

Inexact inverse
iteration and
tuned
preconditioning

Melina Freitag

Outline

Motivation

Inexact Inverse
Iteration

Convergence
rates -
independent of
inner solver

MINRES - inner
solves

Hermitian
problems and
preconditioning

Preconditioning
Tuning the
preconditioner

Numerical
Results

Perturbation
theory
Another
approach

Hermitian
generalised
eigenproblems

A Tuned Preconditioner for Inexact Inverse Iteration Applied to Hermitian Eigenvalue Problems

Melina Freitag

Department of Mathematical Sciences
University of Bath, United Kingdom

IWASEP VI
May 22-25, 2006

Pennsylvania State University, University Park

Joint work with: Alastair Spence

1 Motivation

2 Inexact Inverse Iteration

- Convergence rates - independent of inner solver
- MINRES - inner solves

3 Hermitian problems and preconditioning

- Preconditioning
- Tuning the preconditioner
- Numerical Results
- Perturbation theory
- Another approach

4 Hermitian generalised eigenproblems

Outline

Inexact inverse
iteration and
tuned
preconditioning

Melina Freitag

Outline

Motivation

Inexact Inverse
Iteration

Convergence
rates -
independent of
inner solver

MINRES - inner
solves

Hermitian
problems and
preconditioning

Preconditioning
Tuning the
preconditioner

Numerical
Results

Perturbation
theory

Another
approach

Hermitian
generalised
eigenproblems

1 Motivation

2 Inexact Inverse Iteration

- Convergence rates - independent of inner solver
- MINRES - inner solves

3 Hermitian problems and preconditioning

- Preconditioning
- Tuning the preconditioner
- Numerical Results
- Perturbation theory
- Another approach

4 Hermitian generalised eigenproblems

Problem and Inverse Iteration

Inexact inverse
iteration and
tuned
preconditioning

Melina Freitag

Outline

Motivation

Inexact Inverse
Iteration

Convergence
rates -
independent of
inner solver

MINRES - inner
solves

Hermitian
problems and
preconditioning

Preconditioning
Tuning the
preconditioner

Numerical
Results

Perturbation
theory

Another
approach

Hermitian
generalised
eigenproblems

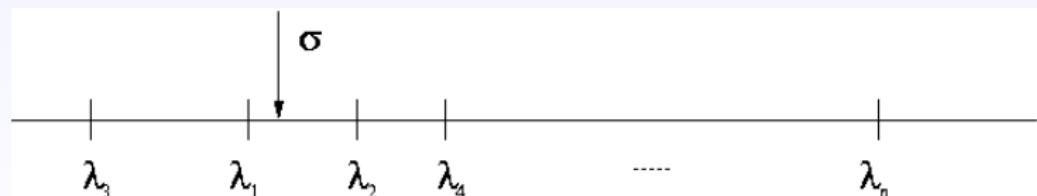
- Find an eigenvalue and eigenvector of a Hermitian positive definite A :

$$Ax = \lambda x,$$

- Inverse Iteration:

$$(A - \sigma I)y = x$$

A large, sparse.



- Inverse iteration with preconditioned iterative solves

Outline

Inexact inverse
iteration and
tuned
preconditioning

Melina Freitag

Outline

Motivation

Inexact Inverse
Iteration

Convergence
rates -
independent of
inner solver

MINRES - inner
solves

Hermitian
problems and
preconditioning

Preconditioning
Tuning the
preconditioner

Numerical
Results

Perturbation
theory

Another
approach

Hermitian
generalised
eigenproblems

1 Motivation

2 Inexact Inverse Iteration

- Convergence rates - independent of inner solver
- MINRES - inner solves

3 Hermitian problems and preconditioning

- Preconditioning
- Tuning the preconditioner
- Numerical Results
- Perturbation theory
- Another approach

4 Hermitian generalised eigenproblems

Inexact Inverse Iteration

Inexact inverse
iteration and
tuned
preconditioning

Melina Freitag

Outline

Motivation

Inexact Inverse
Iteration

Convergence
rates -
independent of
inner solver
MINRES - inner
solves

Hermitian
problems and
preconditioning

Preconditioning
Tuning the
preconditioner

Numerical
Results

Perturbation
theory

Another
approach

Hermitian
generalised
eigenproblems

for $i = 1$ to i_{\max} **do**

choose $\tau^{(i)}$, $\sigma^{(i)}$

solve

$$\|(A - \sigma^{(i)} I)y^{(i)} - x^{(i)}\| \leq \tau^{(i)},$$

Rescale $x^{(i+1)} = \frac{y^{(i)}}{\|y^{(i)}\|}$,

Update $\lambda^{(i+1)} = x^{(i+1)T} A x^{(i+1)}$,

possibly: update the shift $\sigma^{(i)}$

Test: eigenvalue residual $r^{(i+1)} = (A - \lambda^{(i+1)} I)x^{(i+1)}$.

