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Some examples

Navigation

Medical imaging

Numerical weather prediction
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Estimate the state of the atmosphere xi.

A priori information xB

background state (usual
previous forecast)

Models

a model how the atmosphere
evolves in time (imperfect)

xi+1 = M(xi)

a function linking model space
and observation space
(imperfect)

yi = H(xi)

Observations y

Satellites

Ships and buoys

Surface stations

Aeroplanes

Assimilation algorithms

used to find an (approximate)
state of the atmosphere xi at
times i (usually i = 0)

using this state a forecast for
future states of the atmosphere
can be obtained

xA: Analysis (estimation of the
true state after the DA)



Schematics of DA

Figure: Background state xB
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Figure: Observations y



Schematics of DA

Figure: Analysis xA (consistent with observations and model dynamics)
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Data Assimilation in NWP

Underdeterminacy

Size of the state vector x: 432 × 320 × 50 × 7 = O(107)

Number of observations (size of y): O(105 − 106)

Operator H (nonlinear!) maps from state space into observations
space: y = H(x)



Any easy scheme

Cressman analysis

Figure: Copyright:ECMWF

At each time step i

x
A(k) = x

B(k)+

Pn
l=1

w(lk)(y(l) − xB(l))
Pn

l=1
w(lk)

w(lk) = max

„

0,
R2 − d2

lk

R2 + d2
lk

«

dlk measures the distance between points
l and k.
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Data Assimilation in NWP

Estimate the state of the atmosphere xi.

Apriori information xB

background state (usual
previous forecast) has errors!

Models

a model how the atmosphere
evolves in time (imperfect)

xi+1 = M(xi) + error

a function linking model space
and observation space
(imperfect)

yi = H(xi) + error

Observations y has errors!

Satellites

Ships and buoys

Surface stations

Airplanes

Assimilation algorithms

used to find an (approximate)
state of the atmosphere xi at
times i (usually i = 0)

using this state a forecast for
future states of the atmosphere
can be obtained

xA: Analysis (estimation of the
true state after the DA)
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Error variables

Modelling the errors

background error εB = xB − xTruth of average εB and covariance

B = (εB − εB)(εB − εB)T

observation error εO = y − H(xTruth) of average εO and covariance

R = (εO − εO)(εO − εO)T

analysis error εA = xA − xTruth of average εA and covariance

A = (εA − εA)(εA − εA)T

measure of the analysis error that we want to minimise

tr(A) = ‖εA − εA‖2



Assumptions

Linearised observation operator: H(x) − H(xB) = H(x− xB)

Nontrivial errors: B, R are positive definite

Unbiased errors: xB − xTruth = y − H(xTruth) = 0

Uncorrelated errors: (xB − xTruth)(y − H(xTruth))T = 0



Optimal least-squares estimater

Cost function

Solution of the variational optimisation problem xA = arg minJ(x) where

J(x) = (x − x
B)T

B
−1(x− x

B) + (y − H(x))T
R

−1(y − H(x))

= JB(x) + JO(x)



Optimal least-squares estimater

Cost function

Solution of the variational optimisation problem xA = arg minJ(x) where

J(x) = (x − x
B)T

B
−1(x− x

B) + (y − H(x))T
R

−1(y − H(x))

= JB(x) + JO(x)

Interpolation equations

x
A = x

B + K(y − H(xB)), where

K = BH
T (HBH

T + R)−1
K . . . gain matrix
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Conditional probabilities

Non-Gaussian PDF’s (probability density function)

P (x) is a priori PDF (background)

P (y|x) is the observation PDF (likelihood of the observations given
background x)

P (x|y) conditional probability of the model state given the
observations, Bayes theorem:

argx max P (x|y) = argx max
P (y|x)P (x)

P (y)

Gaussian PDF’s

P (x|y) = c1 exp
“

−(x− x
B)T

B
−1(x − x

B)
”

