
Outline Inverse Problems Data Assimilation Regularisation Parameter L1-norm regularisation

Tikhonov Regularisation for (Large) Inverse Problems

Melina Freitag

Department of Mathematical Sciences
University of Bath

17th ILAS Conference
Braunschweig, Germany

23rd August 2011

joint work with C.J. Budd (Bath) and N.K. Nichols (Reading)

Melina Freitag Tikhonov Regularisation for (Large) Inverse Problems



Outline Inverse Problems Data Assimilation Regularisation Parameter L1-norm regularisation

Inverse Problems

Data Assimilation as a Large Inverse Problem

Regularisation Parameter estimation in 4DVar
Regularisation Parameter estimation
Example

Application of L1-norm regularisation in 4DVar
Motivation: Results from image processing
L1-norm regularisation in 4DVar
Examples

Melina Freitag Tikhonov Regularisation for (Large) Inverse Problems



Outline Inverse Problems Data Assimilation Regularisation Parameter L1-norm regularisation

Outline

Inverse Problems

Data Assimilation as a Large Inverse Problem

Regularisation Parameter estimation in 4DVar
Regularisation Parameter estimation
Example

Application of L1-norm regularisation in 4DVar
Motivation: Results from image processing
L1-norm regularisation in 4DVar
Examples

Melina Freitag Tikhonov Regularisation for (Large) Inverse Problems



Outline Inverse Problems Data Assimilation Regularisation Parameter L1-norm regularisation

Ill-posed Problems

Given an operator A we wish to solve

Af = g.

It is well-posed if
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Ill-posed Problems

Given an operator A we wish to solve

Af = g.

It is well-posed if

• solution exits
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Ill-posed Problems

Given an operator A we wish to solve

Af = g.

It is well-posed if

• solution exits

• solution is unique
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Ill-posed Problems

Given an operator A we wish to solve

Af = g.

It is well-posed if

• solution exits

• solution is unique

• is stable (A−1 continuous)
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Ill-posed Problems

Given an operator A we wish to solve

Af = g.

It is well-posed if

• solution exits

• solution is unique

• is stable (A−1 continuous)

but ..
In finite dimensions existence and uniqueness can be imposed, but

• discrete problem of underlying ill-posed problem becomes ill-conditioned

• singular values of A decay to zero
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An Illustrative Example

Fredholm first kind integral equation in 1D

g(x) =

∫ 1

0

k(x− x′)f(x′)dx′ =: (Af)(x), 0 < x < 1

• f light source intensity as a function of x

• g image intensity

• k kernel representing blurring effects, e.g. k(x) = C exp
(

− x2

2γ2

)

, C, γ are

positive parameters.
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An Illustrative Example

Fredholm first kind integral equation in 1D

g(x) =

∫ 1

0

k(x− x′)f(x′)dx′ =: (Af)(x), 0 < x < 1

• f light source intensity as a function of x

• g image intensity

• k kernel representing blurring effects, e.g. k(x) = C exp
(

− x2

2γ2

)

, C, γ are

positive parameters.

Discretisation

• use a piecewise smooth source f

• determine A using standard numerical quadrature;

(A)ij = hC exp

(

−
((i− j)h)2

2γ2

)

, 1 ≤ i, j ≤ n, h =
1

n

γ = 0.05, C = 1

γ
√

2π
.
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Forward Problem

Given f and the kernel k, determine the blurred image g = Af , or the discrete
version

g = Af .
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Figure: True solution of source function f
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Forward Problem

Given f and the kernel k, determine the blurred image g = Af , or the discrete
version

g = Af .
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Figure: True solution f and blurred image g
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Inverse Problem

Given the kernel k, and the blurred image g, determine the source f from g = Af ,
solve the discrete linear system

g = Af .
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Figure: True solution and blurred image g
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Inverse Problem

Given the kernel k, and the blurred image g, determine the source f from g = Af ,
solve the discrete linear system

g = Af .
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Figure: Naive Solution
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Inverse Problem

Problem: data g are observed and contain noise and A is ill-conditioned:

gexact + e = Af ,

e is unknown white noise.
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Figure: True solution and discrete noisy data
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Inverse Problem

Problem: data g are observed and contain noise and A is ill-conditioned:

gexact + e = Af ,

e is unknown white noise.

Singular Value Decomposition
Let

A = UΣVT =
r

∑

i=1

σiuiv
T
i

where

• Σ = diag(σ1, . . . , σr) and σ1 ≥ σ2 ≥ . . . ≥ σr > 0

• UTU = I and VTV = I
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Inverse Problem - Regularisation needed
Least squares solution (with and without noise)

fexact = A†gexact =
r

∑

i=1

uT
i gexact

σi
vi
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Inverse Problem - Regularisation needed
Least squares solution (with and without noise)

fexact = A†gexact =
r

∑

i=1

uT
i gexact

σi
vi

f = A†g = A†(gexact + e) =
r

∑

i=1

uT
i gexact

σi
vi +

r
∑

i=1

uT
i e

σi
vi

= fexact +
r

∑

i=1
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i e

σi
vi
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Inverse Problem - Regularisation needed
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Tikhonov Regularisation

Regularised solution of the form

fα =

r
∑

i=1

σ2
i

σ2
i + α2

uT
i g

σi
vi

α regularisation parameter.
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Tikhonov Regularisation

Regularised solution of the form

fα =

r
∑

i=1

σ2
i

σ2
i + α2

uT
i g

σi
vi

α regularisation parameter.
Solution fα to the minimisation problem

min
f

{

‖g −Af‖22 + α2‖f‖22
}

.
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Tikhonov Regularisation

Regularised solution of the form

fα =

r
∑

i=1

σ2
i

σ2
i + α2

uT
i g

σi
vi

α regularisation parameter.
Solution fα to the minimisation problem

min
f

{

‖g −Af‖22 + α2‖f‖22
}

.

