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Problem and Inverse Iteration

Find an eigenvalue and eigenvector of a Hermitian positive
definite A:

Ax = λx,

Inverse Iteration:
(A− σI)y = x

A large, sparse.

Inverse iteration with preconditioned iterative solves
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Inexact Inverse Iteration

for i = 1 to imax do
choose τ (i), σ(i)

solve
‖(A− σ(i)I)y(i) − x(i)‖ ≤ τ (i),

Rescale x(i+1) =
y(i)

‖y(i)‖
,

Update λ(i+1) = x(i+1)T
Ax(i+1),

possibly: update the shift σ(i)

Test: eigenvalue residual r(i+1) = (A− λ(i+1)I)x(i+1).
end for
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Error indicator

Error indicator (Orthogonal decomposition for symmetric A, Parlett)

x(i) = cos θ(i)x1 + sin θ(i)x
(i)
⊥ , x

(i)
⊥ ⊥ x1.

Eigenvalue residual

| sin θ(i)||λ2 − λ(i)|| ≤ ‖r(i)‖ ≤ | sin θ(i)||λn − λ1|
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Convergence rates of inexact inverse iteration

Decreasing tolerance τ (i) = C‖r(i)‖ = O(sin θ(i))

1 For decreasing tolerance τ (i) ≤ C‖r(i)‖ = O(sin θ(i)) the
inexact method recovers the rate of convergence achieved by
exact solves.

2 Fixed shift σ: linear convergence.

3 Rayleigh quotient shift σ(i) = ρ(x(i)) =
x(i)T

Ax(i)

x(i)T
x(i)

: cubic

convergence for A = A∗.

Fixed tolerance τ (i) = τ

1 Rayleigh quotient shift: quadratic convergence
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MINRES (A− σI)y = x when A is symmetric

Solving a linear system (A− σI)y = x

standard MINRES theory for y0 = 0:

‖x− (A− σI)yk‖ ≤ 2

(√
κ− 1
κ + 1

)k−1

‖x‖.

where κ is the condition number of A− σI.

Number of inner iterations:

k ≥ 1 + κ

{
log 2 + log

‖x‖
τ

}
then

‖x− (A− σI)yk‖ ≤ τ.
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Unpreconditioned solves with MINRES

Convergence rates for solves with MINRES for simple eigenvalue

If A is positive definite and has a simple eigenvalue then

‖x(i) − (A− σI)y(i)
k ‖2 ≤ 2

|λ1 − λn|
|λ1 − σ|

(√
κ1 − 1
κ1 + 1

)k−2

‖Qx(i)‖2.

where Q is the orthogonal projection onto span{x2, . . . , xn} and κ1

is the reduced condition number κ1 =
maxi=2,...,n |λi − σ|
mini=2,...,n |λi − σ|

.

Number of inner solves for each i for ‖x(i) − (A− σ(i)I)y(i)‖ ≤ τ (i)

k(i) ≥ 2 + κ1

(
log 2|λ1 − λn|+ log

‖Qx(i)‖2
|λ1 − σ|τ (i)

)
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Preconditioning

Incomplete Cholesky preconditioning

A = LLT + E

symmetric preconditioning of (A− σI)y(i) = x(i):

L−1(A− σI)L−T ỹ(i) = L−1x(i), y(i) = L−T ỹ(i)

Remarks

1 changes number of inner iterations

k(i) ≥ 2 + κ1

(
log 2|λ1 − λn|+ log

‖L−1‖
|λ1 − σ|τ (i)

)
2 k(i) increases with i for τ (i) = C‖r(i)‖.
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Derivation

Aims

1 modify L → L

L−1(A− σI)L−T ỹ(i) = L−1x(i), y(i) = L−T ỹ(i)

2 minor extra computation cost for L
3 ”nice” right hand side L−1x(i) (same behaviour as

unpreconditioned solves, e.g. for fixed shifts k(i) does not
increase with i)
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Choice of L

Condition

MINRES theory indicates that L−1x(i) should be close to
eigenvector of L−1(A− σI)L−T

Holds if
LLT x(i) = Ax(i)

Justification of LLT x(i) = Ax(i)

If x(i) = x1 then LLT x1 = λ1x1

L−1(A− σI)L−T L−1x1 =
λ1 − σ

λ1
L−1x1

L−1(A− σI)L−T L−1x(i) =
λ1 − σ

λ1
L−1x(i) + C‖r(i)‖
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How do we achieve LLTx(i) = Ax(i)?

