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I1l-posed Problems

Given an operator A we wish to solve
Af =g.

It is well-posed if
o solution exits
e solution is unique

o is stable (A~ continuous)

but ..

In finite dimensions existence and uniqueness can be imposed, but
o discrete problem of underlying ill-posed problem becomes ill-conditioned

e singular values of A decay to zero
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An Illustrative Example

Fredholm first kind integral equation in 1D

1
9(z) = /0 k(z — ') f(&)ds’ = (Af)(z), O<z<1

o f light source intensity as a function of x
® g image intensity

2
o k kernel representing blurring effects, e.g. k(z) = C exp (—2“;—2), C, v are
positive parameters.
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An Illustrative Example

Fredholm first kind integral equation in 1D

1
9(z) = /0 k(z — ') f(&)ds’ = (Af)(z), O<z<1

o f light source intensity as a function of x
® g image intensity
2
o k kernel representing blurring effects, e.g. k(z) = C exp (—2“;—2), C, v are
positive parameters.

Discretisation
e use a piecewise smooth source f
o determine A using standard numerical quadrature;

(i = 5)h)?

1
(A)l] = hC’exp (_ 272 ) ) 1< 17.7 <mn, h=—

n

_ _ 1
7—0.05,0—7\/?.
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Forward Problem

Given f and the kernel k, determine the blurred image g = Af, or the discrete
version

g = Af.

Figure: True solution of source function f
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Forward Problem

Given f and the kernel k, determine the blurred image g = Af, or the discrete
version

g = Af.

0 01 02 03 04 05 06 07 08 09 1
x—axis

Figure: True solution f and blurred image g
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Inverse Problem

Given the kernel k, and the blurred image g, determine the source f from g = Af,

solve the discrete linear system
g = Af.

0 01 02 03 04 05 06 07 08 09 1
x—axis

Figure: True solution and blurred image g
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Inverse Problem

Given the kernel k, and the blurred image g, determine the source f from g = Af,
solve the discrete linear system
g = Af.

Figure: Naive Solution
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Inverse Problem
Problem: data g are observed and contain noise and A is ill-conditioned:
Zexact + € = Af,

e is unknown white noise.

0 01 02 03 04 06 07 08 09 1

05
X—axis

Figure: True solution and discrete noisy data
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Inverse Problem

Problem: data g are observed and contain noise and A is ill-conditioned:
exact + € = Af,

e is unknown white noise.

Singular Value Decomposition

Let p
A=UuzvyT= Zo—iuivzr
i=1
where
e ¥ =diag(o1,...,0r)and 01 > 02> ... > 0p >0

e UTU=TIand VIV =1
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Inverse Problem - Regularisation needed
Least squares solution (with and without noise)

r T
u; Sexact
foxact = ATgexact = g v

. agj
i=1 4
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Least squares solution (with and without noise)
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Tikhonov Regularisation

Regularised solution of the form

T 2 T
)

£, =) B il E
2 2 .
i=10i+a o

Vi

« regularisation parameter.
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Tikhonov Regularisation

Regularised solution of the form

T 2

o; u
fa:z 3
i=10i+a o

e
i 8

Vi

« regularisation parameter.
Solution f, to the minimisation problem

min {||g — Af||3 + o®[|£]3} .
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Tikhonov Regularisation

Regularised solution of the form

T 2

fazzaiiu

2 2 .
i=1 % + o o

e
i 8

Vi

« regularisation parameter.
Solution f, to the minimisation problem

min {||g — Af||3 + o®[|£]3} .
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Tikhonov Regularisation

Regularised solution of the form

T 2

fazzaiiu

2 2 .
i=1 % + o o

e
i 8

Vi

« regularisation parameter.
Solution f, to the minimisation problem

min {lle — AflI5 + o |I£13} -
Least squares solution f, to the linear system
A _| &
[a]e=[5]

(ATA + o®D)f, = ATg.

Normal equations
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Tikhonov Regularisation
Regularisation parameter «
Regularised solution of the form
v 2

fazzaiiu g

2 2 .
= (5 5 NG ;

T
i

Vi

as diagonal entries of the filter matrix ¥

o
Filter factor 271
o? + o?
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Tikhonov Regularisation
Regularisation parameter «
Regularised solution of the form

T 2

fa:z o u

2 2 .
i=1 % 5 NG ;

T
i 8

Vi

2

foun
Filter factor —5—*— as diagonal entries of the filter matrix ¥
o7 ta

2

Regularisation and perturbation error

fo = V‘I’UTg, g = Bexact T €
VIS U geact + VIR U e

VIS UTUSV foxact + VIR~ 1UTe
= VIV +VER~1UTe
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Tikhonov Regularisation
Regularisation parameter «
Regularised solution of the form
T 2 T
fou u'g
f, = ) = Uik g
« Z o2+a? o; !