Least squares solution fα to the linear system

[

A

αI

]

f =

[

g

0

]

.
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Tikhonov Regularisation

Regularised solution of the form

fα =

r
∑

i=1

σ2
i

σ2
i + α2

uT
i g

σi
vi

α regularisation parameter.
Solution fα to the minimisation problem

min
f

{

‖g −Af‖22 + α2‖f‖22
}

.

Least squares solution fα to the linear system

[

A

αI

]

f =

[

g

0

]

.

Normal equations
(ATA+ α2I)fα = AT g.
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Tikhonov Regularisation

Regularisation parameter α
Regularised solution of the form

fα =
r

∑

i=1

σ2
i

σ2
i + α2

uT
i g

σi
vi

Filter factor
σ2
i

σ2
i + α2

as diagonal entries of the filter matrix Ψ
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Tikhonov Regularisation

Regularisation parameter α
Regularised solution of the form

fα =
r

∑

i=1

σ2
i

σ2
i + α2

uT
i g

σi
vi

Filter factor
σ2
i

σ2
i + α2

as diagonal entries of the filter matrix Ψ

Regularisation and perturbation error

fα = VΨUT g, g = gexact + e

= VΨΣ−1UT gexact +VΨΣ−1UT e

= VΨΣ−1UTUΣVT fexact +VΨΣ−1UT e

= VΨVT fexact +VΨΣ−1UT e
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Tikhonov Regularisation

Regularisation parameter α
Regularised solution of the form

fα =
r

∑

i=1

σ2
i

σ2
i + α2

uT
i g

σi
vi

Filter factor
σ2
i

σ2
i + α2

as diagonal entries of the filter matrix Ψ

Regularisation and perturbation error

fα = VΨUT g, g = gexact + e

= VΨΣ−1UT gexact +VΨΣ−1UT e

= VΨΣ−1UTUΣVT fexact +VΨΣ−1UT e

= VΨVT fexact +VΨΣ−1UT e

fexact − fα =
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Tikhonov Regularisation

Regularisation parameter α
Regularised solution of the form

fα =
r

∑

i=1

σ2
i

σ2
i + α2

uT
i g

σi
vi

Filter factor
σ2
i

σ2
i + α2

as diagonal entries of the filter matrix Ψ

Regularisation and perturbation error

fα = VΨUT g, g = gexact + e

= VΨΣ−1UT gexact +VΨΣ−1UT e

= VΨΣ−1UTUΣVT fexact +VΨΣ−1UT e

= VΨVT fexact +VΨΣ−1UT e

fexact − fα = (I −VΨVT )fexact −

Regularisation error
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Tikhonov Regularisation

Regularisation parameter α
Regularised solution of the form

fα =
r

∑

i=1

σ2
i

σ2
i + α2

uT
i g

σi
vi

Filter factor
σ2
i

σ2
i + α2

as diagonal entries of the filter matrix Ψ

Regularisation and perturbation error

fα = VΨUT g, g = gexact + e

= VΨΣ−1UT gexact +VΨΣ−1UT e

= VΨΣ−1UTUΣVT fexact +VΨΣ−1UT e

= VΨVT fexact +VΨΣ−1UT e

fexact − fα = (I −VΨVT )fexact −VΨΣ−1UT e

Regularisation error Perturbation error
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Tikhonov Regularisation

Regularisation and perturbation error

fexact − fα = (I −VΨVT )fexact −VΨΣ−1UT e
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Figure: Regularisation and perturbation error
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Tikhonov Regularisation

Illustrative example

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

alpha=0.005

x−axis

Figure: α too small
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Tikhonov Regularisation

Illustrative example
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Figure: α too large
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Tikhonov Regularisation

Illustrative example
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Figure: Good Value for α
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Data Assimilation in NWP

Find an estimate xi at time i for the true state of the atmosphere xTruth
i .

Observations yi

• Satellites

• Ships and buoys

• Surface stations

• Planes
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Data Assimilation in NWP

Find an estimate xi at time i for the true state of the atmosphere xTruth
i .

A priori information xB

i

• background state (previous
forecast)

Observations yi

• Satellites

• Ships and buoys

• Surface stations

• Planes
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Data Assimilation in NWP

Find an estimate xi at time i for the true state of the atmosphere xTruth
i .

A priori information xB

i

• background state (previous
forecast)

Models

• an operator linking state space and
observation space (imperfect)

yi = Hi(xi)

Observations yi

• Satellites

• Ships and buoys

• Surface stations

• Planes
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Data Assimilation in NWP

Find an estimate xi at time i for the true state of the atmosphere xTruth
i .

A priori information xB

i

• background state (previous
forecast)

Models

• an operator linking state space and
observation space (imperfect)

yi = Hi(xi)

• a model for the atmosphere
(imperfect)

xi+1 = Mi+1,i(xi)

Observations yi

• Satellites

• Ships and buoys

• Surface stations

• Planes
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Data Assimilation in NWP

Find an estimate xi at time i for the true state of the atmosphere xTruth
i .