Theorem

Let x(i) current eigenvector approximation, e(i) = Ax(i) − LLT x(i)

(known) and L chosen such that

L = L + α(i)e(i)(L−1e(i))T

with α(i) root of quadratic function we get LLT x(i) = Ax(i).

Implementation

1 Note: LLT = LLT +
1

e(i)T
x(i)

e(i)e(i)T

2 L is a rank-one update of L.
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Implementation

General positive definite preconditioner

For MINRES implementation only the evaluation of P−1 is necessary

P = P + γ(i)e(i)e(i)T

Sherman-Morrison formula

P−1 = P−1 − (z(i) − x(i))(z(i) − x(i))T

(z(i) − x(i))T Ax(i)

where z(i) = P−1Ax(i).
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Convergence rates

The tuned preconditioner

1 outer convergence rate is retained

2 cheap inner solves are provided

k(i) ≥ C1 + C2 log
(

| sin θ(i)|
|λ1 − σ|τ (i)

)
3 only a single extra back substitution with P = LLT per outer

iteration needed
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Example

SPD matrix from the Matrix Market library (nos5: 3 story
building with attached tower)

seek eigenvalue near fixed shift σ = 100
A ≈ LLT , incomplete Cholesky factorisation (drop tol. = 0.1)

compare standard and tuned preconditioner
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Fixed shift solves

Preconditioning with standard incomplete Cholesky

total number of inner iterations using standard preconditioner:
2026

total number of inner iterations using tuned preconditioner: 779
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Comparison of LLT with LLT

Spectral properties of preconditioned matrix

Let
L−1(A− σI)L−T w = µw

L−1(A− σI)L−T ŵ = ξŵ

Theorem

If σ /∈ Λ(A) then µ, ξ 6= 0 and

min
µ∈Λ(L−1(A−σI)L−T )

∣∣∣∣µ− ξ

ξ

∣∣∣∣ ≤ |γv∗v|,

where γ = 1/(eT x) and v = L−1e.
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Comparison of LLT with LLT

Spectral properties of preconditioned matrix

Let
L−1(A− σI)L−T w = µw

L−1(A− σI)L−T ŵ = ξŵ

Interlacing property

Rewrite second equation

Dt = ξ(I + γzzT )t

where L−1(A− σI)L−T = QDQT , z = QT v, (I + αvvT )Qt = ŵ.

Interlacing property

If γ > 0 eigenvalues are moved towards the origin.

If γ < 0 eigenvalues are moved away from the origin.
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Comparison of LLT with LLT

Interlacing property

µ and ξ interlace each other depending on the sign of γ

Clustering properties are preserved

reduced condition number κ1
L ≤ κ1

L ≤ κ1
L(1 + γvT v)
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Changing the right hand side

Approach by Simoncini/Eldén [3]

Instead of solving

L−1(A− σ(i)I)L−T ỹ(i) = L−1x(i), y(i) = L−T ỹ(i)

change the right hand side

L−1(A− σ(i)I)L−T ỹ(i) = LT x(i), y(i) = L−T ỹ(i)
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Comparison

Tuned preconditioner and Simoncini & Eldén approach

Example nos5.mtx from Matrix Market. Solves to fixed tolerance
τ = 0.01. Rayleigh quotient shift. Quadratic convergence for both
methods.

Simoncini & Eldén Tuned preconditioner
Drop Tolerances

Outer Iteration 0.25 0.1 0.25 0.1
1 67 62 29 26
2 74 66 56 55
3 85 75 71 67
4 63 18

total 289 203 174 148
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Numerical example
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