=1l

2

foun
Filter factor —5—*— as diagonal entries of the filter matrix ¥
o7 ta

2

Regularisation and perturbation error

fo = V‘I’UTg, g = Bexact T €
VIS U geact + VIR U e

VIS UTUSV foxact + VIR~ 1UTe
VOV f oot + VES~IUTe

fexact - fa
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Tikhonov Regularisation
Regularisation parameter «
Regularised solution of the form
ka 2 T
7

fo = § 74 il gvi
0?—!—042 o;

L=l

2

foun
Filter factor —5—*— as diagonal entries of the filter matrix ¥
o7 ta

2

Regularisation and perturbation error

fo = V‘I’UTg, g = Bexact T €
VIS U geact + VIR U e

VIS IUTUSV foaet + VEER1UTe
VOV f oot + VES~IUTe
I—=VEV)fo et —

fexact - fa

Regularisation error
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Tikhonov Regularisation
Regularisation parameter «
Regularised solution of the form
ka 2 T
7

fo = § 74 il gvi
0?—!—042 o;

L=l

2

foun
Filter factor —5—*— as diagonal entries of the filter matrix ¥
o7 ta

2

Regularisation and perturbation error

fo = V‘I’UTg, g = Bexact T €
VIS U geact + VIR U e

VIS IUTUSV foaet + VEER1UTe
VOV f oot + VES~IUTe
I-VEVDf e — VIS~ U e

fexact - fa

Regularisation error Perturbation error
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Tikhonov Regularisation

Regularisation and perturbation error

T |
foxact —fo = (I— VOV )foer — VEER1UTe
e Regul ari sati on error
‘e Pt ur bati on error
10"|
10"
10°
10°
10° 20 15 10 s o
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Figure: Regularisation and perturbation error
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Tikhonov Regularisation

Illustrative example

alpha=0.005
5F
05
ol
-0.51
il
15 . . . . . . . . .
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x-axis

Figure: a too small
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Tikhonov Regularisation

Illustrative example

alpha=0.5

05F

Figure: o too large
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Tikhonov Regularisation

Illustrative example

alpha=0.0188

W

05F

0

-05F

b

N

0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
X—axis

Figure: Good Value for a
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Outline

Data Assimilation as a Large Inverse Problem
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Data Assimilation in NWP

Find an estimate x; at time i for the true state of the atmosphere x?mth.

Observations y;

o Satellites
e Ships and buoys
o Surface stations

e Planes
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Data Assimilation in NWP

Find an estimate x; at time i for the true state of the atmosphere xg‘mth.

A priori information x? Observations y;
e background state (previous e Satellites
forecast) e Ships and buoys
e Surface stations
Models o Planes
e an operator linking state space and
observation space (imperfect) Assimilation algorithms
vi = Hi(x;) o find an (approximate) state of the
atmosphere x; at times ¢ (usually
e a model for the atmosphere i =0)
(imperfect)

o x{': Analysis (estimation of the
true state after the DA)

o forecast future states of the
atmosphere

Xit1 = Mit1,i(x3)

Melina Freitag



Schematics of Data Assimilation

State x

time

Figure: Background state x?
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Schematics of Data Assimilation

State x

time

Figure: Observations y
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Schematics of Data Assimilation

State x

time

Figure: Analysis x4 (consistent with observations and model dynamics)
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Observations

ECMWF Data Coverage (All obs DA) - BUOY
21/APR/2008; 00 UTC

ECMWF Data Coverage (All obs DA) - SYNOP/SHIP
21/APR/2008; 00 UTC
Tota_lwnunlher .Of OE = 2_?583“ I

[ —

ECMWF Data Coverage (All obs DA) - AIRCRAFT ECMWF Data Coverage (All obs DA) - ATOVS
21/APR/2008; 00 UTC 21/APR:2008; 00 UTC