end for

Error indicator

Inexact inverse
iteration and
tuned
preconditioning

Melina Freitag

Outline

Motivation

Inexact Inverse
Iteration

Convergence
rates -
independent of
inner solver
MINRES - inner
solves

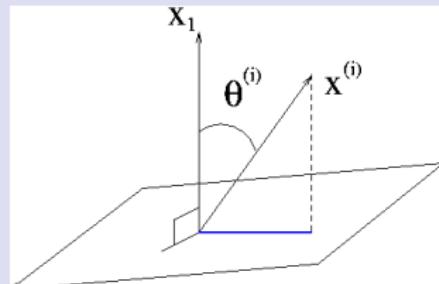
Hermitian
problems and
preconditioning
Preconditioning
Tuning the
preconditioner

Numerical
Results

Perturbation
theory
Another
approach

Hermitian
generalised
eigenproblems

Error indicator (Orthogonal decomposition for symmetric A , Parlett)



$Q x^{(i)} = O(\sin \theta^{(i)})$ measure for the error

$$x^{(i)} = \cos \theta^{(i)} x_1 + \sin \theta^{(i)} x_{\perp}^{(i)}, \quad x_{\perp}^{(i)} \perp x_1.$$

Eigenvalue residual

$$|\sin \theta^{(i)}| |\lambda_2 - \lambda^{(i)}| \leq \|r^{(i)}\| \leq |\sin \theta^{(i)}| |\lambda_n - \lambda_1|$$

Convergence rates of inexact inverse iteration

Inexact inverse
iteration and
tuned
preconditioning

Melina Freitag

Outline

Motivation

Inexact Inverse
Iteration

Convergence
rates -
independent of
inner solver

MINRES - inner
solves

Hermitian
problems and
preconditioning

Preconditioning
Tuning the
preconditioner

Numerical
Results

Perturbation
theory
Another
approach

Hermitian
generalised
eigenproblems

Decreasing tolerance $\tau^{(i)} = C\|r^{(i)}\| = \mathcal{O}(\sin \theta^{(i)})$

- 1 For decreasing tolerance $\tau^{(i)} \leq C\|r^{(i)}\| = \mathcal{O}(\sin \theta^{(i)})$ the inexact method recovers the rate of convergence achieved by exact solves.
- 2 Fixed shift σ : linear convergence.
- 3 Rayleigh quotient shift $\sigma^{(i)} = \rho(x^{(i)}) = \frac{x^{(i)T} Ax^{(i)}}{x^{(i)T} x^{(i)}}$: cubic convergence for $A = A^*$.

Fixed tolerance $\tau^{(i)} = \tau$

- 1 Rayleigh quotient shift: quadratic convergence

MINRES $(A - \sigma I)y = x$ when A is symmetric

Inexact inverse
iteration and
tuned
preconditioning

Melina Freitag

Outline

Motivation

Inexact Inverse
Iteration

Convergence
rates -
independent of
inner solver
MINRES - inner
solves

Hermitian
problems and
preconditioning

Preconditioning
Tuning the
preconditioner

Numerical
Results

Perturbation
theory
Another
approach

Hermitian
generalised
eigenproblems

Solving a linear system $(A - \sigma I)y = x$

- standard MINRES theory for $y_0 = 0$:

$$\|x - (A - \sigma I)\mathbf{y}_k\| \leq 2 \left(\sqrt{\frac{\kappa - 1}{\kappa + 1}} \right)^{k-1} \|x\|.$$

where κ is the condition number of $A - \sigma I$.

- Number of inner iterations:

$$k \geq 1 + \kappa \left\{ \log 2 + \log \frac{\|x\|}{\tau} \right\}$$

then

$$\|x - (A - \sigma I)\mathbf{y}_k\| \leq \tau.$$

Unpreconditioned solves with MINRES

Inexact inverse
iteration and
tuned
preconditioning

Melina Freitag

Outline

Motivation

Inexact Inverse
Iteration

Convergence
rates -
independent of
inner solver

MINRES - inner
solves

Hermitian
problems and
preconditioning

Preconditioning
Tuning the
preconditioner

Numerical
Results

Perturbation
theory
Another
approach

Hermitian
generalised
eigenproblems

Convergence rates for solves with MINRES for simple eigenvalue

If A is positive definite and has a simple eigenvalue then

$$\|x^{(i)} - (A - \sigma I)y_k^{(i)}\|_2 \leq 2 \frac{|\lambda_1 - \lambda_n|}{|\lambda_1 - \sigma|} \left(\sqrt{\frac{\kappa_1 - 1}{\kappa_1 + 1}} \right)^{k-2} \|\mathcal{Q}x^{(i)}\|_2.$$

where \mathcal{Q} is the orthogonal projection onto $\text{span}\{x_2, \dots, x_n\}$ and κ_1 is the reduced condition number $\kappa_1 = \frac{\max_{i=2, \dots, n} |\lambda_i - \sigma|}{\min_{i=2, \dots, n} |\lambda_i - \sigma|}$.

