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What is Data Assimilation?

Loose definition

Estimation and prediction (analysis) of an unknown, true state by
combining observations and system dynamics (model output).
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What is Data Assimilation?

Loose definition

Estimation and prediction (analysis) of an unknown, true state by
combining observations and system dynamics (model output).

Some examples

m Navigation
m Medical imaging

m Numerical weather prediction




Data Assimilation in NWP

Estimate the state of the atmosphere x;.

Observations y

Satellites
Ships and buoys

m Surface stations

Aeroplanes
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m a model how the atmosphere
evolves in time (imperfect)

Xi+1 = M(x;)
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Data Assimilation in NWP

Estimate the state of the atmosphere x;.

. . Observations
A priori information x” y

Satellites
Ships and buoys

m background state (usual
previous forecast)

m Surface stations

Modlkelk Aeroplanes
m a model how the atmosphere

evolves in time (imperfect) Assimilation algorithms

Xit1 = M(x;) m used to find an (approximate)
state of the atmosphere x; at
m a function linking model space times 4 (usually ¢ = 0)
and observation space m using this state a forecast for
(imperfect) future states of the atmosphere
can be obtained
yi = H(xi)

m x: Analysis (estimation of the
true state after the DA) ATH



Schematics of DA

State x

time

Figure: Background state xB
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Schematics of DA

State x

time

Figure: Observations y
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Schematics of DA

State x

time

Figure: Analysis x* (consistent with observations and model dynamics)
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Data Assimilation in NWP

Underdeterminacy

m Size of the state vector x: 432 x 320 x 50 x 7 = O(107)
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Data Assimilation in NWP

Underdeterminacy

m Size of the state vector x: 432 x 320 x 50 x 7 = O(107)
m Number of observations (size of y): O(10° — 10°)
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Data Assimilation in NWP

Underdeterminacy

m Size of the state vector x: 432 x 320 x 50 x 7 = O(107)
m Number of observations (size of y): O(10° — 10°)

m Operator H (nonlinear!) maps from state space into observations
space: y = H(x)
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Any easy scheme

Cressman analysis

A

X

Figure:

Copyright: ECMWEF

space

At each time step ¢

AR — B () 2t LR () = x(D)
A ST
R? — d?
w(lk) = max (0, Wd%’;)

dir measures the distance between points
[ and k.
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Outline

Variational Data Assimilation
m Least square estimation
m Examples
m Kalman Filter
m Problems and Issues

R UNIVERSITY OF
7y

) BA




Data Assimilation in NWP

Estimate the state of the atmosphere x;.

Observations y has errors!

. . B
Apriori information x

Satellites

m background state (usual Ships and buoys

previous forecast) has errors!

m Surface stations

m Airplanes
Models

m a model how the atmosphere Assimilation algorithms

evolves in time (imperfect)
m used to find an (approximate)

Xi+1 = M(x;) + error state of the atmosphere x; at

s times 4 (usually ¢ = 0)
m a function linking model space

and observation space
(imperfect)

m using this state a forecast for
future states of the atmosphere
can be obtained

yi = H(x:) + error m x“': Analysis (estimation of the

true state after the DA)
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Error variables

Modelling the errors

m background error eZ = x? — x™" of average 2 and covariance

B =(cB —2P)(c? —28)T
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Error variables

Modelling the errors

m background error eZ = x? — x™" of average 2 and covariance

B =(cB —2P)(c? —28)T

m observation error €€ =y — H(x™"*") of average ° and covariance

R = (e0 —9)(c0 — 20)7
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Error variables

Modelling the errors

m background error eZ = x? — x™" of average 2 and covariance

B =(cB —2P)(c? —28)T

m observation error €€ =y — H(x™"*") of average ° and covariance

R = (e0 —9)(c0 — 20)7

. Trutt = .
m analysis error e = x* — xT* of average * and covariance

A=(cA—eN) (A —eNT

m measure of the analysis error that we want to minimise
tr(A) = [e4 — 4|
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Assumptions

Linearised observation operator: H(x) — H(x?) = H(x — x7)
Nontrivial errors: B, R are positive definite
Unbiased errors: xB — xTruth — y — [ (xTruth) = (

Uncorrelated errors: (xB — xTruth)(y — f (xTruth))T —
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Optimal least-squares estimater