Total number of obs = 51809 Total number of obs = 341239

o e e e e o ot aat-h=




Data Assimilation in NWP

Under-determinacy

o Size of the state vector x: 432 x 320 x 50 x 7 = O(107)
o Number of observations (size of y): O(10% — 106)
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Data Assimilation in NWP

Under-determinacy

o Size of the state vector x: 432 x 320 x 50 x 7 = O(107)
o Number of observations (size of y): O(10° — 109)

Assumptions
o background error B = xB — xTruth
B = (EB —EB)(EB _ —B)T
e observation error €€ =y — H(xT""*") and covariance matrix
R = (60 _ 50)(60 _ EO)T
e Non-trivial errors: B, R are positive definite

e Uncorrelated errors: (xB — xTruth)(y — H (xTruth))T' = o

and covariance matrix
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Optimal least-squares estimator

Cost function

Solution to the optimisation problem x4

= arg min J(x) where

T = L= xP) B x—xP) 4 Ly~ HG)TR My — H()
= Jp(x)+Jo(x)

= Three-dimensional variational data assimilation (3DVar)
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Optimal least-squares estimator

Cost function

Solution to the optimisation problem x4

= arg min J(x) where
1 1
T = L= xP) B x—xP) 4 Ly~ HG)TR My — H()
= Jp(x)+Jo(x)
= Three-dimensional variational data assimilation (3DVar)
Interpolation equations
x4 =xP + K(y — H(xP)), where

K =BHTHBH? +R)"! K...gain matrix

= Optimal interpolation
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Bayesian interpretation

Non-Gauflian PDF’s (probability density function)

e P(x) is a priori PDF (background)

e P(y|x) is the observation PDF (likelihood of the observations given
background x)
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e P(y|x) is the observation PDF (likelihood of the observations given
background x)

e P(x|y) conditional probability of the model state given the observations,
Bayes theorem:
P(y|x)P(x)

P =
arg, max P(x|y) = arg, max Ply)
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Bayesian interpretation

Non-Gauflian PDF’s (probability density function)

e P(x) is a priori PDF (background)
e P(y|x) is the observation PDF (likelihood of the observations given
background x)

e P(x|y) conditional probability of the model state given the observations,
Bayes theorem:

arg, max P(x|y) = arg, max Plylx)P(x)
Py)
Gauflian PDF’s
P(x|ly) = ciexp (—(x —x5)TB 1 (x— XB)) g

caexp (—=(y = Hx))"R™!(y - H(x)))

x” is the maximum a posteriori estimator of xTruth,
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Bayesian interpretation

Non-Gauflian PDF’s (probability density function)

e P(x) is a priori PDF (background)
e P(y|x) is the observation PDF (likelihood of the observations given
background x)

e P(x|y) conditional probability of the model state given the observations,
Bayes theorem:

arg, max P(x|y) = arg, max Plylx)P(x)
Py)
Gauflian PDF’s
P(x|ly) = ciexp (—(x —x5)TB 1 (x— XB)) g

caexp (—=(y = Hx))"R™!(y - H(x)))

x” is the maximum a posteriori estimator of xTruth,

Maximising P(x|y) equivalent to minimising J(x)
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Four-dimensional variational assimilation (4DVar)

Minimise the cost function

1
J(x0) = 5(X0 =x5)"B (%0 — x{) +

N | =

Z(yi — Hi(x:)) "R (yi — Hi(xs))
i=0

subject to model dynamics x; = M; 0Xo.

—_
P

corrected

/1% forecast

-
I -
B
xa JG‘
T T T 1
3 =74 o 12z 15= time

assimilati on window

Figure: Copyright: ECMWF
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Four-dimensional variational assimilation (4DVar)
Minimise the cost function

1 Iz A |
(o) = 2 (x0 —x§) B (xo —x§) + 5 D (i — Hi(x:)) Ry (vi — Hilxi))
1=0

subject to model dynamics x; = M; 0Xo.

—_
P

corrected

/1'_% forecast

-
I -
B
xa JG‘
T T T 1
3 =74 o 12z 15= time

assimilati on window

Figure: Copyright: ECMWF
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Four-dimensional variational assimilation (4DVar)

Minimise the cost function

n

PSS

J(x0) = (XU — X0 )TB

'(xo0 = xp)

N)M—\

subject to model dynamics x; = M; 0Xo.