·

c2 exp
“

−(y − H(x))T
R

−1(y − H(x))
”

xA is the maximum a posteriori estimator of xTruth. Maximising P (x|y)
equivalent to minimising J(x)
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T B background with standard deviation σB



A simple scalar illustration

Room temperature

T O observation with standard deviation σO

T B background with standard deviation σB

T A = T B + k(T O − T B) with error variance σ2
A = (1 − k)2σ2

B + k2σ2
O

optimal k which minimises error variance

k =
σ2

B

σ2
B + σ2

O

equivalent to minimising

J(T ) =
(T − T B)2

σ2
B

+
(T − T O)2

σ2
O

and then
1

σ2
A

=
1

σ2
B

+
1

σ2
O
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Optimal interpolation

Optimal interpolation

Computation of
x

A = x
B + K(y − H(xB))

K = BH
T (HBH

T + R)−1
K . . . gain matrix

expensive!
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Three-dimensional variational assimilation (3D-Var)

3D-Var

Minimisation of

J(x) = (x − x
B)T

B
−1(x− x

B) + (y − H(x))T
R

−1(y − H(x))

= JB(x) + JO(x)

avoids computation of K by using a descent algorithm s



Four-dimensional variational assimilation (4D-Var)

Minimise the cost function

J(x0) = (x0 − x
B
0 )T

B
−1(x0 − x

B
0 ) +

n
X

i=0

(yi − Hi(xi))
T
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−1
i (yi − Hi(xi))

subject to model dynamics xi = M0→ix0



Four-dimensional variational assimilation (4D-Var)

Minimise the cost function

J(x0) = (x0 − x
B
0 )T

B
−1(x0 − x

B
0 ) +

n
X

i=0

(yi − Hi(xi))
T
R

−1
i (yi − Hi(xi))

subject to model dynamics xi = M0→ix0

Figure: Copyright:ECMWF



4D-Var analysis

Model dynamics

Strong constraint: model states xi are subject to

xi = M0→ix0

nonlinear constraint optimisation problem (hard!)



4D-Var analysis

Model dynamics

Strong constraint: model states xi are subject to

xi = M0→ix0

nonlinear constraint optimisation problem (hard!)

Simplifications

Causality (forecast expressed as product of intermediate forecast steps)

xi = Mi,i−1Mi−1,i−2 . . . M1,0x0

Tangent linear hypothesis (H and M can be linearised)

yi−Hi(xi) = yi−Hi(M0→ix0) = yi−Hi(M0→ix
B
0 )−HiM0→i(x0−x

B
0 )

M is the tangent linear model.



4D-Var analysis

Model dynamics

Strong constraint: model states xi are subject to

xi = M0→ix0

nonlinear constraint optimisation problem (hard!)

Simplifications

Causality (forecast expressed as product of intermediate forecast steps)

xi = Mi,i−1Mi−1,i−2 . . . M1,0x0

Tangent linear hypothesis (H and M can be linearised)

yi−Hi(xi) = yi−Hi(M0→ix0) = yi−Hi(M0→ix
B
0 )−HiM0→i(x0−x

B
0 )

M is the tangent linear model.

unconstrained quadratic optimisation problem (easier).
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Minimisation of the 4D-Var cost function

Efficient implementation of J and ∇J :

forecast state xi = Mi,i−1Mi−1,i−2 . . . M1,0x0

normalised departures di = R−1
i (yi − Hi(xi))

cost function JOi = (yi − Hi(xi))
T di

∇J is calculated by

−
1

2
∇JO = −

1

2

n
X

i=0

∇JOi

=
n

X

i=0

M
T
1,0 . . .M

T
i,i−1H

T
i di

= H
T
0 d0 + M

T
1,0[H

T
1 d1 + M2,1[H

T
2 d2 + . . . + M

T
n,n−1H

T
ndn] . . .]

initialise adjoint variable x̃n = 0 and then x̃i−1 = MT
i,i−1(x̃i + HT

i di)
etc., . . . x̃0 = − 1

2
∇JO

Further simplifications

preconditioning with B = LLT (transform into control variable space)
so that x̂ = L−1x