A priori information xB

i

• background state (previous
forecast)

Models

• an operator linking state space and
observation space (imperfect)

yi = Hi(xi)

• a model for the atmosphere
(imperfect)

xi+1 = Mi+1,i(xi)

Observations yi

• Satellites

• Ships and buoys

• Surface stations

• Planes

Assimilation algorithms

• find an (approximate) state of the
atmosphere xi at times i (usually
i = 0)

• xA
i : Analysis (estimation of the

true state after the DA)

• forecast future states of the
atmosphere
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Schematics of Data Assimilation

Figure: Background state xB
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Schematics of Data Assimilation

Figure: Observations y
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Schematics of Data Assimilation

Figure: Analysis xA (consistent with observations and model dynamics)
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Observations
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Data Assimilation in NWP

Under-determinacy

• Size of the state vector x: 432× 320 × 50× 7 = O(107)

• Number of observations (size of y): O(105 − 106)
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Data Assimilation in NWP

Under-determinacy

• Size of the state vector x: 432× 320 × 50× 7 = O(107)

• Number of observations (size of y): O(105 − 106)

Assumptions

• background error εB = xB − xTruth and covariance matrix

B = (εB − εB)(εB − εB)T

• observation error εO = y −H(xTruth) and covariance matrix

R = (εO − εO)(εO − εO)T

• Non-trivial errors: B, R are positive definite

• Uncorrelated errors: (xB − xTruth)(y −H(xTruth))T = 0
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Optimal least-squares estimator

Cost function
Solution to the optimisation problem xA = arg minJ(x) where

J(x) =
1

2
(x− xB)TB−1(x− xB) +

1

2
(y −H(x))TR−1(y −H(x))

= JB(x) + JO(x)

⇒Three-dimensional variational data assimilation (3DVar)

Melina Freitag Tikhonov Regularisation for (Large) Inverse Problems
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Optimal least-squares estimator

Cost function
Solution to the optimisation problem xA = arg minJ(x) where

J(x) =
1

2
(x− xB)TB−1(x− xB) +

1

2
(y −H(x))TR−1(y −H(x))

= JB(x) + JO(x)

⇒Three-dimensional variational data assimilation (3DVar)

Interpolation equations

xA = xB +K(y −H(xB)), where

K = BHT (HBHT +R)−1 K . . . gain matrix

⇒ Optimal interpolation
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Bayesian interpretation

Non-Gaußian PDF’s (probability density function)

• P (x) is a priori PDF (background)

• P (y|x) is the observation PDF (likelihood of the observations given
background x)
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Bayesian interpretation

Non-Gaußian PDF’s (probability density function)

• P (x) is a priori PDF (background)

• P (y|x) is the observation PDF (likelihood of the observations given
background x)

• P (x|y) conditional probability of the model state given the observations,
Bayes theorem:

argx maxP (x|y) = argx max
P (y|x)P (x)

P (y)
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Bayesian interpretation

Non-Gaußian PDF’s (probability density function)

• P (x) is a priori PDF (background)

• P (y|x) is the observation PDF (likelihood of the observations given
background x)

• P (x|y) conditional probability of the model state given the observations,
Bayes theorem:

argx maxP (x|y) = argx max
P (y|x)P (x)

P (y)

Gaußian PDF’s

P (x|y) = c1 exp
(

−(x− xB)TB−1(x− xB)
)

·

c2 exp
(

−(y −H(x))TR−1(y −H(x))
)

xA is the maximum a posteriori estimator of xTruth.
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Bayesian interpretation

Non-Gaußian PDF’s (probability density function)

• P (x) is a priori PDF (background)

• P (y|x) is the observation PDF (likelihood of the observations given
background x)

• P (x|y) conditional probability of the model state given the observations,
Bayes theorem:

argx maxP (x|y) = argx max
P (y|x)P (x)

P (y)

Gaußian PDF’s

P (x|y) = c1 exp
(

−(x− xB)TB−1(x− xB)
)

·

c2 exp
(

−(y −H(x))TR−1(y −H(x))
)

xA is the maximum a posteriori estimator of xTruth.
Maximising P (x|y) equivalent to minimising J(x)
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Four-dimensional variational assimilation (4DVar)
Minimise the cost function

J(x0) =
1

2
(x0 − xB

0 )TB−1(x0 − xB
0 ) +

1

2

n
∑

i=0

(yi −Hi(xi))
TR

−1

i (yi −Hi(xi))

subject to model dynamics xi = Mi,0x0.

Figure: Copyright:ECMWF
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Four-dimensional variational assimilation (4DVar)
Minimise the cost function

J(x0) =
1

2
(x0 − xB

0 )TB−1(x0 − xB
0 ) +

1

2

n
∑

i=0

(yi −Hi(xi))
TR

−1

i (yi −Hi(xi))

subject to model dynamics xi = Mi,0x0.

Figure: Copyright:ECMWF
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Four-dimensional variational assimilation (4DVar)
Minimise the cost function

J(x0) =
1

2
(x0 − xB

0 )TB−1(x0 − xB
0 ) +

1

2

n
∑

i=0

(yi −Hi(xi))
TR

−1

i (yi −Hi(xi))

subject to model dynamics xi = Mi,0x0.

Figure: Copyright:ECMWF
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Minimisation of the 4DVar cost function

• Use Newton’s method in order to solve ∇J(x0) = 0, that is

∇∇J(xk
0)∆xk

0 = −∇J(xk
0)

x
k+1
0

= xk
0 +∆xk

0

k ≥ 0
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Minimisation of the 4DVar cost function

• Use Newton’s method in order to solve ∇J(x0) = 0, that is

∇∇J(xk
0)∆xk

0 = −∇J(xk
0)

x
k+1
0

= xk
0 +∆xk

0

k ≥ 0

• Use approximate Hessian - Gauß-Newton method

∇J(x0) = B−1(x0 − xB
0 ) −

n
∑

i=1

Mi,0(x0)
THT

i R−1
i (yi −Hi(xi)),

and

∇∇J(x0) = B−1 +
n
∑

i=1

Mi,0(x0)
THT

i R
−1

i HiMi,0(x0).
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Relation between 4DVar and Tikhonov regularisation

4DVar minimises

J(x0) =
1

2
(x0 − xB

0 )TB−1(x0 − xB
0 ) +

1

2

n
∑

i=0

(yi −Hi(xi))
TR

−1

i (yi −Hi(xi))

subject to model dynamics xi = M0→ix0
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Relation between 4DVar and Tikhonov regularisation