- Hi(x:)) "R (yi

i
—
- analysis s
/ JGI “"‘--...
corrected
/1'_% forecast
-
bty
B
*a o
T T T I
3Z [=F4 j=rd 12z 15z time

assimilati on window

Figure: Copyright: ECMWF
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Minimisation of the 4DVar cost function

e Use Newton’s method in order to solve VJ(xg) = 0, that is

VVJI(xP)AxE = —VJ(xE)
x§+1 = xf+AxE

Melina Freitag



Minimisation of the 4DVar cost function

e Use Newton’s method in order to solve VJ(xg) = 0, that is
VVJIEBAxE = —vJxE)
xg'H = xf+AxE
k>0

e Use approximate Hessian - GauB-Newton method
n
VJ(x0) =B (x0 —x5) = Y Mio(x0)"H R; ! (yi — Hi(xi)),
i=1
and

n
VVJ(X()) =B! + Z Mi70(x0)TH,LTRi_1HiMi,O(xo).
i=1

Melina Freitag



Relation between 4DVar and Tikhonov regularisation

4DVar minimises

n

+ 3 0%~ B ) TR (s = Hi)

1
J(x0) = E(XO — x(‘)g)TB7 (x0 — xo

MM—A

subject to model dynamics x; = Mg, ;X
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Relation between 4DVar and Tikhonov regularisation

4DVar minimises

n

+ 3 0%~ B ) TR (s = Hi)

1
J(x0) = E(XO — X(I)B)TB7 (x0 — xo

loh—t

subject to model dynamics x; = Mg, ;X

or

Tx0) = 5 00 = xE) B (x0 = x§) + 59 — Hxo) TR — Ax0))

where .
H = [HT, (HiMio(t1,t0))T, ... (HaMpo(tn, to)T]"
y: [y%—'""’yn]T
and R is block diagonal with R4, i =0, ..., n on the diagonal.
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Relation between 4DVar and Tikhonov regularisation

Solution to the optimisation problem

Cost function

Tox0) = 300 = xE) B 0 = xf) + 3 (5 = AGx0)) "R (3 — A (x0))
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Relation between 4DVar and Tikhonov regularisation

Solution to the optimisation problem
Cost function

Tx0) = 500 = xE) B (x0 =) + 57 = HGxo) TR — Fx0))

GauB-Newton method

VVJI(xP)AxE = —vJ(xE)
xg+1 xk + AxE
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Relation between 4DVar and Tikhonov regularisation

Solution to the optimisation problem
Cost function

Tx0) = 500 = xE) B (x0 =) + 57 = HGxo) TR — Fx0))

GauB-Newton method

B+ ATR'MAxE = —B~!(xk—xB)+ ATR-1(§ — A(x0))
k+1 k k
X x5 + Axg

Melina Freitag



Relation between 4DVar and Tikhonov regularisation

Variable transform
Set

Gauf3-Newton method

(B~ + ATRH)Axk
Xt

-B7'(xf — x¢) + HTR™'(y — H(x0))

xk + AxE
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Relation between 4DVar and Tikhonov regularisation

Variable transform
Set

B = 0'}2303

R = o0%Cgr

Gauf3-Newton method

(B~ + ATRH)Axk
Xt

-B7'(xf — x¢) + HTR™'(y — H(x0))

= xF+Axk
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Relation between 4DVar and Tikhonov regularisation

Variable transform
Set

= 0%Cp

0%Cr

o & W
[

= CRIG - H(x0)

Gauf3-Newton method

B+ HTR'H)AXS —Bl(xk —xF)+HTR(y — H(x0))

x§+1 = x’é—i—AX’g
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Relation between 4DVar and Tikhonov regularisation

Variable transform
Set

> T W
[
Q
Y
Q
=

Gauf3-Newton method

B'+H'R'HAXY = -BlxE-xF)+HTR(y — A(x0))

ngrl = x’é—i—AX’g
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Relation between 4DVar and Tikhonov regularisation

Variable transform
Set

> T W
[
Q
Y
Q
=

Q
Il
|

Gauf3-Newton method

B'+H'R'HAXY = -BlxE-xF)+HTR(y — A(x0))
k+1 k k
X = x5+ Axg
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Relation between 4DVar and Tikhonov regularisation

Variable transform
Set

= o%4Cp

> o oUW
I
Q
Y
Q
Y

Q
Il
g

Gauf3-Newton method

_1 9
(a21+ATA)CB2Ax§ = —a2CBz(x§—x63)+ATb

x§+1 = xF+Axk
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Relation between 4DVar and Tikhonov regularisation

