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1 Some basics

We have the following standard eigenvalue problem:

Ax = λx.

We use a so called Galerkin approach to solve it:

• Suppose we have a subspace S which generates an orthogonal basis q1, . . . , qk

• With Qk := [q1, . . . , qk] ∈ Rn,k, a matrix with orthogonal columns: Galerkin
condition: find s and θ such that

r := A Qks
︸︷︷︸

y

−θ Qks
︸︷︷︸

y

⊥ {q1, . . . , qk} = S, y ∈ S

or
QH

k AQks = θs,

Hk is the orthogonal projection of A onto S

Definition 1.1. (θ, Qks) = (θ, y) is called a Ritz pair associated with the subspace
(search space) S = span{q1, . . . , qk}. (θ, y) with Ritz residual r approximates the
eigenpair (λ, x) of A.

In practice we want k << n!

• Generate an orthonormal system q1, . . . , qk and we wish to add qk+1

• find an expansion vector v for the subspace Qk

• expand the subspace by orthogonalisation of v against q1, . . . , qk (modified
Gram-Schmidt)

• solve the slightly bigger projected problem

QH
k+1AQk+1s = θs,

Remark 1.1. Modified Gram-Schmidt and repeated Gram-Schmidt (for reorthog-
onalisation) are used in practice.

There are different choices for the expansion vector v, assuming we have the initial
subspace span{q1}.

• Arnoldi’s method : v = Aqk, then H := QH
k AQk is upper Hessenberg
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Algorithm 1 Subspace iteration

choose initial subspace Q1

for j = 1, 2 do
Wj → AQj, Hj → QH

j Wj

Compute desired eigenpair (θ, s) of Hj, with ‖s‖ = 1
y → Qjs

r → Ay − θy

Stop if satisfied
Compute an expansion vector v

Expand subspace Qj+1 → ModGS[Qj, v]
end for

• Lanczos’ method : (for A = AH) v = Aqk, then H := QH
k AQk is tridiagonal

• for both these methods the search space span{Qk} = span{q1, Aq1, . . . , A
k−1q1}

is a so-called Krylov subspace

• Arnoldi and Lanczos favour extremal eigenvalues:

• Shift-and-Invert Arnoldi: v = (A − τI)−1qk: approach favours eigenvalues
close to τ

• for large problems (A−τI)v = qk is expensive and has to be done accurately!!

2 Davidson’s method

• expand the search space span{q1, . . . , qk} in the direction

v = (DA − θI)−1r

where DA is the diagonal of A.

• qk+1 is obtained by orthogonalisation of v w.r.t. span{Qk}.

• used for strongly diagonal dominant matrices

• problem: for diagonal matrices

v = (DA − θI)−1r = y ∈ span{Qj}

does not lead to the expansion of the search space span{Qj}.
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Algorithm 2 Davidson’s method

choose q1 with ‖q1‖ = 1, Q1 = [q1]
for j = 1, 2 do

wj = Aqj

for k = 1 to j − 1 do
bkj = qH

k wj

bjk = qH
j wk

end for
bjj = qH

j wj

Compute largest eigenpair (θ, s) of B, with ‖s‖ = 1
y = Qjs

r = Ay − θy

v = (DA − θI)−1r

v = v − QjQ
H
j v

qj+1 = v
‖v‖

Qj+1 = [Qj, qj+1]
end for

3 Jacobi’s method

• Let A be diagonal dominant and α = a11 the largest diagonal element. The
α is an approximation of the largest eigenvalue λ and e1 is an approximation
for the corresponding eigenvector q.

• Hence the problem

A

[
1
z

]

=

[
α cT

b F

] [
1
z

]

= λ

[
1
z

]

• interested in eigenvalue that is close to α and in corresponding eigenvector
q = [1, zT ]T with z the component of q orthogonal to e1

• equivalent is

λ = α + cT z

(F − λI)z = −b

• apply Jacobi iteration with z1 = 0

θk = α + cT zk

(D − θkI)zk+1 = (D − F )zk − b

where D is the diagonal entry of F .
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• at all stages we look for the orthogonal complement to the initial approx-
imation q1 = e1, not taking into account that better approximations qk =
[1, zT

k ]T become available at each state (it may be more efficient to calculate
q − (qT qk)qk).