4DVar minimises

J(x0) =
1

2
(x0 − xB

0 )TB−1(x0 − xB
0 ) +

1

2

n
∑

i=0

(yi −Hi(xi))
TR

−1

i (yi −Hi(xi))

subject to model dynamics xi = M0→ix0

or

J(x0) =
1

2
(x0 − xB

0 )TB−1(x0 − xB
0 ) +

1

2
(ŷ − Ĥ(x0))

T R̂−1(ŷ − Ĥ(x0))

where
Ĥ = [HT

0 , (H1M10(t1, t0))
T , . . . (HnMn0(tn, t0))

T ]T

ŷ = [yT
0 , . . . ,yT

n ]T

and R̂ is block diagonal with Ri, i = 0, . . . , n on the diagonal.
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Relation between 4DVar and Tikhonov regularisation

Solution to the optimisation problem
Cost function

J(x0) =
1

2
(x0 − xB

0 )TB−1(x0 − xB
0 ) +

1

2
(ŷ − Ĥ(x0))

T R̂−1(ŷ − Ĥ(x0))
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Relation between 4DVar and Tikhonov regularisation

Solution to the optimisation problem
Cost function

J(x0) =
1

2
(x0 − xB

0 )TB−1(x0 − xB
0 ) +

1

2
(ŷ − Ĥ(x0))

T R̂−1(ŷ − Ĥ(x0))

Gauß-Newton method

∇∇J(xk
0)∆xk

0 = −∇J(xk
0)

x
k+1
0

= xk
0 +∆xk

0
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Relation between 4DVar and Tikhonov regularisation

Solution to the optimisation problem
Cost function

J(x0) =
1

2
(x0 − xB

0 )TB−1(x0 − xB
0 ) +

1

2
(ŷ − Ĥ(x0))

T R̂−1(ŷ − Ĥ(x0))

Gauß-Newton method

(B−1 + ĤT R̂−1Ĥ)∆xk
0 = −B−1(xk

0 − xB
0 ) + ĤT R̂−1(ŷ − Ĥ(x0))

x
k+1
0

= xk
0 +∆xk

0
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Relation between 4DVar and Tikhonov regularisation

Variable transform
Set

Gauß-Newton method

(B−1 + ĤT R̂−1Ĥ)∆xk
0 = −B−1(xk

0 − xB
0 ) + ĤT R̂−1(ŷ − Ĥ(x0))

x
k+1
0

= xk
0 +∆xk

0
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Relation between 4DVar and Tikhonov regularisation

Variable transform
Set

B = σ2
BCB

R̂ = σ2
RCR

Gauß-Newton method

(B−1 + ĤT R̂−1Ĥ)∆xk
0 = −B−1(xk

0 − xB
0 ) + ĤT R̂−1(ŷ − Ĥ(x0))

x
k+1
0

= xk
0 +∆xk

0
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Relation between 4DVar and Tikhonov regularisation

Variable transform
Set

B = σ2
BCB

R̂ = σ2
RCR

b = C
− 1

2
R (ŷ − Ĥ(x0)

Gauß-Newton method

(B−1 + ĤT R̂−1Ĥ)∆xk
0 = −B−1(xk

0 − xB
0 ) + ĤT R̂−1(ŷ − Ĥ(x0))

x
k+1
0

= xk
0 +∆xk

0
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Relation between 4DVar and Tikhonov regularisation

Variable transform
Set

B = σ2
BCB

R̂ = σ2
RCR

b = C
− 1

2
R (ŷ − Ĥ(x0)

A = C
− 1

2
R ĤC

1
2
B

Gauß-Newton method

(B−1 + ĤT R̂−1Ĥ)∆xk
0 = −B−1(xk

0 − xB
0 ) + ĤT R̂−1(ŷ − Ĥ(x0))

x
k+1
0

= xk
0 +∆xk

0
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Relation between 4DVar and Tikhonov regularisation

Variable transform
Set

B = σ2
BCB

R̂ = σ2
RCR

b = C
− 1

2
R (ŷ − Ĥ(x0)

A = C
− 1

2
R ĤC

1
2
B

α2 =
σ2
R

σ2
B

Gauß-Newton method

(B−1 + ĤT R̂−1Ĥ)∆xk
0 = −B−1(xk

0 − xB
0 ) + ĤT R̂−1(ŷ − Ĥ(x0))

x
k+1
0

= xk
0 +∆xk

0
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Relation between 4DVar and Tikhonov regularisation

Variable transform
Set

B = σ2
BCB

R̂ = σ2
RCR

b = C
− 1

2
R (ŷ − Ĥ(x0)

A = C
− 1

2
R ĤC

1
2
B

α2 =
σ2
R

σ2
B

Gauß-Newton method

(α2I +ATA)C
− 1

2
B ∆xk

0 = −α2C
− 1

2
B (xk

0 − xB
0 ) +ATb

x
k+1
0

= xk
0 +∆xk

0
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Relation between 4DVar and Tikhonov regularisation

Variable transform

zk = C
− 1

2
B (xk

0 − xB
0 )

Gauß-Newton method

(α2I +ATA)C
− 1

2
B ∆xk

0 = −α2C
− 1

2
B (xk

0 − xB
0 ) +ATb

x
k+1
0

= xk
0 +∆xk

0
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Relation between 4DVar and Tikhonov regularisation

Variable transform
Set

zk = C
− 1

2
B (xk

0 − xB
0 )

Gauß-Newton method

(α2I+ATA)(zk+1 − zk) = −α2zk +ATb
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Relation between 4DVar and Tikhonov regularisation

Variable transform
Set

zk = C
− 1

2
B (xk

0 − xB
0 )

Gauß-Newton method

(α2I+ATA)(zk+1 − zk) = −α2zk +ATb

Normal equations
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Relation between 4DVar and Tikhonov regularisation

Variable transform
Set

zk = C
− 1

2
B (xk

0 − xB
0 )