Incremental 4D-Var
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Example - Three-Body Problem

Motion of three bodies in a plane, two position (q) and two momentum (p)
coordinates for each body α = 1, 2, 3

Equations of motion

H(q,p) =
1

2

X

α

|pα|
2

mα
−

X X

α<β

mαmβ

|qα − qβ|

dqα

dt
=

∂H

∂pα

dpα

dt
= −

∂H

∂qα



Example - Three-Body problem

solver: partitioned Runge-Kutta scheme with time step h = 0.001

observations are taken as noise from the truth trajectory

background is given from a previous forecast



Example - Three-Body problem

solver: partitioned Runge-Kutta scheme with time step h = 0.001

observations are taken as noise from the truth trajectory

background is given from a previous forecast

assimilation window is taken 300 time steps

minimisation of cost function J using a Gauss-Newton method
(neglecting all second derivatives)

∇J(x0) = 0

∇∇J(xj
0)∆x

j
0 = −∇J(xj

0), x
j+1
0 = x

j
0 + ∆x

j
0

subsequent forecast is take 3000 time steps

R is diagonal with variances between 10−3 and 10−5
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DA needs Model error!

ms = 1.0 → ms = 1.1

mp = 0.1 → mp = 0.11

mm = 0.01 → mm = 0.011
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Root mean square error over whole assimilation window
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Changing numerical method

Truth trajectory: 4th order Runge-Kutta method with local truncation
error O(∆t5)

Model trajectory: Explicit Euler method with local truncation error
O(∆t2)
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Root mean square error over whole assimilation window
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Less observations - observations in sun only
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Less observations - observations in planet only

1 2 3 4 5
0

100

200
sun position

1 2 3 4 5
0

2

4
planet position

1 2 3 4 5
0

5000
moon position

1 2 3 4 5
0

20

40
sun momentum

1 2 3 4 5
0

0.5

1
planet momentum

1 2 3 4 5
0

20

40
moon momentum



Less observations - observations in moon only
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Less observations - observations in sun and planet only
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The Kalman Filter Algorithm

Sequential data assimilation, background is provided by the forecast
that starts from the previous analysis

covariance matrices BF , BA

forecast/model error xTruth
i+1 = Mi+1,ix

Truth
i + ηi where ηi ∼ N (0,Qi),

assumed to be uncorrelated to analysis error of previous forecast
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The Kalman Filter Algorithm

Sequential data assimilation, background is provided by the forecast
that starts from the previous analysis

covariance matrices BF , BA

forecast/model error xTruth
i+1 = Mi+1,ix

Truth
i + ηi where ηi ∼ N (0,Qi),

assumed to be uncorrelated to analysis error of previous forecast

State and error covariance forecast

State forecast x
F
i+1 = Mi+1,ix

A
i

Error covariance forecast B
F
i+1 = Mi+1,iB

A
i M

T
i+1,i + Qi

State and error covariance analysis

Kalman gain Ki = B
F
i H

T
i (HiB

F
i H

T
i + Ri)

−1

State analysis x
A
i = x

F
i + Ki(yi − Hix

F
i )

Error covariance of analysis B
A
i = (I −KiHi)B

F
i



The Kalman Filter Algorithm

Extended Kalman Filter

Extension of the Kalman Filter Algorithm to nonlinear observation
operators H and nonlinear model dynamics M , where both H and M are
linearised.



The Kalman Filter Algorithm

Extended Kalman Filter

Extension of the Kalman Filter Algorithm to nonlinear observation
operators H and nonlinear model dynamics M , where both H and M are
linearised.

Equivalence 4D-Var Kalman Filter

Assume

Qi = 0, ∀i (no model error)

both 4D-Var and the Kalman filter use the same initial input data

H and M are linear,

then 4D-Var and the Kalman Filter produce the same state estimate xA at
the end of the assimilation window.



