of  $B$ , with  $\|s\| = 1$ 
     $y = Q_j s$ 
     $r = Ay - \theta y$ 
    if  $\|r\| \leq tol$  then
         $\lambda = \theta$ ,  $x = y$ , STOP
    end if
    Solve (approximately)
```

$$(I - yy^H)(A - \theta I)(I - yy^H)v = -r.$$

```
 $v = v - Q_j Q_j^H v$ 
 $q_{j+1} = \frac{v}{\|v\|}$ 
 $Q_{j+1} = [Q_j, q_{j+1}]$ 
end for
```

- JD where we solve correction equation exactly is a *subspace accelerated* inverse iteration or RQI
- subspace acceleration: $(A - \theta_k I)^{-1} y_k$ does not directly give the next approximate eigenvector, a hopefully even better approximation is sought in the subspace formed by \mathcal{S} expanded by this new vector.
- convergence of RQI: quadratic or cubic for Hermitian matrices
- JD can also be viewed as a Newton's method: equation (2):

$$(A - \theta_k I)v = -r + \alpha y_k, \quad v \perp y_k$$

can be written as

$$\begin{bmatrix} A - \theta_k I & y_k \\ y_k^H & 0 \end{bmatrix} \begin{bmatrix} v \\ -\alpha \end{bmatrix} = \begin{bmatrix} -r \\ 0 \end{bmatrix}$$

- generally quadratic convergence (for Hermitian problems even cubic)

Now, the key idea of JD is to solve the correction equation (1) only *inexactly* by an iterative method.

- JD combined with an iterative solver: accelerated *inexact* Newton's method or accelerated *inexact* Inverse Iteration/RQI (quadr. convergence..)
- numerical observation: even for approximate solution of the correction equation (1) we get quite fast convergence

6 Solution of the correction equation

Iterative solvers are used to solve the large linear system:

- CG (Hermitian positive definite), MINRES (Hermitian), GMRES
- use preconditioner K for $A - \theta_k I$, i.e. $K^{-1}(A - \theta_k I) \approx I$, but usually fixed
- have to restrict K to the same subspace

$$\tilde{K} = (I - y_k y_k^H) K (I - y_k y_k^H)$$

- for a Krylov solver, in each step we have to find a vector $z = \tilde{K}^{-1} \tilde{A} w$, with

$$\tilde{A} = (I - y_k y_k^H)(A - \theta_k I)(I - y_k y_k^H)$$

- First

$$\tilde{A}w = (I - y_k y_k^H)(A - \theta_k I)(I - y_k y_k^H)w = (I - y_k y_k^H)g$$

with $g = (A - \theta_k I)w$, since $y_k^H w = 0$.

- Then solve

$$\tilde{K}z = (I - y_k y_k^H)g,$$

and since $z \perp y_k$ we have

$$Kz = g - \beta y_k, \quad z = K^{-1}g - \beta K^{-1}y_k$$

and with $z \perp y_k$ we get

$$\beta = \frac{y_k^H K^{-1} g}{y_k^H y_k},$$

so in each step of the Krylov solver the system $K\tilde{g} = g$ has to be solved plus $K\tilde{y} = y_k$ at the beginning.

7 Interior eigenvalues - Harmonic Ritz values

Definition 7.1 (Harmonic Ritz value). *Let τ be a complex (target) value that is not an eigenvalue of A . Then μ is a Harmonic Ritz value of A with target τ w.r.t. the space \mathcal{S} if $(\mu - \tau)^{-1}$ is an ordinary Ritz value of $(A - \tau I)^{-1}$.*

- Revising the theory for Ritz values μ satisfies this property if and only if $(\mu - \tau)^{-1}$ is an eigenvalue of $Q^H(A - \tau I)^{-1}Q$, where $\text{span}\{Q\}$ is a basis of \mathcal{S}
- difficult to evaluate if A is large, because it involves solving a system
- obtain harmonic Ritz value w.r.t. another subspace $\mathcal{U} = (A - \tau I)\mathcal{S}$
- μ is a harmonic Ritz value of A with target τ with respect to the space \mathcal{U} if and only if there is a $u \in \mathcal{U}$ s.t.

$$(A - \tau I)^{-1}u - (\mu - \tau)^{-1}u \perp \mathcal{U}$$

- with $u = (A - \tau I)Qs$, where s is uniquely determined we get

$$(A - \mu I)Qs \perp \mathcal{U}$$

- Let $v = Qs$. Then v is called the *harmonic Ritz vector* associated with the Ritz value μ

- finally, with $Y = (A - \tau I)Q \in \mathbb{C}^{n,k}$ we get

$$Y^H Y s = (\mu - \tau) Y^H Q s$$

which is a small $(k \times k)$ generalized eigenproblem, which has to be solved

- get μ , the harmonic Ritz value and $v = Qs$ the harmonic Ritz vector

8 Remarks

- **Restarts:** dispose the less promising vectors to reduce amount of storage, suppose we have $m = k + j$ orthonormal vectors, the columns of the matrix $Q \in \mathbb{C}^{n,m}$ and we want to discard j columns and keep k -dimensional subspace, let $H = Q^H A Q$ and compute Schur decomposition $B = U T U^H$, U unitary, T upper triangular with Ritz values on the diagonal, order them in a way s.t.

$$T = \begin{bmatrix} T_{11} & T_{12} \\ 0 & T_{22} \end{bmatrix},$$

where T_{11} contains the k most promising Ritz values, let $\hat{Q} = QU$ and partition $\hat{Q} = [\hat{Q}_1, \hat{Q}_2]$, where $\hat{Q}_1 \in \mathbb{C}^{n,k}$ is the vector we keep (*purging*)

- **Deflation:** used if an eigenpair (λ, x) is detected and we would like to find other pairs, use only subspaces that are spanned by the remaining vector, orthogonal deflation replaces A by $(1 - xx^H)A(1 - xx^H)$ after finding x , project out the converged subspaces, natural in the Jacobi-Davidson context, more general: replace A by $(1 - ZZ^H)A(1 - ZZ^H)$, where $AZ = ZS$ is a partial Schur decomposition of A with $Z \in \mathbb{C}^{n,k}$ orthonormal Schur vectors and $S \in \mathbb{C}^{k,k}$ upper triangular with eigenvalues of A on diagonal

- **Deflated Preconditioning:** is not much harder than calculating just one extremal eigenvalue, let (θ, y) be the current Ritz pair, then with $\tilde{U} = [Z, y]$ we have

$$\tilde{A} = (I - \tilde{U}\tilde{U}^H)(A - \theta I)(I - \tilde{U}\tilde{U}^H)$$

and for the preconditioner

$$\tilde{K} = (I - \tilde{U}\tilde{U}^H)K(I - \tilde{U}\tilde{U}^H)$$