Gauß-Newton method

(α2I+ATA)(zk+1 − zk) = −α2zk +ATb

Normal equations

Least squares solution

∥

∥

∥

∥

[

A

αI

]

(zk+1 − zk) +

[

−b

αzk

]
∥

∥

∥

∥

2

2

→ min

at each Gauß-Newton method step

Melina Freitag Tikhonov Regularisation for (Large) Inverse Problems



Outline Inverse Problems Data Assimilation Regularisation Parameter L1-norm regularisation

Relation between 4DVar and Tikhonov regularisation

Variable transform
Set

zk = C
− 1

2
B (xk

0 − xB
0 )

Gauß-Newton method

(α2I+ATA)(zk+1 − zk) = −α2zk +ATb

Normal equations

Least squares solution

∥

∥

∥

∥

[

A

αI

]

(zk+1 − zk) +

[

−b

αzk

]
∥

∥

∥

∥

2

2

→ min

at each Gauß-Newton method step or

‖Azk+1 − (Azk + b)‖22 + α2‖zk+1‖22

Tikhonov regularisation
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Relation between 4DVar and Tikhonov regularisation

Variable transform
Set

zk = C
− 1

2
B (xk

0 − xB
0 )

Gauß-Newton method

(α2I+ATA)(zk+1 − zk) = −α2zk +ATb

Normal equations

Least squares solution

∥

∥

∥

∥

[

A

αI

]

(zk+1 − zk) +

[

−b

αzk

]
∥

∥

∥

∥

2

2

→ min

at each Gauß-Newton method step or

‖Azk+1 − g‖22 + α2‖zk+1‖22

Tikhonov regularisation
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Summary

Minimising the cost function

J(x0) =
1

2
(x0 − xB

0 )TB−1(x0 − xB
0 ) +

1

2
(ŷ − Ĥ(x0))

T R̂−1(ŷ − Ĥ(x0))

amounts to solving a Tikhonov regularised least squares problem at every step

‖Azk+1 − g‖22 + α2‖zk+1‖22
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Data Assimilation and Tikhonov regularisation

Issues

• Dynamic vs static
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Data Assimilation and Tikhonov regularisation

Issues

• Dynamic vs static

• Nonlinear Dynamics (and chaotic)
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Data Assimilation and Tikhonov regularisation

Issues

• Dynamic vs static

• Nonlinear Dynamics (and chaotic)

• Multiscale and Large Scale
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Data Assimilation and Tikhonov regularisation

Issues

• Dynamic vs static

• Nonlinear Dynamics (and chaotic)

• Multiscale and Large Scale

• Many unknown parameters (B ...)
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Data Assimilation and Tikhonov regularisation

Issues

• Dynamic vs static

• Nonlinear Dynamics (and chaotic)

• Multiscale and Large Scale

• Many unknown parameters (B ...)

• Model error
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Data Assimilation and Tikhonov regularisation

Issues

• Dynamic vs static

• Nonlinear Dynamics (and chaotic)

• Multiscale and Large Scale

• Many unknown parameters (B ...)

• Model error

Previous/current work
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Data Assimilation and Tikhonov regularisation

Issues

• Dynamic vs static

• Nonlinear Dynamics (and chaotic)

• Multiscale and Large Scale

• Many unknown parameters (B ...)

• Model error

Previous/current work

• Low Rank Kalman Filters [Houtekamer, Mitchell 1998]
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Data Assimilation and Tikhonov regularisation

Issues

• Dynamic vs static

• Nonlinear Dynamics (and chaotic)

• Multiscale and Large Scale

• Many unknown parameters (B ...)

• Model error

Previous/current work

• Low Rank Kalman Filters [Houtekamer, Mitchell 1998]

• Model Order Reduction [Boess, Lawless, Nichols, Bunse-Gerstner 2008, 2010]
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Data Assimilation and Tikhonov regularisation

Issues

• Dynamic vs static

• Nonlinear Dynamics (and chaotic)

• Multiscale and Large Scale

• Many unknown parameters (B ...)

• Model error

Previous/current work

• Low Rank Kalman Filters [Houtekamer, Mitchell 1998]

• Model Order Reduction [Boess, Lawless, Nichols, Bunse-Gerstner 2008, 2010]

• Preconditioners [Haben, Lawless, Nichols 2010]
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Data Assimilation and Tikhonov regularisation

Issues

• Dynamic vs static

• Nonlinear Dynamics (and chaotic)

• Multiscale and Large Scale

• Many unknown parameters (B ...)

• Model error

Previous/current work

• Low Rank Kalman Filters [Houtekamer, Mitchell 1998]

• Model Order Reduction [Boess, Lawless, Nichols, Bunse-Gerstner 2008, 2010]

• Preconditioners [Haben, Lawless, Nichols 2010]

• Regularisation Parameter Estimation
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Data Assimilation and Tikhonov regularisation

Issues

• Dynamic vs static

• Nonlinear Dynamics (and chaotic)

• Multiscale and Large Scale

• Many unknown parameters (B ...)