Number of inner solves for each i for $\|x^{(i)} - (A - \sigma^{(i)} I)y^{(i)}\| \leq \tau^{(i)}$

$$k^{(i)} \geq 2 + \kappa_1 \left(\log 2|\lambda_1 - \lambda_n| + \log \frac{\|\mathcal{Q}x^{(i)}\|_2}{|\lambda_1 - \sigma| \tau^{(i)}} \right)$$

Unpreconditioned solves with MINRES

Inexact inverse
iteration and
tuned
preconditioning

Melina Freitag

Outline

Motivation

Inexact Inverse
Iteration

Convergence
rates -
independent of
inner solver

MINRES - inner
solves

Hermitian
problems and
preconditioning

Preconditioning
Tuning the
preconditioner

Numerical
Results

Perturbation
theory
Another
approach

Hermitian
generalised
eigenproblems

Convergence rates for solves with MINRES for simple eigenvalue

If A is positive definite and has a simple eigenvalue then

$$\|x^{(i)} - (A - \sigma I)y_k^{(i)}\|_2 \leq 2 \frac{|\lambda_1 - \lambda_n|}{|\lambda_1 - \sigma|} \left(\sqrt{\frac{\kappa_1 - 1}{\kappa_1 + 1}} \right)^{k-2} |\sin \theta^{(i)}|.$$

where \mathcal{Q} is the orthogonal projection onto $\text{span}\{x_2, \dots, x_n\}$ and κ_1 is the reduced condition number $\kappa_1 = \frac{\max_{i=2, \dots, n} |\lambda_i - \sigma|}{\min_{i=2, \dots, n} |\lambda_i - \sigma|}$.

Number of inner solves for each i for $\|x^{(i)} - (A - \sigma^{(i)} I)y^{(i)}\| \leq \tau^{(i)}$

$$k^{(i)} \geq 2 + \kappa_1 \left(\log 2|\lambda_1 - \lambda_n| + \log \frac{|\sin \theta^{(i)}|}{|\lambda_1 - \sigma| \tau^{(i)}} \right)$$

Outline

Inexact inverse
iteration and
tuned
preconditioning

Melina Freitag

Outline

Motivation

Inexact Inverse
Iteration

Convergence
rates -
independent of
inner solver

MINRES - inner
solves

Hermitian
problems and
preconditioning

Preconditioning
Tuning the
preconditioner

Numerical
Results

Perturbation
theory

Another
approach

Hermitian
generalised
eigenproblems

1 Motivation

2 Inexact Inverse Iteration

- Convergence rates - independent of inner solver
- MINRES - inner solves

3 Hermitian problems and preconditioning

- Preconditioning
- Tuning the preconditioner
- Numerical Results
- Perturbation theory
- Another approach

4 Hermitian generalised eigenproblems

Inexact inverse
iteration and
tuned
preconditioning

Melina Freitag

Outline

Motivation

Inexact Inverse
Iteration

Convergence
rates -
independent of
inner solver

MINRES - inner
solves

Hermitian
problems and
preconditioning

Preconditioning

Tuning the
preconditioner

Numerical
Results

Perturbation
theory

Another
approach

Hermitian
generalised
eigenproblems

Incomplete Cholesky preconditioning

$$A = LL^T + E$$

symmetric preconditioning of $(A - \sigma I)y^{(i)} = x^{(i)}$:

$$L^{-1}(A - \sigma I)L^{-T}\tilde{y}^{(i)} = L^{-1}x^{(i)}, \quad y^{(i)} = L^{-T}\tilde{y}^{(i)}$$

Remarks

■ changes number of inner iterations

$$k^{(i)} \geq 2 + \kappa_1 \left(\log 2|\lambda_1 - \lambda_n| + \log \frac{\|L^{-1}\|}{|\lambda_1 - \sigma|\tau^{(i)}} \right)$$

■ $k^{(i)}$ increases with i for $\tau^{(i)} = C\|r^{(i)}\|$.

Inexact inverse
iteration and
tuned
preconditioning

Melina Freitag

Outline

Motivation

Inexact Inverse
Iteration

Convergence
rates -
independent of
inner solver

MINRES - inner
solves

Hermitian
problems and
preconditioning

Preconditioning
Tuning the
preconditioner

Numerical
Results

Perturbation
theory

Another
approach

Hermitian
generalised
eigenproblems

Incomplete Cholesky preconditioning

$$A = LL^T + E$$

symmetric preconditioning of $(A - \sigma I)y^{(i)} = x^{(i)}$:

$$L^{-1}(A - \sigma I)L^{-T}\tilde{y}^{(i)} = L^{-1}x^{(i)}, \quad y^{(i)} = L^{-T}\tilde{y}^{(i)}$$

Remarks

1 changes number of inner iterations

$$k^{(i)} \geq 2 + \kappa_1 \left(\log 2|\lambda_1 - \lambda_n| + \log \frac{\|L^{-1}\|}{|\lambda_1 - \sigma| \tau^{(i)}} \right)$$

2 $k^{(i)}$ increases with i for $\tau^{(i)} = C\|r^{(i)}\|$.