RMS error over whole assimilation window - using 4D-Var
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RMS error over whole assimilation window - using Kalman Filter
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Example - Three-Body Problem

solver: partitioned Runge-Kutta scheme with time step h = 0.001

observations are taken as noise from the truth trajectory

background is given from a perturbed initial condition

assimilation window is taken 300 time steps

minimisation of cost function J using a Gauss-Newton method
(neglecting all second derivatives)

application of 4D-Var



Example - Three-Body Problem

solver: partitioned Runge-Kutta scheme with time step h = 0.001

observations are taken as noise from the truth trajectory

background is given from a perturbed initial condition

assimilation window is taken 300 time steps

minimisation of cost function J using a Gauss-Newton method
(neglecting all second derivatives)

application of 4D-Var

Compare using B = I with using a flow-dependent matrix B which was
generated by a Kalman Filter before the assimilation starts (see G.
Inverarity (2007))
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Problems with Data Assimilation

DA is computational very expensive, one cycle is much more expensive
than the actual forecast

estimation and storage of the B-matrix is hard
in operational DA B is about 107

× 107

B should be flow-dependent but in practice often static
B needs to be modeled and diagonalised since B−1 too expensive to
compute (”control variable transform”)

many assumptions are not valid
errors non-Gaussian, data have biases
forward model operator M is not exact and also non-linear and system
dynamics are chaotic
minimisation of the cost function needs close initial guess, small
assimilation window

model error not included
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4D-Var minimises

J(x0) = (x0 − x
B
0 )T

B
−1(x0 − x

B
0 ) +

n
X

i=0

(yi − Hi(xi))
T
R

−1
i (yi − Hi(xi))

subject to model dynamics xi = M0→ix0

or

J(x0) = (x0 − x
B
0 )T

B
−1(x0 − x

B
0 ) + (ŷ − Ĥ(x0))

T
R̂

−1(ŷ − Ĥ(x0))

where
Ĥ = [HT

0 , (H1M(t1, t0))
T
, . . . (HnM(tn, t0))

T ]T

ŷ = [yT
0 , . . . ,y

T
n ]

and R̂ is block diagonal with Ri on diagonal.
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Solution to the optimisation problem

J(x0) = (x0 − x
B
0 )T

B
−1(x0 − x

B
0 ) + (ŷ − Ĥ(x0))

T
R̂

−1(ŷ − Ĥ(x0))

is given by

x0 = x
B
0 + (B−1 + Ĥ

T
R̂

−1
Ĥ)−1

Ĥ
T
R̂

−1
d̂, d̂ = Ĥ(xB

0 − ŷ)

Singular value decomposition

Assume B = σ2
BI and R̂ = σ2

OI and define the SVD of the observability
matrix Ĥ

Ĥ = UΛV
T

Then the optimal analysis can be written as

x0 = x
B
0 +

X

j

λ2
j

µ2 + λ2
j

uT
j d̂

λj
vj

where µ2 =
σ2

O

σ2
B

.
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Relation between 4D-Var and Tikhonov regularisation

Solution to the optimisation problem

J(x0) = (x0 − x
B
0 )T

B
−1(x0 − x

B
0 ) + (ŷ − Ĥ(x0))

T
R̂

−1(ŷ − Ĥ(x0))

Variable transformations

B = σ2
BFB and R̂ = σ2

OFR and define new variable z := F
−1/2

B (x0 − xB
0 )

Ĵ(z) = µ
2‖z‖2

2 + ‖F−1/2

R d̂ − F
−1/2

R ĤF
−1/2

B z‖2
2

µ2 can be interpreted as a regularisation parameter.
This is the well-known Tikhonov regularisation!
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Met Office research and plans

include several time scales (to model the atmosphere)

improve the representation of multiscale behaviour in the
atmosphere in existing DA methods

improve the forecast of small scale features (like convective storms)

compare assimilation algorithms and optimisation strategies to reduce
existing errors

use regularisation methods from image processing, for example
L1 regularisation to improve forecasts

identify and analyse model error and analyse influence of this model
error onto the DA scheme
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