• Model error

Previous/current work

• Low Rank Kalman Filters [Houtekamer, Mitchell 1998]

• Model Order Reduction [Boess, Lawless, Nichols, Bunse-Gerstner 2008, 2010]

• Preconditioners [Haben, Lawless, Nichols 2010]

• Regularisation Parameter Estimation

• L1-Norm Regularisation
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Outline

Inverse Problems

Data Assimilation as a Large Inverse Problem

Regularisation Parameter estimation in 4DVar
Regularisation Parameter estimation
Example

Application of L1-norm regularisation in 4DVar
Motivation: Results from image processing
L1-norm regularisation in 4DVar
Examples
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Choosing the regularisation parameter α

‖Af − g‖22 + α2‖f‖22
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Generalised Cross-Validation (Golub, Heath, Wahba 1979) GCV

• If a data value is omitted, then a good choice of the reconstruction should be
able to predict the missing data value as well

Melina Freitag Tikhonov Regularisation for (Large) Inverse Problems



Outline Inverse Problems Data Assimilation Regularisation Parameter L1-norm regularisation

Generalised Cross-Validation (Golub, Heath, Wahba 1979) GCV

• If a data value is omitted, then a good choice of the reconstruction should be
able to predict the missing data value as well

• Minimise the GCV functional

G(α) =
‖(I −AVΨΣ−1UT )g‖2

(trace(I−AVΨΣ−1UT ))2
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Generalised Cross-Validation (Golub, Heath, Wahba 1979) GCV

• If a data value is omitted, then a good choice of the reconstruction should be
able to predict the missing data value as well

• Minimise the GCV functional

G(α) =
‖(I −AVΨΣ−1UT )g‖2

(trace(I−AVΨΣ−1UT ))2

G(α) =

∑N
i=1

(

uT
i g

σ2
i
+α2

)2

(

∑N
i=1

1

σ2
i
+α2

)2
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Generalised Cross-Validation (Golub, Heath, Wahba 1979) GCV
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Figure: Parameter estimation using GCV
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L-Curve Criterion (Hansen 1992)

• Log-log plot of the norm of the regularised solution ‖f‖ versus the
corresponding residual norm ‖Af − g‖
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L-Curve Criterion (Hansen 1992)

• Log-log plot of the norm of the regularised solution ‖f‖ versus the
corresponding residual norm ‖Af − g‖

• Best value of α determined by maximum curvature

R(α) = log ‖Afα − g‖2 S(α) = log ‖fα‖
2

k(α) =
R′′(α)S′(α) − R′(α)S′′(α)

(R′(α)2 + S′(α))3/2
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L-Curve Criterion (Hansen 1992)
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Figure: Parameter estimation using L-Curve
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Discrepancy Principle (Morozov 1966)

• Choose a regularised solution such that

‖g −Afα‖2 = τδ

where 2 ≤ τ ≤ 5
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Discrepancy Principle (Morozov 1966)

• Choose a regularised solution such that

‖g −Afα‖2 = τδ

where 2 ≤ τ ≤ 5

• δ is the expected value of the error ‖e‖
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Discrepancy Principle (Morozov 1966)

• Choose a regularised solution such that

‖g −Afα‖2 = τδ

where 2 ≤ τ ≤ 5

• δ is the expected value of the error ‖e‖

• Apply iterative method to g = Af
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Discrepancy Principle (Morozov 1966)

• Choose a regularised solution such that

‖g −Afα‖2 = τδ

where 2 ≤ τ ≤ 5

• δ is the expected value of the error ‖e‖

• Apply iterative method to g = Af

• First steps: reduce the residual error in the singular direction associated with
larger singular values
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Discrepancy Principle (Morozov 1966)

• Choose a regularised solution such that

‖g −Afα‖2 = τδ

where 2 ≤ τ ≤ 5

• δ is the expected value of the error ‖e‖

• Apply iterative method to g = Af

• First steps: reduce the residual error in the singular direction associated with
larger singular values

• Latter steps: singular direction associated to smaller singular values are fitted
- truncate the iteration before the amplified noise takes over
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Discrepancy Principle (Morozov 1966)
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Figure: Parameter estimation using Discrepancy Principle
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N-dimensional (chaotic) Lorenz system (Lorenz-95)

The system is given by

dXi

dt
= −Xi−2Xi−1 +Xi−1Xi+1 −Xi + F, i = 1, . . . , N,

cyclic boundary conditions X0 = XN , X−1 = XN+1, XN+1 = X1.

• F = 8, N = 40 (13 positive Lyapunov exponents).

• solver: Runge-Kutta method with time step h = 0.01

Melina Freitag Tikhonov Regularisation for (Large) Inverse Problems



Outline Inverse Problems Data Assimilation Regularisation Parameter L1-norm regularisation

N-dimensional (chaotic) Lorenz system (Lorenz-95)

The system is given by

dXi

dt
= −Xi−2Xi−1 +Xi−1Xi+1 −Xi + F, i = 1, . . . , N,

cyclic boundary conditions X0 = XN , X−1 = XN+1, XN+1 = X1.

• F = 8, N = 40 (13 positive Lyapunov exponents).

• solver: Runge-Kutta method with time step h = 0.01

• a unit time T = 1 is associated with 5 days

• assimilation window: 5 time steps (associated with 6 hours)

• subsequent forecast: 95 time steps (associated with 5 day forecast)
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N-dimensional (chaotic) Lorenz system (Lorenz-95)

The system is given by

dXi

dt
= −Xi−2Xi−1 +Xi−1Xi+1 −Xi + F, i = 1, . . . , N,

cyclic boundary conditions X0 = XN , X−1 = XN+1, XN+1 = X1.

• F = 8, N = 40 (13 positive Lyapunov exponents).

• solver: Runge-Kutta method with time step h = 0.01

• a unit time T = 1 is associated with 5 days

• assimilation window: 5 time steps (associated with 6 hours)

• subsequent forecast: 95 time steps (associated with 5 day forecast)

• observations are taken as noise from the truth trajectory
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N-dimensional (chaotic) Lorenz system (Lorenz-95)

The system is given by

dXi

dt
= −Xi−2Xi−1 +Xi−1Xi+1 −Xi + F, i = 1, . . . , N,

cyclic boundary conditions X0 = XN , X−1 = XN+1, XN+1 = X1.

• F = 8, N = 40 (13 positive Lyapunov exponents).