Cost function

Solution of the variational optimisation problem x“ = arg minJ(x) where
Jx) = (x—x")"B(x-x")+(y - Hx)"R™(y - H(x))

JB(x) + Jo(x)
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Optimal least-squares estimater

Cost function

Solution of the variational optimisation problem x“ = arg minJ(x) where
Jx) = (x—x")"B(x-x")+(y - Hx)"R™(y - H(x))

JB(x) + Jo(x)

Interpolation equations

x* = x® + K(y — H(x")), where

K=BH (HBH” +R)"' K...gain matrix
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Conditional probabilities

Non-Gaussian PDF’s (probability density function)

m P(x) is a priori PDF (background)
m P(y|x) is the observation PDF (likelihood of the observations given
background x)
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Conditional probabilities

Non-Gaussian PDF’s (probability density function)

m P(x) is a priori PDF (background)

m P(y|x) is the observation PDF (likelihood of the observations given
background x)

m P(x|y) conditional probability of the model state given the
observations, Bayes theorem:

Ply[x)P(x)

arg, max P(x|y) = arg, max
(xly) Ply)
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Conditional probabilities

Non-Gaussian PDF’s (probability density function)

m P(x) is a priori PDF (background)
m P(y|x) is the observation PDF (likelihood of the observations given
background x)

m P(x|y) conditional probability of the model state given the
observations, Bayes theorem:

Ply[x)P(x)
arg, max P(x|y) = arg, max —=—*———*
(xly) Ply)
Gaussian PDE’s
B\Tp—1 B
P(xly) = ciexp (—(x—x B N (x—x )) .

erexp (—(y — H(x)) "R} (y — H(x)))
x? is the maximum a posteriori estimator of x ™", Maximising P(x|y) ATH

equivalent to minimisine .J(x)



A simple scalar illustration

Room temperature

m T° observation with standard deviation oo

m 7B background with standard deviation op




A simple scalar illustration

Room temperature

T observation with standard deviation oo

=
m 7B background with standard deviation op
m 74 = T8 4+ k(T° — T®) with error variance ¢ = (1 — k)?0% + k%03
m optimal £ which minimises error variance
__ 9
0% + 0}
m equivalent to minimising
(T -T%)* (T -T°)?
J(T) = 5 + 5
9B 90
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Optimal interpolation

Optimal interpolation

Computation of
x* =x% + K(y — H(x?))

K=BH"(HBH" +R)"' K...gain matrix
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Optimal interpolation

Optimal interpolation

Computation of
x* =x% + K(y — H(x?))

K=BH"(HBH" +R)"' K...gain matrix

m expensive!




Three-dimensional variational assimilation (3D-Var)

3D-Var
Minimisation of

Jx) = (x—x")"B7'(x—x")+(y-HEx)"R ' (y - H(x))
JB(x) + Jo(x)
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Three-dimensional variational assimilation (3D-Var)

3D-Var

Minimisation of
Jx) = (x—x")"B7'(x—x")+(y-HEx)"R ' (y - H(x))
= Jp(x) + Jo(x)

m avoids computation of K by using a descent algorithm s
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Four-dimensional variational assimilation (4D-Var)

Minimise the cost function

n

J(x0) = (%0 —x0) "B~ (x0 —x5) + Y _(yi — Hi(x:)) "R (s — Hi(xs))

1=0

subject to model dynamics x; = Mo—;Xo
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Four-dimensional variational assimilation (4D-Var)

Minimise the cost function

n

J(x0) = (x0 — x5 ) B (x0 — x5 ) + Z(yz' — Hi(x:)) "Ry (yi — Hi(x:))

subject to model dynamics x; = Mo—;Xo

X
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- e
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4D-Var analysis

Model dynamics

Strong constraint: model states x; are subject to
x; = Mo—ixo

nonlinear constraint optimisation problem (hard!)
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4D-Var analysis

Model dynamics

Strong constraint: model states x; are subject to
x; = Mo—:iXo
nonlinear constraint optimisation problem (hard!)
Simplifications
m Causality (forecast expressed as product of intermediate forecast steps)
Xi = M; i1 M;i—1,—2... Mio0Xo
m Tangent linear hypothesis (H and M can be linearised)
yi—Hi(xi) = yi— Hi(Mo—ixo) = yi— H;(Mo—ix§ ) —H;Mo_; (x0 — x5 )
M is the tangent linear model.

