A new algorithm for calculating the distance to instability
and the distance to a nearby defective matrix

Melina Freitag

Department of Mathematical Sciences
University of Bath

Householder Symposium XVIII, Tahoe City, California
15th June 2011

joint work with Alastair Spence

UNIVERSITY OF @X
B A @ GREAT WESTERN

RESEARCH

of Bath




Part 1

Distance to instability




Introduction

Distance to instability
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m Measure of stability: distance of A to instability

Define spectral abscissa
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Introduction

Distance to instability

= Stability of matrix A € C**™: A(A) in open left half plane
m Measure of stability: distance of A to instability

Define spectral abscissa

n(A) := max{Re(A\) | A € A(A)}

Distance to instability

Distance of a stable matrix A to instability

B(A) = min{||E|||n(A+ E) =0, E € C"*"}

m If n(A) is negative, A is stable.

m If A+ F has an eigenvalue on the imaginary axis, F is destabilising
perturbation
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m For a destabilising perturbation F

(A+E—-wil)z=0,

for some w € R and z € C".
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Distance to instability - known results

m For a destabilising perturbation F
(A+E—-wil)z=0,

for some w € R and z € C".

m Measure for distance to instability of a matrix (Van Loan 1984),

B(A) = miﬁ Omin(A — wil),

we

where omin (A — wil) is the smallest singular value of A — wil.
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oduction

Distance to instability - known results

m For a destabilising perturbation F
(A+E—-wil)z=0,

for some w € R and z € C".

m Measure for distance to instability of a matrix (Van Loan 1984),

B(A) = min omin (A — wil),

weR

where omin (A — wil) is the smallest singular value of A — wil.

Theorem (Byers 1988)

The 2n x 2n Hamiltonian matriz

e =| & 4 |

has an eigenvalue on the imaginary azis if and only if « > B(A).
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Introduction

Results on H(«)

If H(a) has a pure imaginary eigenvalue wi, then from

A —al v A @
L ][]
H(a)
it follows that
(A—wil)v=0u and (A—wil)Pu= av.
If " is the minimum value of a at which H(«) has a pure imaginary
eigenvalue w*i with corresponding =™ = [ Z: ] then o = B(A).

Assume o = (A) is unique.
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Background

Existing numerical methods

m Bisection approach by Byers
m choose lower and upper bound on « (0 and omin(A))
= take mean value s and calculate all the eigenvalues of H(s), update
lower and upper bound according to pure imaginary eigenvalues of H(s)
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Background

Existing numerical methods

m Bisection approach by Byers

m choose lower and upper bound on « (0 and omin(A))
= take mean value s and calculate all the eigenvalues of H(s), update
lower and upper bound according to pure imaginary eigenvalues of H(s)

= Boyd/Balakrishnan method

® given an upper bound a > B(A), compute all pure imaginary eigenvalues
w1, iwa, . .., 1w, of H(a) ordered so that w1 <wsz < ... <wy

Wh+ W41 =
%7 k=1,.

= set s = ..l —1 and update o = ming opmin (A — sgil)
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Background

Existing numerical methods

m Bisection approach by Byers

m choose lower and upper bound on « (0 and omin(A))
= take mean value s and calculate all the eigenvalues of H(s), update
lower and upper bound according to pure imaginary eigenvalues of H(s)

= Boyd/Balakrishnan method

® given an upper bound a > B(A), compute all pure imaginary eigenvalues
w1, iwa, . .., 1w, of H(a) ordered so that w1 <wsz < ... <wy

Wh+ W41
2

= set s = ,k=1,...1 —1 and update & = ming opin(A — sgil)

= He/Watson algorithm
» find the minimum of f(w) = omin(A — wil)
m uses inverse iteration algorithm to find a stationary w
m check on all the corresponding eigenvalues of H («)
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Background

Results on H(

T & . . . A —al .
(wi, x) is a defective eigenpair of H(a) = ol —AH of algebraic

multiplicity 2.
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Results on H(«)

T & . . . A —al .
(wi, z) is a defective eigenpair of H(a) = ol —AH of algebraic

multiplicity 2.
(H(a) —wil)z =0, z#0, and dimker(H(a)—wil)=1,

yH(H(a)—wiI)ZO, y#0, and yiz =0,

0 In}

y=Jzx, J:[—In 0
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Background

Results on H(«)

T & . . . A —al .
(wi, z) is a defective eigenpair of H(a) = ol —AH of algebraic

multiplicity 2.
(H(a) —wil)z =0, z#0, and dimker(H(a)—wil)=1,
y?(H(a) —wil) =0, y#0, and y"z=0,

0 In}

y=Jzx, J:[—In 0

(H(a) —wil)z =z, and y"2#0,
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Background

Results on H(«)

How do we find a 2-dimensional Jordan block in H (a)?