Variable transform

GauB-Newton method

_ X _1
(@®I+ATA)C2AxE = —a?Cl2(xk —xF)+ATb

k+1 k k
X, = x5+ Axg
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Relation between 4DVar and Tikhonov regularisation

Variable transform

Set "
—sylx g
(%0 —x0 )

Gauf3-Newton method

(a2I + ATA) (zk"'1 — zk) = —o?zF+ATpb
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Relation between 4DVar and Tikhonov regularisation

Variable transform
Set

_1
zF = Cp? (x5 —xF)
Gauf3-Newton method

(a2I + ATA) (z’“'*'1 — zk) = —o?zF+ATpb

Normal equations

Melina Freitag



Relation between 4DVar and Tikhonov regularisation

Variable transform
Set

_1
zF = Cp? (x5 —xF)
Gauf3-Newton method

(@21+ ATA)ZF —2F) = —a22F + AT

Normal equations

Least squares solution

(4] e [ 3]

at each GauB-Newton method step

2
— min
2
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Relation between 4DVar and Tikhonov regularisation

Variable transform
Set

_1
? (x6 —x¢)

Gauf3-Newton method

(@21+ ATA)ZF —2F) = —a22F + AT

Normal equations

Least squares solution

(4] e [ 3]

at each GauB-Newton method step or

2
— min
2

Az"+ — (Az® + b) |13 + o|l2" 113

Tikhonov regularisation
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Relation between 4DVar and Tikhonov regularisation

Variable transform
Set

_1
? (x6 —x¢)

Gauf3-Newton method

(@21+ ATA)ZF —2F) = —a22F + AT

Normal equations

Least squares solution

(4] e [ 3]

at each GauB-Newton method step or

2
— min
2

k1 2 2y, k412
[Az"FE — g3 + a?[|l2" 113

Tikhonov regularisation
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Summary

Minimising the cost function
1 155 - .
J(x0) = 5 (x0 — x5)"B ™ (x0 —x{) + 5 L H(x0))"R™!(y — H(x0))

amounts to solving a Tikhonov regularised least squares problem at every step

Azt — g3 + o123

Melina Freitag



Data Assimilation and Tikhonov regularisation

Issues

e Dynamic vs static
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Data Assimilation and Tikhonov regularisation

Issues
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Data Assimilation and Tikhonov regularisation

Issues
e Dynamic vs static
e Nonlinear Dynamics (and chaotic)
o Multiscale and Large Scale
e Many unknown parameters (B ...)

e Model error

Previous/current work

e Low Rank Kalman Filters [Houtekamer, Mitchell 1998]

e Model Order Reduction [Boess, Lawless, Nichols, Bunse-Gerstner 2008, 2010]
o Preconditioners [Haben, Lawless, Nichols 2010]

e Regularisation Parameter Estimation

e [1-Norm Regularisation
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Outline

Regularisation Parameter estimation in 4DVar
Regularisation Parameter estimation
Example
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Choosing the regularisation parameter o

IAf — g3 + o [If]13
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Generalised Cross-Validation (Golub, Heath, Wahba 1979) GCV

o If a data value is omitted, then a good choice of the reconstruction should be
able to predict the missing data value as well
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Generalised Cross-Validation (Golub, Heath, Wahba 1979) GCV

o If a data value is omitted, then a good choice of the reconstruction should be
able to predict the missing data value as well

e Minimise the GCV functional

[(I- AVES—'UT)g|?
(trace(I — AVEX-1UT))2

Gla) =
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Generalised Cross-Validation (Golub, Heath, Wahba 1979) GCV

o If a data value is omitted, then a good choice of the reconstruction should be
able to predict the missing data value as well

e Minimise the GCV functional

IX - AVEE—1UT)g|?