IVERSITY OF
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4D-Var analysis

Model dynamics

Strong constraint: model states x; are subject to
x; = Mo—:iXo

nonlinear constraint optimisation problem (hard!)

Simplifications
m Causality (forecast expressed as product of intermediate forecast steps)
Xi = M; i1 M;i—1,—2... Mio0Xo
m Tangent linear hypothesis (H and M can be linearised)
yi—Hi(xi) = yi— Hi(Mo—ixo) = yi— H;(Mo—ix§ ) —H;Mo_; (x0 — x5 )

M is the tangent linear model.

m unconstrained quadratic optimisation problem (easier).
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Minimisation of the 4D-Var cost function

Efficient implementation of J and VJ:

m forecast state x; = M; ;-1 M;—1,—2 ... Mi,0Xo
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Minimisation of the 4D-Var cost function

Efficient implementation of J and VJ:
m forecast state x; = M; ;-1 M;—1,—2 ... Mi,0Xo
m normalised departures d; = Ri_l(yi — H;(x3))
m cost function Jo; = (yi — H,,-(xi))Td,,-
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Minimisation of the 4D-Var cost function

Efficient implementation of J and VJ:

forecast state x; = M; ;—1M;—1,i—2 ... Mi oXo
normalised departures d; = Ri_l(yi — H;(x3))
cost function Jo; = (yi — H,,-(xi))Td,,-

VJ is calculated by

1 il =
—5Vio = —§§VJOZ~

n
z : T T T
== Ml,O coao Mi,i*lHi dl
=0

= Hido+ M]o[H{di +Ms:[Hids +...+ M}, _Hd,]...]
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Minimisation of the 4D-Var cost function

Efficient implementation of J and VJ:
m forecast state x; = M; ;-1 M;—1,—2 ... Mi,0Xo
m normalised departures d; = Ri_l(yi — H;(x3))
m cost function Jo; = (yi — H,,-(xi))Td,,-
m VJ is calculated by

1 il =
—5Vio = —§§VJOZ~

n
z : T T T
== Ml,O coao Mi,i*lHi dl
=0

= Hido+ M]o[H{di +Ms:[Hids +...+ M}, _Hd,]...]

m initialise adjoint variable X, = 0 and then X;_1 = Mzi,l(ii + HZTdZ)
etc., ... X0 = *%VJ()
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Minimisation of the 4D-Var cost function

Efficient implementation of J and VJ:
m forecast state x; = M; ;-1 M;—1,—2 ... Mi,0Xo
m normalised departures d; = Ri_l(yi — H;(x3))
m cost function Jo; = (yi — H,,-(xi))Td,,-
m VJ is calculated by

1 il =
—5VJo —§§VJOZ~

n
z : T T T
MI,O e Mi,i*lHi dl
=0

H{do + M7 [Hidi + Mo [Hsdo + ...+ M, H d,].. ]
m initialise adjoint variable X, = 0 and then X;_1 = Mzi,l(ii + HZTdZ)
etc., ... X0 = *%VJ()
Further simplifications

m preconditioning with B = LL” (transform into control variable space)
so that x = L™ 'x

m Incremental 4D-Var
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Example - Three-Body Problem

Motion of three bodies in a plane, two position (q) and two momentum (p)
coordinates for each body a =1, 2,3
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Example - Three-Body Problem

Motion of three bodies in a plane, two position (q) and two momentum (p)
coordinates for each body a = 1, 2,3

(/f\( \) -
( M
4 - 3
N\ /\
K\;( Y
J
A

Equations of motion

Hap) = §o 3y e

«<B lge — agl
dqo. _  OH
dt ~ Opa
dpa OH

o oa R



Example - Three-Body problem

m solver: partitioned Runge-Kutta scheme with time step A = 0.001
m observations are taken as noise from the truth trajectory

m background is given from a previous forecast

W UNIVERSITY OF
7y

) BA




Example - Three-Body problem

solver: partitioned Runge-Kutta scheme with time step h = 0.001
observations are taken as noise from the truth trajectory
background is given from a previous forecast

assimilation window is taken 300 time steps

minimisation of cost function J using a Gauss-Newton method
(neglecting all second derivatives)

