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1 Definitions

Consider
Ar =Xz, x#0, AeC", ze€C" ,NeC. (1)

Definition 1.1. X is an eigenvalue of A if (1) holds. The vector x # 0 is called
an eigenvector. Here precisely x is a right eigenvector for \. If x*A = \x* then x
s a left eigenvector.

E\(A) = Ker(A — X) = {z € C",|(A— M)z = 0} is called eigenspace of A
belonging to \

If det(A — M) = (X — X;))*N)g(N) with q(A) € Pa_ap,) and q(A;) # 0 then
a(A;)) is called the algebraic multiplicity of X;. The geometric multiplicity is given
by g(A;) = dimEy,(A). Usually g(A;) < (N;).

An eigenvector defines a one-dimensional subspace, that is invariant under
premultiplication by A. Eigenvectors are the simplest invariant subspace.

Definition 1.2. § € C" is called invariant subspace of A if AS C S, i.e. s €
S=Ase S

Note that if 3X € C**, B € C** rank(X) = k and AX = XB, then § =
Im(X) is an A-invariant subspace.

Furthermore from By = Ay = A(Xy) = X By = A\(Xy) follows that, if X has
full rank then AX = X B implies A(B) C A(A).

If X is square and nonsingular rank(X) = k = n then A(B) = A(A) and we
say that A and B = X 'AX are similar and X is a similarity transform.

2 Similarity Transforms

Theorem 2.1 (Jordan Canonical Form). Let A € C™". Then there ezists a
nonsingular X € C™" such that

J1(\1)
X TAX =
Jr ()
where \y #£ Ao # ... # N\, and
J]71
Ji(\) = e C*)alr)
Jjo00)



and

Ty = c € Cmokmst,
SR
Aj
where m;y, are partial multiplicities of A;.
Note that the Jordan Canonical Form is expensive to calculate and it is very
sensitive to small perturbations. R
Hence, we need to find A = Y'AY such that A(A) is easy to calculate and
k(Y) &~ 1 (i.e. no error amplification).
Therefore unitary transforms must be used in order to achieve numerical sta-
bility.
Theorem 2.2. If A€ C*", B € C** and X € C** satisfy
AX = XB, rank(X) =k,
then there exists a unitary QQ € C™" such that

* _ _ Tll T12

where A(T11) = A(A) N A(B).
Proof. See Golub/van Loan. O]

We see that a matrix can be reduced to block triangular form using unitary
similarity transformations if we know one of its invariant subspaces.

Theorem 2.3 (Schur Decomposition). If A € C*" then there ezists a unitary
Q € C™" such that

Q"AQ=T=D+N
where D = diag(A1, ..., \,) and N € C™" is strictly upper triangular. @ can be
chosen so that the eigenvalues \; appear in any order along the diagonal.

Proof. See Golub/van Loan. O
Definition 2.1. A € C™" is normal if and only if A*A = AA*.

Corollary 2.1. A € C™" is normal if and only if there exists a unitary transform
Q € C™" such that Q*AQ = D.

Proof. Exercise. O]

It is easy to see that Hermitian matrices A = A* are normal. From now
on we want to consider Hermitian matrices (or, as they are called in the real
case, symmetric matrices). We mention some of their properties and numerical
eigenvalue algorithms.



3 Hermitian Matrices and Properties

Theorem 3.1 (Spectral Theorem). All eigenvalues of Hermitian matrices are real.
If \j # A then (xj,zx) = z3x; = 0 and

A:X*AX:i:)\ixixf, I =XX"= zn::vza:;k
i=1

=1

Hence X = [x1,...,%,] is the matrix of orthonormal eigenvectors of A. Any
invariant subspace is just the span of an approximate subset of eigenvectors.
Consider the generalized Hermitian eigenproblem

Az = AMz, (2)

where A, M € C™™ Hermitian and M positive definite. Then all eigenvectors may
be chosen to be M-orthogonal, i.e. i Mz; =0, 7 # j.
The generalised HEP can be transformed into a Hermitian eigenproblem as

follows. First factor M = LL* where L is nonsingular (Cholesky factorisation),
then solve HEP A = L~'AL~*. The eigenvalues of A and Az = MMz are identical,

the eigenvectors are x = L™*Z.

Also let A and X be eigenvalue and eigenvector matrix of AX = M XA. Then
X*AX = X*MXA. Since z; are unit vectors orthogonal w.r.t. the inner product
induced by M we see that X*MX = A, and hence Ay = X*AX = AyA is

diagonal, too.

4 Quadratic Forms and the Rayleigh Quotient

Self-adjoint (Hermitian) matrices arise in the study of quadratic forms
n n
U(z)=z"Ax = Z Z a;; ;5
i=1 i=1

usually this represents some form of energy. A linear change of variable, x — y =
F~z forces a change in the form,

U(z) = \il(y) = y* Ay, for all z

only if A = F*AF. This mapping A — F*AF' is called congruence transform.
Unlike similarity transform it does not preserve the eigenvalues, but the signs of
the eigenvalues.



Theorem 4.1 (Sylvester’s inertia theorem). Each A is congruent to a matric
diag(I, 1,,0;), where the number triple (w,v,() depends only on A and is called
A’s inertia. Moreover w, v and ( are the number of positive, negative and zero
eigenvalues of A.