G & (trace(I — AVEX-1UT))2
= 2
T (%
G(a) = 1<—'+)

2
N 1
i=1 521q2
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Generalised Cross-Validation (Golub, Heath, Wahba 1979) GCV

alpha=0.021351

Figure: Parameter estimation using GCV
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L-Curve Criterion (Hansen 1992)

o Log-log plot of the norm of the regularised solution ||f|| versus the
corresponding residual norm ||Af — g|
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L-Curve Criterion (Hansen 1992)

o Log-log plot of the norm of the regularised solution ||f|| versus the
corresponding residual norm ||Af — g||

o Best value of o determined by maximum curvature
R(a) = log |Afa — glI* S(a) = log ||fall®

_ R'(a)S'(a) - R'(a)S"(a)
5@ = T Rila)? + 51(e)P2
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L-Curve Criterion (Hansen 1992)

alpha=0.017838

Figure: Parameter estimation using L-Curve
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Discrepancy Principle (Morozov 1966)

e Choose a regularised solution such that
lg — Afall2 = 76

where 2 <7 <5
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o § is the expected value of the error |el|
o Apply iterative method to g = Af

o First steps: reduce the residual error in the singular direction associated with
larger singular values
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Discrepancy Principle (Morozov 1966)

e Choose a regularised solution such that
lg — Afoll2 =76

where 2 <7 <5
o § is the expected value of the error |e||
o Apply iterative method to g = Af

o First steps: reduce the residual error in the singular direction associated with
larger singular values

e Latter steps: singular direction associated to smaller singular values are fitted
- truncate the iteration before the amplified noise takes over
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Discrepancy Principle (Morozov 1966)

alpha=0.0066893 alpha=0.0066893

o 2 4 6 8
iterations x—axis

Figure: Parameter estimation using Discrepancy Principle
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N-dimensional (chaotic) Lorenz system (Lorenz-95)

The system is given by

dX;
dt

=X 2Xi 1+ X1 Xip1 - Xs+F, i=1,...,N,

cyclic boundary conditions Xo = Xn, X_1 = Xny1, Xn+1 = X1.
o FF=8, N =40 (13 positive Lyapunov exponents).
e solver: Runge-Kutta method with time step h = 0.01
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N-dimensional (chaotic) Lorenz system (Lorenz-95)

The system is given by

dX;
dt

=X 2Xi 1+ X1 Xip1 - Xs+F, i=1,...,N,

cyclic boundary conditions Xo = Xn, X_1 = Xny1, Xn+1 = X1.
o FF=8, N =40 (13 positive Lyapunov exponents).
e solver: Runge-Kutta method with time step h = 0.01
e a unit time T = 1 is associated with 5 days
o assimilation window: 5 time steps (associated with 6 hours)
o subsequent forecast: 95 time steps (associated with 5 day forecast)
® observations are taken as noise from the truth trajectory

e Model error introduced by parameter change F,,,q = 12.
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Lorenz-95 dynamics

The system is given by
dt
cyclic boundary conditions Xo = Xy, X—1 = Xnit1, Xn41 = X1.

=X 2Xi 1+ X1 Xsp1 - Xy +F, i=1,...,N,

-6 4

_gl 1
0O 01 02 03 04 05 06 07 08 09 1
time (non-dimensional)
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Lorenz-95 dynamics

The system is given by
dX;
dt

cyclic boundary conditions Xo = Xn, X_1 = Xny1, Xn+1 = X1.

-8t 4

0 01 02 03 04 05 06 07 08 09 1
time (non-dimensional)

Melina Freitag

=—Xi2Xi 1+ XXy —Xs+F, 1=1,...



Initial condition error

Observation frequency | 4DVAR | Discrepancy Principle | GCV | L-Curve
every 10 points 0.7729 0.7608 0.7394 0.8101
every 5 points 0.8043 0.6725 0.6510 0.7727
every 2 points 0.5492 0.3309 0.2812 0.4469

Table: Comparison RMS error - no model error in the Lorenz system
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Comparison - no model error in the Lorenz system

20 0 60
time (non-dimensional)

Figure: 4ADVAR
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Initial condition error

Observation frequency | 4DVAR | Discrepancy Principle GCV L-Curve
every 10 points 3.4641 3.4156 6.1941 0.8579
every 5 points 5.3430 4.4666 6.0010 0.8651
every 2 points 26.5536 5.8955 11.0836 0.7630

Table: Comparison RMS error - with model error in the Lorenz system
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Comparison - with model error
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Figure: 4ADVAR
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Outline

Application of Li-norm regularisation in 4DVar
Motivation: Results from image processing
Li-norm regularisation in 4DVar
Examples
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Results from image deblurring: L; regularisation

Image

Figure: Blurred picture
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Results from image deblurring: L regularisation