4 The Jacobi-Davidson method

We try to find an optimal expansion of the subspace!

• Jacobi and Davidson attempt to find corrections to some initially given eigen-
vector approximation , they both use fixed operators

• Jacobi-Davidson: find the orthogonal complement for current approximation
yk with respect to the desired eigenvector A

• let yk be an approximation to the eigenvector of A and θk the corresponding
Ritz value, i.e. yk ∈ S, where S is a low k-dimensional subspace (the search
space)

• interested in seeing what happens in the subspace y⊥
k

• orthogonal projection of A onto that subspace is given by (with ‖yk‖ = 1)

B = (I − yky
H
k )A(I − yky

H
k ).

B is the restriction of A to the subspace orthogonal to yk. (Note that for
yk = e1 we have that F is the restriction of B with respect to e⊥1 ).

• with θk = yH
k Ayk it follows that

A = B + Ayky
H
k + yky

H
k A − θkyky

H
k

• Look for an eigenvalue λ of A close to θk, we want to have the correction
v ⊥ yk (orthogonal correction) such that

A(yk + v) = λ(yk + v),

or with Byk = 0

(B − λI)v = −r + (λ − θk − yH
k Av)yk
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• Since LHS and r are orthogonal to yk the last term must be zero and hence
the correction satisfies

(B − λI)v = −r

or
(I − yky

H
k )(A − λI)(I − yky

H
k )v = −r.

• replace unknown λ by known θk if approximate eigenvalue is already good
enough or by some target τ

• JD Correction equation:

(I − yky
H
k )(A − θkI)(I − yky

H
k )

︸ ︷︷ ︸

B−θkI

v = −r. (1)

i.e. A − θkI is restricted to the orthogonal complement of yk

• expand the subspace by v (using GS or modification) and compute new Ritz
pair in expanded subspace

• Combination of the Jacobi approach of looking for the orthogonal comple-
ment of a given eigenvector approximation and Davidson’s algorithm for
expanding the subspace in which the eigenvector approximations are con-
structed

Remark 4.1. Modified Gram-Schmidt and repeated Gram-Schmidt (for reorthog-
onalisation) are used in practice.

5 Jacobi-Davidson as Newton-method/Rayleigh

quotient iteration

If we solve the correction equation (1) exactly, then, since v ⊥ yk we have (I −
yky

H
k )v = v and

(A − θkI)v = −r + αyk (2)

where α ∈ C s.t. v ⊥ yk. Then

v = −(A − θkI)−1r + α(A − θkI)−1yk = −yk + α(A − θkI)−1yk.

The solution v is used to expand the search space.

• yk is already in the search space the expansion vector is effectively (A −
θkI)−1yk, which is the same as for inverse iteration for fixed θk and the same
as for RQI for θk = yH

k Ayk (from Ritz residual r = Ayk − θkyk.
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Algorithm 3 Jacobi-Davidson method

choose q1 with ‖q1‖ = 1, Q1 = [q1]
for j = 1, 2 do

wj = Aqj

for k = 1 to j − 1 do
bkj = qH

k wj

bjk = qH
j wk

end for
bjj = qH

j wj

Compute largest eigenpair (θ, s) of B, with ‖s‖ = 1
y = Qjs

r = Ay − θy

if ‖r‖ ≤ tol then
λ = θ, x = y, STOP

end if
Solve (approximately)

(I − yyH)(A − θI)(I − yyH)v = −r.

v = v − QjQ
H
j v

qj+1 = v
‖v‖

Qj+1 = [Qj, qj+1]
end for
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• JD where we solve correction equation exactly is a subspace accelerated in-
verse iteration or RQI

• subspace acceleration: (A− θkI)−1yk does not directly give the next approx-
imate eigenvector, a hopefully even better approximation is sought in the
subspace formed by S expanded by this new vector.

• convergence of RQI: quadratic or cubic for Hermitian matrices

• JD can also be viewed as a Newton’s method: equation (2):

(A − θkI)v = −r + αyk, v ⊥ yk

can be written as [
A − θkI yk

yH
k 0

] [
v

−α

]

=

[
−r

0

]

• generally quadratic convergence (for Hermitian problems even cubic)

Now, the key idea of JD is to solve the correction equation (1) only inexactly by
an iterative method.