• solver: Runge-Kutta method with time step h = 0.01

• a unit time T = 1 is associated with 5 days

• assimilation window: 5 time steps (associated with 6 hours)

• subsequent forecast: 95 time steps (associated with 5 day forecast)

• observations are taken as noise from the truth trajectory

• Model error introduced by parameter change Fmod = 12.
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Lorenz-95 dynamics
The system is given by

dXi

dt
= −Xi−2Xi−1 +Xi−1Xi+1 −Xi + F, i = 1, . . . , N,

cyclic boundary conditions X0 = XN , X−1 = XN+1, XN+1 = X1.
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Lorenz-95 dynamics
The system is given by

dXi

dt
= −Xi−2Xi−1 +Xi−1Xi+1 −Xi + F, i = 1, . . . , N,

cyclic boundary conditions X0 = XN , X−1 = XN+1, XN+1 = X1.
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Initial condition error

Observation frequency 4DVAR Discrepancy Principle GCV L-Curve
every 10 points 0.7729 0.7608 0.7394 0.8101
every 5 points 0.8043 0.6725 0.6510 0.7727
every 2 points 0.5492 0.3309 0.2812 0.4469

Table: Comparison RMS error - no model error in the Lorenz system
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Comparison - no model error in the Lorenz system

time (non−dimensional)
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Initial condition error

Observation frequency 4DVAR Discrepancy Principle GCV L-Curve
every 10 points 3.4641 3.4156 6.1941 0.8579
every 5 points 5.3430 4.4666 6.0010 0.8651
every 2 points 26.5536 5.8955 11.0836 0.7630

Table: Comparison RMS error - with model error in the Lorenz system

Melina Freitag Tikhonov Regularisation for (Large) Inverse Problems



Outline Inverse Problems Data Assimilation Regularisation Parameter L1-norm regularisation

Comparison - with model error in the Lorenz system

time (non−dimensional)
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Outline

Inverse Problems

Data Assimilation as a Large Inverse Problem

Regularisation Parameter estimation in 4DVar
Regularisation Parameter estimation
Example

Application of L1-norm regularisation in 4DVar
Motivation: Results from image processing
L1-norm regularisation in 4DVar
Examples
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Results from image deblurring: L1 regularisation

Figure: Blurred picture
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Results from image deblurring: L1 regularisation

Figure: Tikhonov regularisation min
{

‖Ax − b‖2
2 + α‖x‖2

2

}
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Results from image deblurring: L1 regularisation

Figure: L1-norm regularisation min
{

‖Ax − b‖2
2 + α‖x‖1

}
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L1 regularisation

In image processing, L1-norm regularisation provides edge preserving image
deblurring!

• 4DVar smears out sharp fronts
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L1 regularisation

In image processing, L1-norm regularisation provides edge preserving image
deblurring!

• 4DVar smears out sharp fronts

• L1-norm regularisation has the potential to overcome this problem!
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2 Regularisation Methods

4DVar

min
zk+1

‖Azk+1 − c‖22 + α2‖zk+1‖22
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2 Regularisation Methods

4DVar

min
zk+1

‖Azk+1 − c‖22 + α2‖zk+1‖22

Total Variation regularisation

min
zk+1

‖Azk+1 − c‖22 + α2‖zk+1‖22 + β‖Dx
k+1
0

‖1

where xk+1
0

= C
1
2
Bzk+1 + xB

0
and D is a matrix approximating the derivative of

the solution.
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Least mixed norm solutions

Solve
min
zk+1

‖Azk+1 − c‖22 + α2‖zk+1‖22

using Least squares and

min
zk+1

‖Azk+1 − c‖22 + α2‖zk+1‖22 + β‖Dx
k+1
0

‖1

using quadratic programming (see Fu/Ng/Nikolova/Barlow 2006).
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Least mixed norm solutions

Consider
min
zk+1

‖Azk+1 − c‖22 + β‖Dx
k+1
0

‖1

where xk+1
0

= C
1
2
Bzk+1 + xB

0
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Least mixed norm solutions

Consider
min
zk+1

‖Azk+1 − c‖22 + β‖Dx
k+1
0

‖1

where xk+1
0

= C
1
2
Bzk+1 + xB

0

min
zk+1

‖Azk+1 − c‖22 + β‖DC
1
2
Bzk+1 +DxB

0 ‖1

Melina Freitag Tikhonov Regularisation for (Large) Inverse Problems



Outline Inverse Problems Data Assimilation Regularisation Parameter L1-norm regularisation

Least mixed norm solutions

Consider
min
zk+1

‖Azk+1 − c‖22 + β‖Dx
k+1
0

‖1

where xk+1
0

= C
1
2
Bzk+1 + xB

0

min
zk+1

‖Azk+1 − c‖22 + β‖DC
1
2
Bzk+1 +DxB

0 ‖1

Set

v = βDC
1
2
Bzk+1 + βDxB

0 .

and split v into its positive and negative part:

v = v+ − v−

where

v+ = max(v, 0)

v− = max(−v, 0)
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Least mixed norm solutions

With

v = βDC
1
2
Bzk+1 + βDxB

0

and
v = v+ − v−

the solution to

min
zk+1

‖Azk+1 − c‖22 + β‖DC
1
2
Bzk+1 +DxB

0 ‖1

is equivalent to
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Least mixed norm solutions

With

v = βDC
1
2
Bzk+1 + βDxB

0

and
v = v+ − v−

the solution to

min
zk+1

‖Azk+1 − c‖22 + β‖DC
1
2
Bzk+1 +DxB

0 ‖1

is equivalent to

min
zk+1,v+,v−

{

1Tv+ + 1Tv− + ‖Azk+1 − c‖22

}

subject to

βDC
1
2
Bzk+1 + βDxB

0 = v+ − v−

v+,v− ≥ 0.
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Least mixed norm solutions

min
zk+1,v+,v−

{

1Tv+ + 1Tv− + ‖Azk+1 − c‖22

}

subject to

βDC
1
2
Bzk+1 + βDxB

0 = v+ − v−

v+,v− ≥ 0.

or
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Least mixed norm solutions

min
zk+1,v+,v−

{

1Tv+ + 1Tv− + ‖Azk+1 − c‖22

}

subject to

βDC
1
2
Bzk+1 + βDxB

0 = v+ − v−

v+,v− ≥ 0.

or

min
w

{

1

2
wTGw+ lTw

}

subject to
Ew = k and Fw ≥ 0.

where

G =





2ATA

0

0



 , l =





−2ATb

1

1



 , F =





0

−I

−I





E =
[

βDC
1
2
B −I I

]

w =
[

zk+1 v+ v−]T
k = −βDxB

0
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Example 1 - Linear advection equation

ut + uz = 0,

on the interval z ∈ [0, 1], with periodic boundary conditions. The initial solution is
a square wave defined by

u(z, 0) =

{

0.5 0.25 < z < 0.5

−0.5 z < 0.25 or z > 0.5.