Aims

1 modify $L \rightarrow \mathbb{L}$

$$\mathbb{L}^{-1}(A - \sigma I)\mathbb{L}^{-T}\tilde{y}^{(i)} = \mathbb{L}^{-1}x^{(i)}, \quad y^{(i)} = \mathbb{L}^{-T}\tilde{y}^{(i)}$$

2 minor extra computation cost for \mathbb{L}

3 "nice" right hand side $\mathbb{L}^{-1}x^{(i)}$ (same behaviour as
unpreconditioned solves, e.g. for fixed shifts $k^{(i)}$ does not
increase with i)

Inexact inverse
iteration and
tuned
preconditioning

Melina Freitag

Outline

Motivation

Inexact Inverse
Iteration

Convergence
rates -
independent of
inner solver

MINRES - inner
solves

Hermitian
problems and
preconditioning

Preconditioning
Tuning the
preconditioner

Numerical
Results

Perturbation
theory

Another
approach

Hermitian
generalised
eigenproblems

Aims

1 modify $L \rightarrow \mathbb{L}$

$$\mathbb{L}^{-1}(A - \sigma I)\mathbb{L}^{-T}\tilde{y}^{(i)} = \mathbb{L}^{-1}x^{(i)}, \quad y^{(i)} = \mathbb{L}^{-T}\tilde{y}^{(i)}$$

2 minor extra computation cost for \mathbb{L}

3 "nice" right hand side $\mathbb{L}^{-1}x^{(i)}$ (same behaviour as
unpreconditioned solves, e.g. for fixed shifts $k^{(i)}$ does not
increase with i)

Choice of \mathbb{L}

Inexact inverse
iteration and
tuned
preconditioning

Melina Freitag

Outline

Motivation

Inexact Inverse
Iteration

Convergence
rates -
independent of
inner solver

MINRES - inner
solves

Hermitian
problems and
preconditioning
Preconditioning

Tuning the
preconditioner

Numerical
Results

Perturbation
theory

Another
approach

Hermitian
generalised
eigenproblems

Condition

- MINRES theory indicates that $\mathbb{L}^{-1}x^{(i)}$ should be close to eigenvector of $\mathbb{L}^{-1}(A - \sigma I)\mathbb{L}^{-T}$
- Holds if

$$\mathbb{L}\mathbb{L}^T x^{(i)} = Ax^{(i)}$$

Justification of $\mathbb{L}\mathbb{L}^T x^{(i)} = Ax^{(i)}$

If $x^{(i)} = x_1$ then $\mathbb{L}\mathbb{L}^T x_1 = \lambda_1 x_1$

$$\mathbb{L}^{-1}(A - \sigma I)\mathbb{L}^{-T}\mathbb{L}^{-1}x_1 = \frac{\lambda_1 - \sigma}{\lambda_1}\mathbb{L}^{-1}x_1$$

$$\mathbb{L}^{-1}(A - \sigma I)\mathbb{L}^{-T}\mathbb{L}^{-1}x^{(i)} = \frac{\lambda_1 - \sigma}{\lambda_1}\mathbb{L}^{-1}x^{(i)} + C\|r^{(i)}\|$$

Choice of \mathbb{L}

Inexact inverse
iteration and
tuned
preconditioning

Melina Freitag

Outline

Motivation

Inexact Inverse
Iteration

Convergence
rates -
independent of
inner solver

MINRES - inner
solves

Hermitian
problems and
preconditioning
Preconditioning

Tuning the
preconditioner

Numerical
Results

Perturbation
theory

Another
approach

Hermitian
generalised
eigenproblems

Condition

- MINRES theory indicates that $\mathbb{L}^{-1}x^{(i)}$ should be close to eigenvector of $\mathbb{L}^{-1}(A - \sigma I)\mathbb{L}^{-T}$
- Holds if

$$\mathbb{L}\mathbb{L}^T x^{(i)} = Ax^{(i)}$$

Justification of $\mathbb{L}\mathbb{L}^T x^{(i)} = Ax^{(i)}$

If $x^{(i)} = x_1$ then $\mathbb{L}\mathbb{L}^T x_1 = \lambda_1 x_1$

$$\mathbb{L}^{-1}(A - \sigma I)\mathbb{L}^{-T}\mathbb{L}^{-1}x_1 = \frac{\lambda_1 - \sigma}{\lambda_1}\mathbb{L}^{-1}x_1$$

$$\mathbb{L}^{-1}(A - \sigma I)\mathbb{L}^{-T}\mathbb{L}^{-1}x^{(i)} = \frac{\lambda_1 - \sigma}{\lambda_1}\mathbb{L}^{-1}x^{(i)} + C\|r^{(i)}\|$$

How do we achieve $\mathbb{L}\mathbb{L}^T x^{(i)} = Ax^{(i)}$?

Inexact inverse
iteration and
tuned
preconditioning

Melina Freitag

Outline

Motivation

Inexact Inverse
Iteration

Convergence
rates -
independent of
inner solver
MINRES - inner
solves

Hermitian
problems and
preconditioning

Preconditioning
Tuning the
preconditioner

Numerical
Results

Perturbation
theory
Another
approach

Hermitian
generalised
eigenproblems

Theorem

Let $x^{(i)}$ current eigenvector approximation, $e^{(i)} = Ax^{(i)} - LL^T x^{(i)}$ (known) and \mathbb{L} chosen such that

$$\mathbb{L} = L + \alpha^{(i)} e^{(i)} (L^{-1} e^{(i)})^T$$

with $\alpha^{(i)}$ root of quadratic function we get $\mathbb{L}\mathbb{L}^T x^{(i)} = Ax^{(i)}$.