Proof. See Golub/van Loan. O

This theorem leads to a method about slicing the spectrum of a generalised
Hermitian eigenproblem. There is an elegant way to determine the number of A’s
eigenvalues that are less than any given real number o.

Theorem 4.2. Suppose that A — oM permits triangular factorisation A — oM =
L,A,L%, where A, is diagonal, and suppose that the pair (A, M) has a full set of
real eigenvectors. Then

v(N—ol)=v(A—oM) =rv(A,),
where A = diag(A1, ..., \n) and \; is an eigenvalue of the pair (A, M)

Proof. Since L, is unit lower triangular it is invertible and so A — oM is congruent
to A,. By simultaneous reduction of two quadratic forms there is an invertible

matrix F' such that
F*(A—oM)F =A—-o0l,

whence A — oM is congruent to A — ol The result follows from Silvester’s inertia
theorem applied to the congruent diagonal matrices A — ol and A,. m

On the one hand v(A,) is simply the number of negative elements on A,’s
diagonal. On the other hand v(A — o) is the number of eigenvalues of the pencil
(A, M) which are less than o.

Now we restrict the quadratic form to its values on the unit sphere and get the
so called Rayleigh quotient:

u* Au

u*u

p(u) = p(u; A) = , w0

Theorem 4.3. The RQ) enjoys the following basic properties:
e Homogeneity: p(au) = p(u), a#0

e Boundedness: p(u) ranges over the interval [Ai, \,] as u ranges over all
nonzero n-vectors

e Stationarity: p(u) is stationary (i.e. the gradient of p is 0 at and only at the
eigenvectors of A.



Proof. Exercise. O]

It is worth mentioning one particular property here. Define the special residual
vector r(u)

r(u) = (A= p(u))u
Proposition 4.1 (Minimum residual property). For each u € C" we have
1(A = p(u))ul] < [|(A = pul,  VueC
Proof. Proof by illustration. O

Note that the Rayleigh quotient for generalized HEP (2) is given by

u* Au
w*Mu

p(u) = p(u; A, M) =

An important theorem related to the Rayleigh quotient is the following

Theorem 4.4 (Courant-Fischer minimax theorem). If A € R™" is symmetric

then 74
A(A) = max min Y - y’
dim(S)=k 0#£yeS Y-y
fork=1,...,n where S C R" is some subspace.
Proof. See Golub/van Loan. O

From this minimax property we get

xT Ax
Al = max
w20 Ty
2T Ax
A, = min T
x£0 T X

and
Iggg!p(u,fl)l = max{| A1, [An]} = [|A][2.

5 Some Perturbation Theory

Since we determine eigenvalues iteratively, we need an informative perturbation
theory that tells us, how to think about approximate eigenvalues and invariant
subspaces.



Theorem 5.1 (Bauer-Fike). If i1 is an eigenvalue of A+ E € C*" and X 'AX =
D = diag(A1, ..., \n), then

min |\ — p| < Kp(X) || E 3
)\EAI( )| | — KJP( )H ||p ( )
where || - ||, denotes any of the p-norms.

Proof. We only need to consider p ¢ A(A). Then D — ul is invertible, and
XY A+E—pl)X =D —pl+ X 'EX is singular. Sois [+ (D —pl) ' X 'EX.
Hence

L < (D—p)”' XTEX], (4)
< 1@ = 1D M IX LI X, (5)
1
= max —r(X)||E],- 6
i e, ()], 0
O]
Note that for Hermitian matrices X = () becomes unitary, and hence (3)

becomes

ANl = Ml < [IE]l2.
We can step up this estimate by the theorem of Weyl:

Theorem 5.2 (Weyl). If (pu,...,1n) are the eigenvalues of A+ E € C™" and
(A1, ..., An) are the eigenvalues of A € C™™. Then

s — A < ||E]f2.

Proof. This can be proved using Courant Fischer’s minimax theorem. Exercise.
O

There are also several theorem’s on approximate invariant subspaces, which we
will not consider here.

Theorem 5.3 (Gershgorin). Suppose A € R™" is symmetric and that ) € R™"
is orthogonal. If QTAQ = D + F where D = diag(d,,...,d,) and F has zero
diagonal entries, then

AA) € | Jldi = riydi + 1),
=1

where r; =3 " | fi;] fori=1,... n.
Proof. See Golub/van Loan. O



6 Basic Algorithms for Hermitian Problems

There are several algorithms available for computing the eigenvalues and eigen-
vectors of Hermitian Matrices. Their efficiency and cost depend on whether one
is looking only for a small number of eigenvalues or all eigenvalues and whether
one also wants to compute the eigenvectors. Of course, some algorithms are also
applicable to Non-Hermitian eigenproblems.

For all algorithms below, except Rayleigh quotient iteration and Jacobi’s method,
assume the matrix has first been reduced to tridiagonal form (Householder reflec-
tions). This is an initial cost of (4/3)n?® flops, (8/3)n? if eigenvectors are also
required

e Power iteration, Inverse iteration, Rayleigh quotient iteration

e (Tridiagonal) QR iteration (finds all eigenvalues and optionally all eigenvec-
tors) currently the fastest practical method to find all the eigenvalues of a
symmetric tridiagonal matrix.

e Divide-and-conquer method: currently the fastest method to find all the
eigenvalues and eigenvectors of symmetric tridiagonal matrices larger than
n =25

e Bisection method
e Jacobi’s method
e Lanczos method

e Jacobi-Davidson method