VJ(X()) =0
VVJ(x))Ax) = =V J(x)), x)*'=x)+ Ax)

subsequent forecast is take 3000 time steps

R is diagonal with variances between 102 and 10~°
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Changing the masses of the bodies

DA needs Model error!

ms=10 — ms=1.1
my =01 — my=0.11
mm =0.01 — m,, =0.011

g
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Changing the masses of the bodies

DA needs Model error!

ms=10 — ms=1.1
my =01 — my=0.11
mm =0.01 — m,, =0.011
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Changing the masses of the bodies
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Changing the masses of the bodies

25 T T T T T T
before assimilation
after assimilation
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e
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Time step
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Changing the masses of the bodies
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RMS error
i
o
T

-
T

- L L L L
0 500 1000 1500 2000 2500 3000 3500
Time step




Changing the masses of the bodies

25 T T T T
before asswmwlatlon

RMS error
i
o
T

-
T

f . . .
1500 2000 2500 3000 3500
Time step




Changing the masses of the bodies
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Root mean square error over whole assimilation window

sun position planet position
0.1 1
0.05 0.5
0 0
1 2 3 4 2 3 4
moon position sun momentum
2 0.2
1 0.1
05— 0
1 2 3 4 2 3 4
planet momentum moon momentum
0.4 0.2
0.2 0.1
o 0 S ——
1 2 3 4 2 3 4




Changing numerical method

m Truth trajectory: 4th order Runge-Kutta method with local truncation
error O(At®)

m Model trajectory: Explicit Euler method with local truncation error
O(A?)
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Changing numerical method
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Changing numerical method
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Changing numerical method
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Changing numerical method
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Root mean square error over whole assimilation window

sun position planet position
0.02 0.2
0o01f 7 T~ 4 o1
0 0
1 2 3 4 1 2 3 4
moon position sun momentum
1 0.02
05 oo1f - T
[JSSS e 0 =
1 2 3 4 1 2 3 4
planet momentum moon momentum
0.1 0.1
0.05 0.05
0 — 0 )




Less observations - observations in sun only

sun position planet position
0.1 20
0.05 10
0 0 F———
1 2 3 4 2 3 4
moon position sun momentum
1000 1
500 0.5
0
1 2 3 4 2 3 4
planet momentum moon momentum
10
< 5
] 0
1 2 3 4 2 3 4




Less observations - observations in planet only

sun position planet position
200 4
100 2
o —
1 2 3 4 5 5
moon position
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Less observations - observations in moon only
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Less observations - observations in sun and planet only

sun position planet position
0.1 2
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moon position sun momentum
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Less observations - observations in sun and moon only
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Less observations - observations in planet and moon only
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moon position sun momentum
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The Kalman Filter Algorithm

m Sequential data assimilation, background is provided by the forecast
that starts from the previous analysis

m covariance matrices BY, B4

m forecast/model error x;T3™ = M1 ;x; "™ + 1; where 7; ~ N(0, Q;),
assumed to be uncorrelated to analysis error of previous forecast
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The Kalman Filter Algorithm

m Sequential data assimilation, background is provided by the forecast
that starts from the previous analysis

m covariance matrices BY, B4

m forecast/model error x;T3™ = M1 ;x; "™ + 1; where 7; ~ N(0, Q;),
assumed to be uncorrelated to analysis error of previous forecast

State and error covariance forecast

F A
State forecast x;1; = Miy1,:X;

: F A o T
Error covariance forecast Bii; = M;r1:Bi M, +Q:
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The Kalman Filter Algorithm

m Sequential data assimilation, background is provided by the forecast
that starts from the previous analysis

m covariance matrices BY, B4

m forecast/model error xg}r‘ith = MHMX;H”“‘ + n; where n; ~ N (0,Q;),
assumed to be uncorrelated to analysis error of previous forecast

State and error covariance forecast

State forecast xi,; = M,y 1%
AT
M;1,:B; M ,; + Qi

. F
Error covariance forecast Bj;
State and error covariance analysis

Kalman gain K; = BIH;H;B H! +R,)’
x{ +Ki(y; — Hix{)

Error covariance of analysis Bf = (I- KIHI)BZF
ATH

State analysis xi



The Kalman Filter Algorithm

Extended Kalman Filter

Extension of the Kalman Filter Algorithm to nonlinear observation
operators H and nonlinear model dynamics M, where both H and M are
linearised.
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The Kalman Filter Algorithm

Extended Kalman Filter

Extension of the Kalman Filter Algorithm to nonlinear observation
operators H and nonlinear model dynamics M, where both H and M are
linearised.