Implementation

Note: $\mathbb{L}\mathbb{L}^T = LL^T + \frac{1}{e^{(i)T} x^{(i)}} e^{(i)} e^{(i)T}$

■ \mathbb{L} is a rank-one update of L .

How do we achieve $\mathbb{L}\mathbb{L}^T x^{(i)} = Ax^{(i)}$?

Inexact inverse
iteration and
tuned
preconditioning

Melina Freitag

Outline

Motivation

Inexact Inverse
Iteration

Convergence
rates -
independent of
inner solver
MINRES - inner
solves

Hermitian
problems and
preconditioning

Preconditioning
Tuning the
preconditioner

Numerical
Results

Perturbation
theory

Another
approach

Hermitian
generalised
eigenproblems

Theorem

Let $x^{(i)}$ current eigenvector approximation, $e^{(i)} = Ax^{(i)} - LL^T x^{(i)}$ (known) and \mathbb{L} chosen such that

$$\mathbb{L} = L + \alpha^{(i)} e^{(i)} (L^{-1} e^{(i)})^T$$

with $\alpha^{(i)}$ root of quadratic function we get $\mathbb{L}\mathbb{L}^T x^{(i)} = Ax^{(i)}$.

Implementation

1 Note: $\mathbb{L}\mathbb{L}^T = LL^T + \frac{1}{e^{(i)T} x^{(i)}} e^{(i)} e^{(i)T}$

2 \mathbb{L} is a rank-one update of L .

Implementation

Inexact inverse
iteration and
tuned
preconditioning

Melina Freitag

Outline

Motivation

Inexact Inverse
Iteration

Convergence
rates -
independent of
inner solver
MINRES - inner
solves

Hermitian
problems and
preconditioning

Preconditioning
Tuning the
preconditioner

Numerical
Results

Perturbation
theory
Another
approach

Hermitian
generalised
eigenproblems

General positive definite preconditioner

For MINRES implementation only the evaluation of \mathbb{P}^{-1} is necessary

$$\mathbb{P} = P + \gamma^{(i)} e^{(i)} e^{(i)T}$$

Sherman-Morrison formula

$$\mathbb{P}^{-1} = P^{-1} - \frac{(z^{(i)} - x^{(i)})(z^{(i)} - x^{(i)})^T}{(z^{(i)} - x^{(i)})^T A x^{(i)}}$$

where $z^{(i)} = P^{-1} A x^{(i)}$.

Inexact inverse
iteration and
tuned
preconditioning

Melina Freitag

Outline

Motivation

Inexact Inverse
Iteration

Convergence
rates -
independent of
inner solver

MINRES - inner
solves

Hermitian
problems and
preconditioning

Preconditioning
Tuning the
preconditioner

Numerical
Results

Perturbation
theory

Another
approach

Hermitian
generalised
eigenproblems

The tuned preconditioner

- 1 outer convergence rate is retained
- 2 cheap inner solves are provided

$$k^{(i)} \geq C_1 + C_2 \log \left(\frac{|\sin \theta^{(i)}|}{|\lambda_1 - \sigma| \tau^{(i)}} \right)$$

- 3 only a single extra back substitution with $P = LL^T$ per outer iteration needed

Example

Inexact inverse
iteration and
tuned
preconditioning

Melina Freitag

Outline

Motivation

Inexact Inverse
Iteration

Convergence
rates -
independent of
inner solver

MINRES - inner
solves

Hermitian
problems and
preconditioning

Preconditioning
Tuning the
preconditioner

Numerical
Results

Perturbation
theory

Another
approach

Hermitian
generalised
eigenproblems

- SPD matrix from the Matrix Market library (nos5: 3 story building with attached tower)
- seek eigenvalue near fixed shift $\sigma = 100$
- $A \approx LL^T$, incomplete Cholesky factorisation (drop tol. = 0.1)
- compare standard and tuned preconditioner

Fixed shift solves

Inexact inverse
iteration and
tuned
preconditioning

Melina Freitag

Outline

Motivation

Inexact Inverse
Iteration

Convergence
rates -
independent of
inner solver

MINRES - inner
solves

Hermitian
problems and
preconditioning

Preconditioning
Tuning the
preconditioner

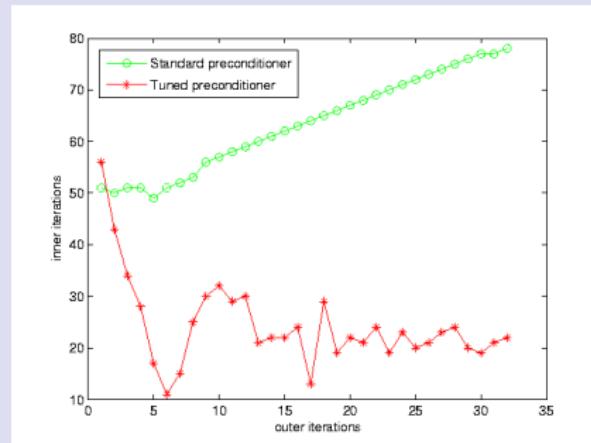
Numerical
Results

Perturbation
theory

Another
approach

Hermitian
generalised
eigenproblems

Preconditioning with standard incomplete Cholesky



- total number of inner iterations using standard preconditioner: 2026
- total number of inner iterations using tuned preconditioner: 779

