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m Find an eigenvalue and eigenvector of a Hermitian positive
definite A:

Melina Freitag

Ax = A\,
Motivation
m Inverse lteration:
(A-oly==x
A large, sparse.
c
| | | | |
1 1 1 1 1
AN A A A,

m Inverse iteration with preconditioned iterative solves
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for i =1 to ‘imax do
choose 7 ()
solve

Inexact Inverse . . . .
Iteration (A —c@I)y® — 0| < 7@,
) (%)
Rescale z(it1) = y(') ,
ly@||

Update A1) = zG+D)7T go(i+1),

possibly: update the shift o*)

Test: eigenvalue residual r(t1) = (A4 — \GHD 1)z (+1),
end for



@BATH Error indicator

Inexact inverse

Refen ait Error indicator (Orthogonal decomposition for symmetric A, Parlett)

tuned
preconditioning

Melina Freitag

Inexact Inverse
Iteration

Q x'=0 (sin 6 @ ) measure for the error

2 = cos H(i)xl + sin H(i)xﬁf), xﬁf) 1 2.

Eigenvalue residual

|5in 8@ 22 = A < [IrP]| < |5in @A, — Al
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Decreasing tolerance 7() = C||r®|| = O(sin §®)

Melina

For decreasing tolerance 7() < C||r()|| = O(sin #()) the
inexact method recovers the rate of convergence achieved by
exact solves.

ot Fixed shift o: linear convergence.

independent of
inner solver

Rayleigh quotient shift o() = p(z()) = =——": cubic

convergence for A = A*.

Fixed tolerance 7(¥) = 7

Rayleigh quotient shift: quadratic convergence
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m standard MINRES theory for yo = 0:

k—1
k—1
||$—(A—01)m¢||§2< - > |-

where k is the condition number of A — o 1.

MINRES - inner
solves

m Number of inner iterations:

k> 1—|—/€{log2+log”x|}
-
then
|z — (A= oDyl < 7.
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D Bt If A is positive definite and has a simple eigenvalue then

k—2

5 i /\ —>\ k1 — 1 i
||x<>—(A_af)y,§>||2g2||;1_0"||( I‘61+1> Qx|

where Q is the orthogonal projection onto span{zs,...,2,} and k;

MINRES - inner ) L. maxizgy___m )\i — 0
solves is the reduced condition number xk; = | |

minizz,m’n |)\z — 0’| ’

Number of inner solves for each i for ||z — (A — oW T)y@| < 7

. (4)
ED > 94k <log2|)\1 — An| + log %)
| —
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- Convergence rates for solves with MINRES for simple eigenvalue

D Bt If A is positive definite and has a simple eigenvalue then

k—2

, : M= Ma| [ [R1—1 :
D (A oD@, < 9= 2n 1 o
|z (A—oal)y" |2 < o] P | sin 6]

where Q is the orthogonal projection onto span{zs,...,2,} and k;

MINRES - inner ) L. maxizgy___m )\i — 0
solves is the reduced condition number xk; = | |

minizz,m’n |)\z — 0’| ’

Number of inner solves for each i for ||z — (A — oW T)y@| < 7

. ing®
ED > 94k <log2|)\1 — An| + log %)
| —
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A=LLT+E

symmetric preconditioning of (A — oI)y® = z(9):

LY A-o)L 7§90 = L712® ) 4O = [-T5®

Preconditioning
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A=LLT+E

symmetric preconditioning of (A — oI)y® = z(9):

LY A—oDL T§® = L7120, & = [-T5®

e changes number of inner iterations

) L1
E®D > 924 gy log 2|\ —)\n|+logH—”.
A1 — a|r®

k() increases with i for 70 = C||r(®|.
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Aims

modify L — L

L (A= oL 750 = L7100, 4 = L7730

Tuning the
preconditioner
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modify L — L
]Lfl(A _ JI)ILng](i) _ ]L—lx(i)7 y(i) _ ]L—Tg(i)

minor extra computation cost for IL

"nice” right hand side L-1z® (same behaviour as
unpreconditioned solves, e.g. for fixed shifts k&(?) does not
jichinsliie increase with )

preconditioner
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ation, Condition

preconditioning

Melina Freitag m MINRES theory indicates that L.~ 'z(%) should be close to
eigenvector of L™ (A — oI)L~-T
m Holds if

LLT2® = Az®

Justification of LLTz®) = Az(®
If z() = 21 then LL Tz, = A\2q

Tuning lthe
preconditioner )\1 — 0

L YA—-o)L 'L 2, = L~ ta;

1

)\1—(7

LY (A - o)L "L 1z® = L1z 4 C|]r@)||

1
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Let ) current eigenvector approximation, e = Az() — LLT (%)
(known) and L chosen such that

L =L+ a®e® (L 1e®)T

with o9 root of quadratic function we get LL” (V) = Az(").