Regularized solution

50 100 150 200 250 300 350 400 450 500

Figure: Tikhonov regularisation min {||r — b]|3 + «||z(|3}
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Results from image deblurring: L; regularisation

Reconstruction

flon] = o Feeat wl
180} ‘
200
201
300
0|

400

450

' I i L L L L L L i}
80 100 150 200 250 300 350 400 450 500

Figure: Li-norm regularisation min {||%x — bll3 + allrll1}
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L1 regularisation

In image processing, Li-norm regularisation provides edge preserving image
deblurring!

e 4DVar smears out sharp fronts
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L1 regularisation

In image processing, Li-norm regularisation provides edge preserving image
deblurring!

e 4DVar smears out sharp fronts

e Lj-norm regularisation has the potential to overcome this problem!

Melina Freitag



2 Regularisation Methods

4DVar

. k+1 2 2, k+12
min [ Az* L — cf3 + a?[2" 13
z
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2 Regularisation Methods

4DVar

. k+1 2 2, k+12
min [ Az* L — cf3 + a?[2" 13
z

Total Variation regularisation
min [AzF ! — c|3 + o®|lZ T3 + BIIDx5 I
z

1
where x’5+1 = Cf;z’€+1 + xgg and D is a matrix approximating the derivative of

the solution.

Melina Freitag



Least mixed norm solutions

Solve
min [| A8+ — cf3 + o212 1|3
z

using Least squares and

min [|Az" L — | +a2la* 13 + BDxs |
z

using quadratic programming (see Fu/Ng/Nikolova/Barlow 2006).

Melina Freitag



Least mixed norm solutions

Consider
min |Az" 1 — e]3 + 8Dk
zk+1

1
k+1 _ 2 k+1 B
where x;7 " = C}z + xg
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Least mixed norm solutions

Consider
min |Az" 1 — e]3 + 8Dk
zk+1

1
k+1 _ 2 k+1 B
where x;7 " = C}z + xg

L
min [[Az*+! — cf}3 + S|DCZ2* 1 + Dxf|l
z

Melina Freitag



Least mixed norm solutions

Consider
min [|Az* 1 — c|3 + 8Dxk+ s
z

1
where x’5+1 = Cf;z’€+1 + xg
il
min [|Az*+! — c|3 + BIDCE#*+! + Dxfll
z

Set L
v = BDC};z" ! + gDxE.
and split v into its positive and negative part:

+

v=v' —v_
where
vt = max(v,0)
v™ = max(—v,0)

Melina Freitag



Least mixed norm solutions

With L
v = ,/j’Dnglchl + ﬁDx(})3

and

the solution to
1
min [|Az*+! — clj§ + SIDCE*! + D s
z

is equivalent to

Melina Freitag



Least mixed norm solutions

With L
v = ,/j’Dnglchl + ,5’Dx(})3

and
the solution to

min |42+ — ol + FIDCE2* + DxE
is equivalent to

min {].TV+ +17v™ 4+ ||AZF T — c||§}
zk+1 v+ v—

subject to

Il
<

1
ADC2z* ! + gDxf

+

v, v

(\Y
=]

Melina Freitag



Least mixed norm solutions

min {ITVJr +1Tv™ 4 ||AZFH! — c||§}
zk+1 v+ v—

subject to

1
BDCZz" ! + pDxF = vt v~

vig,v Ff 2 jo.

or
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Least mixed norm solutions

min {ITVJr +1Tv™ 4 ||AZFH! — c||§}

zk+1 v+ v—
subject to
1
BDCZz" ! + pDxF = vt v~
vig,v Ff 2 jo.
or .
min { ~wlGw + ITW}
w2
subject to
Ew =k and Fw >0.
where
2ATA —2ATb 0
G = 0 , ML= 1 Ty = —I
0 1 -1

E:[ﬁDC%B 1 I] w=[zFt1 vt v’]T k = —SDx¥

Melina Freitag



Example 1 - Linear advection equation

ut+uz:07

on the interval z € [0, 1], with periodic boundary conditions. The initial solution is
a square wave defined by

w(z,0) = 05 025<z<0.5
7T 1-05 2<0.25 or z>0.5.

This wave moves through the time interval, the model equations are defined by
the upwind scheme

At

n+l _ rmn n n
Uil U= A_z(Uj - Ujiy),
+1 _ n+1
U™ =Ux"
where j=1,...,N, Az = % and n is the number of time steps. We take

N =100, At = 0.005.