Comparison of LL^T with $\mathbb{L}\mathbb{L}^T$

Inexact inverse
iteration and
tuned
preconditioning

Melina Freitag

Outline

Motivation

Inexact Inverse
Iteration

Convergence
rates -
independent of
inner solver

MINRES - inner
solves

Hermitian
problems and
preconditioning

Preconditioning
Tuning the
preconditioner

Numerical
Results

Perturbation
theory
Another
approach

Hermitian
generalised
eigenproblems

Spectral properties of preconditioned matrix

Let

$$L^{-1}(A - \sigma I)L^{-T}w = \mu w$$

$$\mathbb{L}^{-1}(A - \sigma I)\mathbb{L}^{-T}\hat{w} = \xi \hat{w}$$

Theorem

If $\sigma \notin \Lambda(A)$ then $\mu, \xi \neq 0$ and

$$\min_{\mu \in \Lambda(L^{-1}(A - \sigma I)L^{-T})} \left| \frac{\mu - \xi}{\xi} \right| \leq |\gamma v^* v|,$$

where $\gamma = 1/(e^T x)$ and $v = L^{-1}e$.

Comparison of LL^T with $\mathbb{L}\mathbb{L}^T$

Inexact inverse
iteration and
tuned
preconditioning

Melina Freitag

Outline

Motivation

Inexact Inverse
Iteration

Convergence
rates -
independent of
inner solver
MINRES - inner
solves

Hermitian
problems and
preconditioning

Preconditioning
Tuning the
preconditioner

Numerical
Results

Perturbation
theory

Another
approach

Hermitian
generalised
eigenproblems

Spectral properties of preconditioned matrix

Let

$$L^{-1}(A - \sigma I)L^{-T}w = \mu w$$

$$\mathbb{L}^{-1}(A - \sigma I)\mathbb{L}^{-T}\hat{w} = \xi \hat{w}$$

Interlacing property

Rewrite second equation

$$Dt = \xi(I + \gamma z z^T)t$$

where $L^{-1}(A - \sigma I)L^{-T} = QDQ^T$, $z = Q^T v$, $(I + \alpha v v^T)Qt = \hat{w}$.

Interlacing property

- If $\gamma > 0$ eigenvalues are moved towards the origin.
- If $\gamma < 0$ eigenvalues are moved away from the origin.

Comparison of LL^T with $\mathbb{L}\mathbb{L}^T$

Inexact inverse
iteration and
tuned
preconditioning

Melina Freitag

Outline

Motivation

Inexact Inverse
Iteration

Convergence
rates -
independent of
inner solver
MINRES - inner
solves

Hermitian
problems and
preconditioning

Preconditioning
Tuning the
preconditioner

Numerical
Results

Perturbation
theory

Another
approach

Hermitian
generalised
eigenproblems

Spectral properties of preconditioned matrix

Let

$$L^{-1}(A - \sigma I)L^{-T}w = \mu w$$

$$\mathbb{L}^{-1}(A - \sigma I)\mathbb{L}^{-T}\hat{w} = \xi \hat{w}$$

Interlacing property

Rewrite second equation

$$Dt = \xi(I + \gamma z z^T)t$$

where $L^{-1}(A - \sigma I)L^{-T} = QDQ^T$, $z = Q^T v$, $(I + \alpha v v^T)Qt = \hat{w}$.

Interlacing property

- If $\gamma > 0$ eigenvalues are moved towards the origin.
- If $\gamma < 0$ eigenvalues are moved away from the origin.

Inexact inverse
iteration and
tuned
preconditioning

Melina Freitag

Outline

Motivation

Inexact Inverse
Iteration

Convergence
rates -
independent of
inner solver

MINRES - inner
solves

Hermitian
problems and
preconditioning

Preconditioning
Tuning the
preconditioner

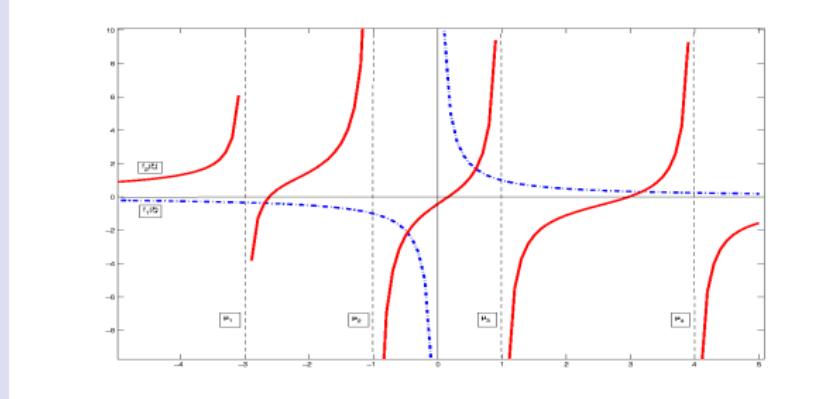
Numerical
Results

Perturbation
theory

Another
approach

Hermitian
generalised
eigenproblems

Interlacing property



- μ and ξ interlace each other depending on the sign of γ
- Clustering properties are preserved
- reduced condition number $\kappa_L^1 \leq \kappa_{\mathbb{L}}^1 \leq \kappa_L^1(1 + \gamma v^T v)$