Equivalence 4D-Var Kalman Filter

Assume
m Q; =0, Vi (no model error)
m both 4D-Var and the Kalman filter use the same initial input data
m H and M are linear,

then 4D-Var and the Kalman Filter produce the same state estimate x4 at
the end of the assimilation window.

g, uivensiy or
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RMS error over whole assimilation window - using 4D-Var

sun position planet position
0.1 1
0.05 0.5
0 0
1 2 3 4 2 3 4
moon position sun momentum
2 0.2
1 0.1
05— 0
1 2 3 4 2 3 4
planet momentum moon momentum
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0.2 0.1
o 0 S ——
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RMS error over whole assimilation window - using Kalman Filter

sun position planet position
0.1 1
0.05; - 0.5
0 0 -
1 2 3 4 5 1 2 3 4 5
moon position sun momentum
2 0.2
1 0.1
=, 0
1 2 3 4 5 1 2 3 4 5
planet momentum moon momentum
0.4 0.2
0.2 0.1
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Example - Three-Body Problem

solver: partitioned Runge-Kutta scheme with time step h = 0.001
observations are taken as noise from the truth trajectory
background is given from a perturbed initial condition
assimilation window is taken 300 time steps

minimisation of cost function J using a Gauss-Newton method
(neglecting all second derivatives)

application of 4D-Var
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Example - Three-Body Problem

solver: partitioned Runge-Kutta scheme with time step h = 0.001
observations are taken as noise from the truth trajectory
background is given from a perturbed initial condition
assimilation window is taken 300 time steps

minimisation of cost function J using a Gauss-Newton method
(neglecting all second derivatives)

application of 4D-Var
Compare using B = I with using a flow-dependent matrix B which was

generated by a Kalman Filter before the assimilation starts (see G.
Inverarity (2007))
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Example - Three-Body Problem

before assimilation|
after assimilation

0.08

0.06

0.04 /
002/

RMS error

24 25 26 2.7 28 29
Time step

Figure: 4D-Var with B =1
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cample - Three-Body Problem

0.025

0.08 0.02
s s
5 5
& 0.06 & 0015
= =
z z
0.01

0.04 /
0.005

2.7
Time step X 10

2.7 28 29 3
Time step X 10

Figure: 4D-Var with B =1 Figure: 4D-Var with B = P4
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Problems with Data Assimilation

m DA is computational very expensive, one cycle is much more expensive
than the actual forecast
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Problems with Data Assimilation

m DA is computational very expensive, one cycle is much more expensive
than the actual forecast
m estimation and storage of the B-matrix is hard

m in operational DA B is about 107 x 107

m B should be flow-dependent but in practice often static

m B needs to be modeled and diagonalised since B~! too expensive to
compute (”control variable transform”)
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Problems with Data Assimilation

m DA is computational very expensive, one cycle is much more expensive
than the actual forecast
m estimation and storage of the B-matrix is hard
m in operational DA B is about 107 x 107
m B should be flow-dependent but in practice often static
m B needs to be modeled and diagonalised since B~! too expensive to
compute (”control variable transform”)
m many assumptions are not valid

m errors non-Gaussian, data have biases
m forward model operator M is not exact and also non-linear and system
dynamics are chaotic

m minimisation of the cost function needs close initial guess, small
assimilation window
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Problems with Data Assimilation

m DA is computational very expensive, one cycle is much more expensive
than the actual forecast
m estimation and storage of the B-matrix is hard
m in operational DA B is about 107 x 107
m B should be flow-dependent but in practice often static
m B needs to be modeled and diagonalised since B~! too expensive to
compute (”control variable transform”)
m many assumptions are not valid
m errors non-Gaussian, data have biases
m forward model operator M is not exact and also non-linear and system
dynamics are chaotic
m minimisation of the cost function needs close initial guess, small
assimilation window

m model error not included

ABY/p UNIVERSITY OF
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Outline

Tikhonov regularisation
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Relation between 4D-Var and Tikhonov regularisation

4D-Var minimises

n

J(x0) = (xo —x¢ ) "B (x0 — x5 ) + Y _(yi — Hi(x:)) R (i — Hi(x:))