Tuning the
preconditioner
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Let ) current eigenvector approximation, e = Az() — LLT (%)
(known) and L chosen such that

L =L+ a®e® (L 1e®)T

with o9 root of quadratic function we get LL” (V) = Az(").

Implementation

uning the 1 N T

:recondi:;oner Note LLT = LLT + Te(l)e(l)
T 500)

L is a rank-one update of L.
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For MINRES implementation only the evaluation of P~! is necessary

P = P+4~y@De@e®T

Sherman-Morrison formula

(2 — 2®)(20) — z@)T

Tuning the 1 1
preconditioner ]P = P —

where 2(0) = P=1 Az(®)
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The tuned preconditioner

outer convergence rate is retained

cheap inner solves are provided

; sin §(%)
02 caios (200

only a single extra back substitution with P = LLT per outer

Tuning the

S iteration needed
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m SPD matrix from the Matrix Market library (nosb: 3 story
building with attached tower)

m seek eigenvalue near fixed shift o = 100
m A~ LLT, incomplete Cholesky factorisation (drop tol. = 0.1)

m compare standard and tuned preconditioner

Numerical
Results
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Fixed shift solves

Inexact inverse
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Standard preconditioner
70|~ Tuned preconditioner
60
2
S 50
d
2
g 40
£

30

20

0 5 10 15 20 2 20 35

outer iterations

Numerical
Results

m total number of inner iterations using standard preconditioner:
2026

m total number of inner iterations using tuned preconditioner: 779
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Velins Freitas Spectral properties of preconditioned matrix

Let

L= —
L~YA - o)L T = &

Theorem
If o ¢ A(A) then p,& # 0 and

min
HEA(L—1(A—oI)L—T)

u—_E
3

<

Perturbation
theory

where v = 1/(eTz) and v = L™ te.
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YA —-oD)L™Tw = pw

L~
L~ YA - o)L Tw = &w
Interlacing property
Rewrite second equation
Dt = £(I +yz20)t

where L~ (A —oI)L™T = QDQT, 2 = QTv, (I + avv?)Qt = .

Perturbation
theory
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YA —-oD)L™Tw = pw

i
L~ YA - o)L Tw = &w

Interlacing property

Rewrite second equation

Dt = £(I +yz20)t

where L~ (A —oI)L™T = QDQT, 2 = QTv, (I + avv?)Qt = .

Perturbation
theory

Interlacing property

m If v > 0 eigenvalues are moved towards the origin.

m If v < 0 eigenvalues are moved away from the origin.
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m 1 and & interlace each other depending on the sign of ~

Perturbation
theory
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m 1 and & interlace each other depending on the sign of ~

Perturbation
theory

m Clustering properties are preserved

m reduced condition number x} <kl <kl (1+0vT0)
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Approach by Simoncini/Eldén [3

Instead of solving
LA - U(i)])L—Tg(i) =L 'z®, O =1-Tg®
change the right hand side

Lfl(A _ U(i)I)L*Tg(i) _ LTx(i)7 y(i) _ L*Tg(i)

Another
approach



@8atH  Comparison

Inexact inverse
iteration and
tuned

e Tuned preconditioner and Simoncini & Eldén approach
Melina Freitag
Example nos5.mtx from Matrix Market. Solves to fixed tolerance

7 = 0.01. Rayleigh quotient shift. Quadratic convergence for both
methods.

Simoncini & Eldén | Tuned preconditioner
DroP TOLERANCES

OUTER ITERATION | 0.25 0.1 0.25 0.1
1 67 62 29 26
2 74 66 56 55
3 85 75 71 67
4 63 18
total 289 203 174 148
Another

approach
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Figure: Fixed Shift Figure: Rayleigh Quotient Shift

K

T T
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outer iteratiors outer iteraticns

Hermitian
generalised
eigenproblems
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bcsstk08

Figure: Fixed Shift

Numerical example for the generalised
eigenproblem

Figure: Rayleigh Quotient Shift

Hermitian
generalised
eigenproblems

outer iteratiors
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