Comparison of LL^T with $\mathbb{L}\mathbb{L}^T$

Inexact inverse
iteration and
tuned
preconditioning

Melina Freitag

Outline

Motivation

Inexact Inverse
Iteration

Convergence
rates -
independent of
inner solver

MINRES - inner
solves

Hermitian
problems and
preconditioning

Preconditioning
Tuning the
preconditioner

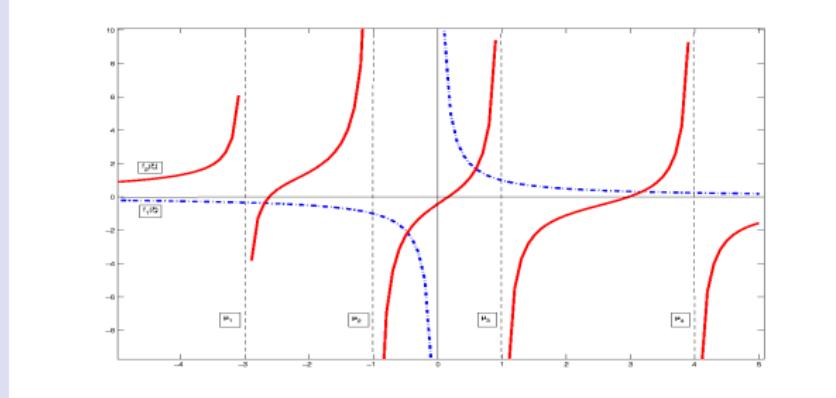
Numerical
Results

Perturbation
theory

Another
approach

Hermitian
generalised
eigenproblems

Interlacing property



- μ and ξ interlace each other depending on the sign of γ
- Clustering properties are preserved
- reduced condition number $\kappa_L^1 \leq \kappa_{\mathbb{L}}^1 \leq \kappa_L^1(1 + \gamma v^T v)$

Changing the right hand side

Inexact inverse
iteration and
tuned
preconditioning

Melina Freitag

Outline

Motivation

Inexact Inverse
Iteration

Convergence
rates -
independent of
inner solver

MINRES - inner
solves

Hermitian
problems and
preconditioning
Preconditioning

Tuning the
preconditioner

Numerical
Results

Perturbation
theory

Another
approach

Hermitian
generalised
eigenproblems

Approach by Simoncini/Eldén [3]

Instead of solving

$$\mathbb{L}^{-1}(A - \sigma^{(i)} I)\mathbb{L}^{-T}\tilde{y}^{(i)} = \mathbb{L}^{-1}x^{(i)}, \quad y^{(i)} = \mathbb{L}^{-T}\tilde{y}^{(i)}$$

change the right hand side

$$L^{-1}(A - \sigma^{(i)} I)L^{-T}\tilde{y}^{(i)} = L^T x^{(i)}, \quad y^{(i)} = L^{-T}\tilde{y}^{(i)}$$

Comparison

Inexact inverse
iteration and
tuned
preconditioning

Melina Freitag

Outline

Motivation

Inexact Inverse
Iteration

Convergence
rates -
independent of
inner solver

MINRES - inner
solves

Hermitian
problems and
preconditioning

Preconditioning
Tuning the
preconditioner

Numerical
Results

Perturbation
theory

Another
approach

Hermitian
generalised
eigenproblems

Tuned preconditioner and Simoncini & Eldén approach

Example `nos5.mtx` from Matrix Market. Solves to fixed tolerance $\tau = 0.01$. Rayleigh quotient shift. Quadratic convergence for both methods.

OUTER ITERATION	<i>Simoncini & Eldén</i>		<i>Tuned preconditioner</i>	
	DROP	TOLERANCES	0.25	0.1
1	67	62	29	26
2	74	66	56	55
3	85	75	71	67
4	63		18	
total	289	203	174	148

Outline

Inexact inverse
iteration and
tuned
preconditioning

Melina Freitag

Outline

Motivation

Inexact Inverse
Iteration

Convergence
rates -
independent of
inner solver

MINRES - inner
solves

Hermitian
problems and
preconditioning

Preconditioning
Tuning the
preconditioner

Numerical
Results

Perturbation
theory

Another
approach

Hermitian
generalised
eigenproblems

1 Motivation

2 Inexact Inverse Iteration

- Convergence rates - independent of inner solver
- MINRES - inner solves

3 Hermitian problems and preconditioning

- Preconditioning
- Tuning the preconditioner
- Numerical Results
- Perturbation theory
- Another approach