1=0

subject to model dynamics x; = Mo—iXo




Relation between 4D-Var and Tikhonov regularisation

4D-Var minimises

n

J(x0) = (xo —x¢ ) "B (x0 — x5 ) + Y _(yi — Hi(x:)) R (i — Hi(x:))

1=0

subject to model dynamics x; = Mo—iXo

or

J(x0) = (x0 —x¢) "B~ (x0 — x5 ) + (¥ — F(x0)) "R~ (¥ — H(x0))

where a
H = [Hg , (HiM(t1,%0))", .. . (HuM (ta, t0))"]"

. T T
Yy = [YOa"'7yn]
and R is block diagonal with R; on diagonal.




Relation between 4D-Var and Tikhonov regularisation

Solution to the optimisation problem

J(x0) = (xo —x5) "B~ (x0 — x¢') + (¥ — H(x0)) "R™" (¥ — H(x0))
is given by

xo=xp + B'+H'R'H)'H'R'd, d=Hx{ -7y)
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Relation between 4D-Var and Tikhonov regularisation

Solution to the optimisation problem

<>
m>
)
N
=
’*
g
»
N

J(x0) = (x0 — X?)TBil(Xo — xf?) +(
is given by
xo=xp + B'+H'R'H)'H'R'd, d=Hx{ -7y)

Singular value decomposition

Assume B = o1 and R = 051 and define the SVD of the observability
matrix H n
H=UAV"

Then the optimal analysis can be written as

A2 ufa
XO_XO—’_ZM _|_)\2 V-7

.7

o
where p? = —g. &_I
(o=
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Solution to the optimisation problem

J(x0) = (x0 —x¢) "B~ (x0 — x5 ) + (¥ — H(x0)) "R~ (¥ — H(x0))
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Relation between 4D-Var and Tikhonov regularisation

Solution to the optimisation problem

J(x0) = (x0 — %) "B (x0 — x5) + (¥ — F(x0)) "R~ (¥ — H(x0))

Variable transformations
B =03F3 and R= 05F g and
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Relation between 4D-Var and Tikhonov regularisation

Solution to the optimisation problem

J(x0) = (x0 — %) "B (x0 — x5) + (¥ — F(x0)) "R~ (¥ — H(x0))

Variable transformations
B = 03F5 and R = 03 Fg and define new variable z := F;/Q(xo —x3)
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Relation between 4D-Var and Tikhonov regularisation

Solution to the optimisation problem
J(x0) = (x0 —x5) "B~ (x0 —x3) + (§ — H(x0)) "R™! (§ — H(x0))

Variable transformations
B = 03F5 and R = 03 Fg and define new variable z := F;/Q(xo —x3)
J(@) = 1|zl + |IFR/*d - F'/*HF 5" *2|3

12 can be interpreted as a regularisation parameter.
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Relation between 4D-Var and Tikhonov regularisation

Solution to the optimisation problem
J(x0) = (x0 —x5) "B~ (x0 —x3) + (§ — H(x0)) "R™! (§ — H(x0))

Variable transformations
B = 03F5 and R = 03 Fg and define new variable z := F;/Q(xo —x3)

J(z) = 1i°|lzlf3 + |FR"/%d - F'/?HF ;%23

12 can be interpreted as a regularisation parameter.
This is the well-known Tikhonov regularisation!
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Met Office research and plans

m include several time scales (to model the atmosphere)
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m improve the representation of multiscale behaviour in the
atmosphere in existing DA methods

m improve the forecast of small scale features (like convective storms)
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Met Office research and plans

m include several time scales (to model the atmosphere)

m improve the representation of multiscale behaviour in the
atmosphere in existing DA methods

m improve the forecast of small scale features (like convective storms)

m compare assimilation algorithms and optimisation strategies to reduce
existing errors

m use regularisation methods from image processing, for example
L1 regularisation to improve forecasts
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Met Office research and plans

m include several time scales (to model the atmosphere)

m improve the representation of multiscale behaviour in the
atmosphere in existing DA methods

m improve the forecast of small scale features (like convective storms)

m compare assimilation algorithms and optimisation strategies to reduce
existing errors

m use regularisation methods from image processing, for example
L1 regularisation to improve forecasts

m identify and analyse model error and analyse influence of this model
error onto the DA scheme

/p UNIVERSITY OF
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