This wave moves through the time interval, the model equations are defined by
the upwind scheme

Un+1

j = Un
j −

∆t

∆z
(Un

j − Un
j−1),

Un+1
0

= Un+1

N ,

where j = 1, . . . , N , ∆z = 1

N
and n is the number of time steps. We take

N = 100, ∆t = 0.005.
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Setup

• length of the assimilation window: 40 time steps

• perfect observations, noisy and sparse observations

• R = 0.01.

• B = I and B = 0.1e
− |i−j|

2L2 , where L = 5
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4DVar - perfect and full observations, B = I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

 

 
Truth
Imperfect model
Final solution

Figure: t = 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

 

 
Truth
Imperfect model
Final solution

Figure: t = 20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

 

 
Truth
Imperfect model
Final solution

Figure: t = 40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

 

 
Truth
Imperfect model
Final solution

Figure: t = 80

Melina Freitag Tikhonov Regularisation for (Large) Inverse Problems



Outline Inverse Problems Data Assimilation Regularisation Parameter L1-norm regularisation

L1 - perfect and full observations, B = I
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4DVar - noisy and sparse observations, B = I
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L1 - noisy and sparse observations, B = I
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4DVar - perfect and full observations, B = 0.1e−
|i−j|
2L2
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L1 - perfect and full observations, B = 0.1e−
|i−j|
2L2
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4DVar - noisy and sparse observations, B = 0.1e−
|i−j|
2L2
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L1 - noisy and sparse observations, B = 0.1e−
|i−j|
2L2
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Example 2 - Burgers’ equation

ut + u
∂u

∂x
= u+ f(u)x = 0, f(u) =

1

2
u2

with initial conditions

u(x, 0) =

{

2 0 ≤ x < 2.5

0.5 2.5 ≤ x ≤ 10.

Discretising

x(j) = 10(j − 1/2)∆x; U0(x(j)) =

{

2 0 ≤ x(j) < 2.5

0.5 2.5 ≤ x(j) ≤ 10.

where j = 1, . . . , N , ∆x = 1

N
and n is the number of time steps. We take

N = 100, ∆t = 0.001.
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Exact solution and model error

Exact solution - method of characteristics
Riemann problem

u(x, t) =

{

2 0 ≤ x < 2.5 + st

0.5 2.5 + st ≤ x ≤ 10,

where s = 1.25

Numerical solution - model error

• the Lax-Friedrichs method (smearing out the shock)

Un+1

j =
1

2
(Un

j−1 + Un
j+1)−

∆t

2∆x
(f(Un

j+1)− f(Un
j−1)).

• the Lax-Wendroff method (oscillations near the shock).

Un+1

j = Un
j −

∆t

2∆x
(f(Un

j+1)− f(Un
j−1))+

∆t2

2∆x2

(

Aj+ 1
2
(f(Un

j+1)− f(Un
j )) − Aj− 1

2
(f(Un

j )− f(Un
j−1))
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Visualisation - Truth trajectory and numerical solution

Lax-Friedrichs method
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Visualisation - Truth trajectory and numerical solution

Lax-Friedrichs method
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Figure: t = 25Lax-Wendroff method
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Figure: t = 25
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Visualisation - Truth trajectory and numerical solution

Lax-Friedrichs method
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Figure: t = 50Lax-Wendroff method
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Visualisation - Truth trajectory and numerical solution

Lax-Friedrichs method
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Figure: t = 100Lax-Wendroff method
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Figure: t = 100
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Visualisation - Truth trajectory and numerical solution

Lax-Friedrichs method
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Figure: t = 200Lax-Wendroff method
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Figure: t = 200
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Setup

• length of the assimilation window: 100 time steps

• noisy and sparse observations

• R = 0.01.

• B = 0.1e
− |i−j|

2L2 , where L = 5
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Lax-Friedrichs method
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4DVar - noisy and sparse observations, B = 0.1e−
|i−j|
2L2
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Figure: t = 50
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L1 - noisy and sparse observations, B = 0.1e−
|i−j|
2L2
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Lax-Wendroff method
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4DVar - noisy and sparse observations, B = 0.1e−
|i−j|
2L2
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L1 - noisy and sparse observations, B = 0.1e−
|i−j|
2L2
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Conclusions and further work

Conclusions

• regularisation parameter estimation methods improve 4DVar analysis

• L1-norm regularisation recovers discontinuity better than 4DVar
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• L1-norm regularisation recovers discontinuity better than 4DVar
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• Further work: analysis of methods; convergence

• Extension to 2D, 3D
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Conclusions and further work

Conclusions

• regularisation parameter estimation methods improve 4DVar analysis

• L1-norm regularisation recovers discontinuity better than 4DVar

Future work

• Further work: analysis of methods; convergence

• Extension to 2D, 3D

• Multiscale methods
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Weather forecast

Figure: Weather forecast for Europe for Wednesday lunchtime
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Thank you.
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Thank you.

Workshop 2: October 24-28, 2011
Large-Scale Inverse Problems and Applications in the Earth Sciences
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