4 Hermitian generalised eigenproblems

Numerical example

Inexact inverse
iteration and
tuned
preconditioning

Melina Freitag

Outline

Motivation

Inexact Inverse
Iteration

Convergence
rates -
independent of
inner solver

MINRES - inner
solves

Hermitian
problems and
preconditioning

Preconditioning
Tuning the
preconditioner

Numerical
Results

Perturbation
theory

Another
approach

Hermitian
generalised
eigenproblems

$Ax = \lambda Mx$ with bcsstk08 (Structural engineering)

Figure: Fixed Shift

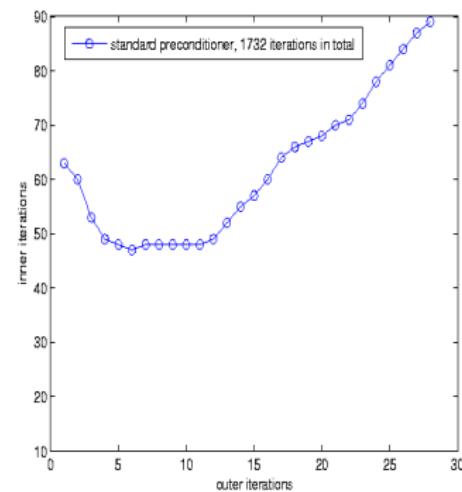
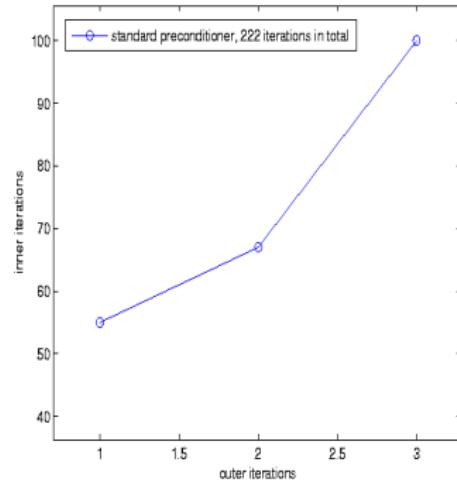


Figure: Rayleigh Quotient Shift



Numerical example for the generalised eigenproblem

Inexact inverse iteration and tuned preconditioning

Melina Freitag

Outline

Motivation

Inexact Inverse Iteration

Convergence rates - independent of inner solver

MINRES - inner solves

Hermitian problems and preconditioning

Preconditioning Tuning the preconditioner

Numerical Results

Perturbation theory

Another approach

Hermitian generalised eigenproblems

$Ax = \lambda Mx$ with bcsstk08 (Structural engineering)

Figure: Fixed Shift

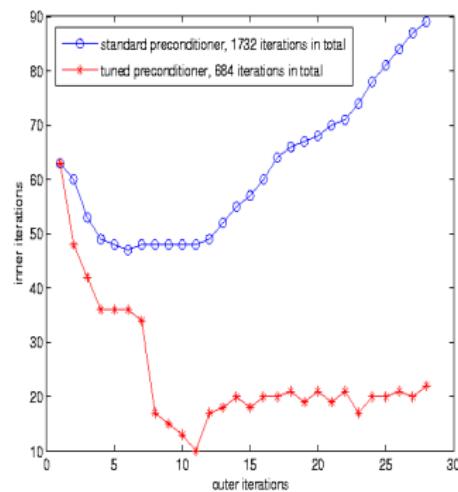
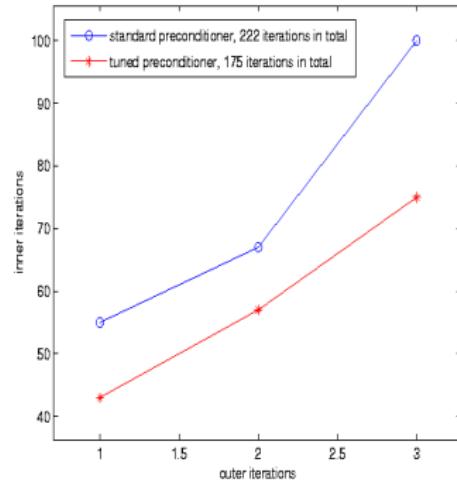


Figure: Rayleigh Quotient Shift



Inexact inverse
iteration and
tuned
preconditioning

Melina Freitag

Outline

Motivation

Inexact Inverse
Iteration

Convergence
rates -
independent of
inner solver
MINRES - inner
solves

Hermitian
problems and
preconditioning

Preconditioning
Tuning the
preconditioner

Numerical
Results

Perturbation
theory
Another
approach

Hermitian
generalised
eigenproblems

M. A. FREITAG AND A. SPENCE, *Convergence rates for inexact inverse iteration with application to preconditioned iterative solves*, 2006.

Submitted to BIT.

_____, *A tuned preconditioner for inexact inverse iteration applied to Hermitian eigenvalue problems*, 2006.

Submitted to IMA J. Numer. Anal.

V. SIMONCINI AND L. ELDÉN, *Inexact Rayleigh quotient-type methods for eigenvalue computations*, BIT, 42 (2002), pp. 159–182.