Melina Freitag



Setup

e length of the assimilation window: 40 time steps
o perfect observations, noisy and sparse observations
e R=0.01.

li—3l
e B=Iand B=0.1e 2.2, where L =5
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4DVar - perfect and full observations, B =1

Figure: t =0 Figure: t =20

Figure: t =40 Figure: t = 80

Melina Freitag



L1 - perfect and full observations, B =1

Figure: t =0 Figure: t =20

Figure: t =40 Figure: t = 80
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4DVar - noisy and sparse observations, B =1

= T

2 Sotution

1

—— Finalsolution

tect model

tect model
—— Finalsolution

—— Finalsolution

tect model

Figure: t =40
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Figure: t = 80




L1 - noisy and sparse observations, B =1

Figure: t =0 Figure: t =20

Figure: t =40 Figure: t = 80
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Figure: t =0 Figure:

Figure: t =40 Figure: t = 80
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li—j]
L1 - perfect and full observations, B = 0.le 217

Figure: t =40 Figure: t = 80
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. . _li=gl
4DVar - noisy and sparse observations, B = 0.1e™ 2c?

Figure: t =0 Figure:

Figure: t =40 Figure: t = 80
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_ _ Li=jl
L1 - noisy and sparse observations, B = 0.1e” 2.2

Figure: t =40 Figure: t = 80
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Example 2 - Burgers’ equation

16] 1
wtuls =ut fu)e =0, f(u) = u?
oz 2

with initial conditions

2 0<z<25
u(z,0) =
0.5 2.5<xz<10.
Discretising

2 0<ax(j) <25

z(j) = 10(j — 1/2)Az;  U°(z(j)) = {0.5 2.5 < #(j) < 10.

where j =1,...,N, Az = % and n is the number of time steps. We take
N =100, At = 0.001.
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Exact solution and model error

Exact solution - method of characteristics
Riemann problem

w(w,t) = 2 0<x<25+st
T 105 254 st <z <10,

where s = 1.25

Numerical solution - model error

o the Lax-Friedrichs method (smearing out the shock)

vt = Lwr, vup,) - A ((U) = FUF)):

2

o the Lax-Wendroff method (oscillations near the shock).

Ut = Uy~ (f( ) = FUR )+

At2

2 (A3 PO = FUT) = A, (FUP) —

Melina Freitag
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Visualisation - Truth trajectory and numerical solution
Lax-Friedrichs method

U

W)
L

Figure: t =0
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Visualisation - Truth trajectory and numerical solution
Lax-Friedrichs method

U

W)

Figure: t = 25
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Visualisation - Truth trajectory and numerical solution
Lax-Friedrichs method

U

W)

Figure: t = 50
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Visualisation - Truth trajectory and numerical solution
Lax-Friedrichs method

U
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Figure: t = 100
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Visualisation - Truth trajectory and numerical solution

Lax-Friedrichs method

Lax-Wendroff method Higure R ge 200

)
.
oo

Figure: t = 200
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Setup

e length of the assimilation window: 100 time steps
* noisy and sparse observations
e R=0.01.

li—jl
e B=0.1e 2.2  where L=15
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Lax-Friedrichs method
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4DVar - noisy and sparse observations, B = 0.1e™ 2L2

Figure: ¢ = 100 Figure: t = 200
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li=jl

L1 - noisy and sparse observations, B = 0.1e” 2.2

Figure: t = 100
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Figure: t = 200



Lax-Wendroff method
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li=jl

4DVar - noisy and sparse observations, B = 0.1e" 222

Figure: ¢ = 100
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li=jl

L1 - noisy and sparse observations, B = 0.1e” 2.2

Figure: t =0 Figure: t = 50
|
I
\

Figure: ¢ = 100
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Conclusions and further work

Conclusions

e regularisation parameter estimation methods improve 4DVar analysis

e Li-norm regularisation recovers discontinuity better than 4DVar
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Conclusions and further work

Conclusions

e regularisation parameter estimation methods improve 4DVar analysis

e [1-norm regularisation recovers discontinuity better than 4DVar

Future work

o Further work: analysis of methods; convergence
o Extension to 2D, 3D

e Multiscale methods

Melina Freitag



Weather forecast

orecast chart (T+60]
Valid 1200 UTC Wed 24'Aug 2011 |

Figure: Weather forecast for Europe for Wednesday lunchtime
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Thank you.
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