• JD combined with an iterative solver: accelerated inexact Newton’s method
or accelerated inexact Inverse Iteration/RQI (quadr. convergence..)

• numerical observation: even for approximate solution of the correction equa-
tion (1) we get quite fast convergence

6 Solution of the correction equation

Iterative solvers are used to solve the large linear system:

• CG (Hermitian positive definit), MINRES (Hermitian), GMRES

• use preconditioner K for A − θkI, i.e. K−1(A − θkI) ≈ I, but usually fixed

• have to restrict K to the same subspace

K̃ = (I − yky
H
k )K(I − yky

H
k )

• for a Krylov solver, in each step we have to find a vector z = K̃−1Ãw, with

Ã = (I − yky
H
k )(A − θkI)(I − yky

H
k )
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• First
Ãw = (I − yky

H
k )(A − θkI)(I − yky

H
k )w = (I − yky

H
k )g

with g = (A − θkI)w, since yH
k w = 0.

• Then solve
K̃z = (I − yky

H
k )g,

and since z ⊥ yk we have

Kz = g − βyk, z = K−1g − βK−1yk

and with z ⊥ yk we get

β =
yH

k K−1g

ykK−1yk

,

so in each step of the Krylov solver the system Kg̃ = g has to be solved plus
Kỹ = yk at the beginning.

7 Interior eigenvalues - Harmonic Ritz values

Definition 7.1 (Harmonic Ritz value). Let τ be a complex (target) value that is
not an eigenvalue of A. Then µ is a Harmonic Ritz value of A with target τ w.r.t.
the space S if (µ − τ)−1 is an ordinary Ritz value of (A − τI)−1.

• Revising the theory for Ritz values µ satisfies this property if and only if
(µ− τ)−1 is an eigenvalue of QH(A− τI)−1Q, where span{Q} is a basis of S

• difficult to evaluate if A is large, because it involves solving a system

• obtain harmonic Ritz value w.r.t. another subspace U = (A − τI)S

• µ is a harmonic Ritz value of A with target τ with respect to the space U if
and only if there is a u ∈ U s.t.

(A − τI)−1u − (µ − τ)−1u ⊥ U

• with u = (A − τI)Qs, where s is uniquely determined we get

(A − µI)Qs ⊥ U

• Let v = Qs. Then v is called the harmonic Ritz vector associated with the
Ritz value µ
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• finally, with Y = (A − τI)Q ∈ C
n,k we get

Y HY s = (µ − τ)Y HQs

which is a small (k × k) generalized eigenproblem, which has to be solved

• get µ, the harmonic Ritz value and v = Qs the harmonic Ritz vector

8 Remarks

• Restarts: dispose the less promising vectors to reduce amount of storage,
suppose we have m = k + j orthonormal vectors, the colums of the matrix
Q ∈ C

n,m and we want to discard j colums and keep k-dimensional subspace,
let H = QHAQ and compute Schur decomposition B = UTUH , U unitary,
T upper triangular with Ritz values on the diagonal, order them in a way
s.t.

T =

[
T11 T12

0 T22

]

,

where T11 contains the k most promising Ritz values, let Q̂ = QU and
partition Q̂ = [Q̂1, Q̂2], where Q̂1 ∈ Cn,k is the vector we keep (purging)

• Deflation: used if an eigenpair (λ, x) is detected and we would like to find
other pairs, use only subspaces that are spanned by the remaining vector,
orthogonal deflation replaces A by (1 − xxH)A(1 − xxH) after finding x,
project out the converged subspaces, natural in the Jacobi-Davidson context,
more general: replace A by (1 − ZZH)A(1 − ZZH), where AZ = ZS is a
partial Schur decomposition of A with Z ∈ Cn,k orthonormal Schur vectors
and S ∈ Ck,k upper triangular with eigenvalues of A on diagonal

• Deflated Preconditioning: is not much harder than calculating just one
extremal eigenvalue, let (θ, y) be the current Ritz pair, then with Ũ = [Z, y]
we have

Ã = (I − Ũ ŨH)(A − θI)(I − Ũ ŨH)

and for the preconditioner

K̃ = (I − Ũ ŨH)K(I − Ũ ŨH)
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