(H(a) —wil)x =0, x#0,
—_————

H(w,x)

by unstabl



Background

Bordered systems

is nonsingular if ¢z # 0 and y*b # 0 and rank(B()\)) = n — 1.
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Background

Bordered systems

One-parameter problem B(\)z = 0 or y B()\) = 07 (

Bordered system

is nonsingular if ¢z # 0 and yb # 0 and rank(B()\)) = n — 1. Cramer’s
rule

_ det(B()))
F) = det(M(N))’
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Background

Bordered systems

One-parameter problem B(\)z = 0 or y B()\) = 07 (

Bordered system

—_————
M(X)
is nonsingular if ¢z # 0 and yb # 0 and rank(B()\)) = n — 1. Cramer’s
rule
FO) = det(B(\))
det(M(N))’
Solve

f(A) =0 instead of det(B(X)) =0.

Melina Fre University of Bath




Background

Bordered systems

One-parameter problem B(\)z = 0 or y B()\) = 07 (

Bordered system

—_————
M(A)
is nonsingular if ¢z # 0 and yb # 0 and rank(B()\)) = n — 1. Cramer’s
rule
FO) = det(B(N))
det(M(N))’
Solve
f(A) =0 instead of det(B(X)) =0.

At f(A) =0:

B(\)z(\) = 0.
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Background

Bordered systems

One-parameter problem B(\)z = 0 or y B()\) = 07 (

Bordered system

—_————
M(A)
is nonsingular if ¢z # 0 and yb # 0 and rank(B()\)) = n — 1. Cramer’s
rule
FO) = det(B(N))
det(M(N))’
Solve
f(A) =0 instead of det(B(X)) =0.

At f(A) =0:

B(\)z(\) = 0.

Solve f()\) = 0 using Newton’s method AT = \ — F .
()

Melina Fre University of Bath




Background

Results on H(«)

How do we find a 2-dimensional Jordan block in H (a)?

(H(a) —wil)x =0, x#0,
—_————

H(w,x)

by unstabl
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The bordered matrix




Implicit Determinant Method

The bordered matrix

parameter problem)

m Let (w,a,z) solve
(H(a) —wil)z =0, z#0,

m Zero is a double eigenvalue of H(a) — wil belonging to a 2-dimensional
Jordan block with

yTe =0, for ye ker(H(a)—wil)™\ {0}.
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Implicit Determinant Method

The bordered matrix

parameter problem)

m Let (w,a,z) solve
(H(a) —wil)z =0, z#0,

m Zero is a double eigenvalue of H(a) — wil belonging to a 2-dimensional
Jordan block with

yTe =0, for ye ker(H(a)—wil)™\ {0}.

m For some c € C" assume
H
¢’z #0.
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Implicit Determinant Method

The bordered matrix

Theorem (Two-parameter problem)

m Let (w,a,z) solve
(H(a) —wil)z =0, z#0,

m Zero is a double eigenvalue of H(a) — wil belonging to a 2-dimensional
Jordan block with

yTe =0, for ye ker(H(a)—wil)™\ {0}.

m For some c € C" assume
H
¢’z #0.

Then the bordered matriz

H(a) —wil Jc 0 y/
= [ M0 %] o[ 8 5]

s monsingular.
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Implicit Determinant Method

The implicit determinant method

H(w,a)r =0 or det(H(w,a))=0
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Implicit Determinant Method

The implicit determinant method

H(w,a)r =0 or det(H(w,a))=0

Bordered system

of Bath




Implicit Determinant Method

The implicit determinant method

Two-parameter

H(w,a)r =0 or det(H(w,a))=0

Bordered system

# 0 flw,a)
M(w,a)
Cramer’s rule
Flw,a) = det(H (w, a))
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Implicit Determinant Method

The implicit determinant method

Two-parameter p

H(w,a)r =0 or det(H(w,a))=0

Bordered system

" 0 flw, @)

M(w,a)
Cramer’s rule il
Solve

f(w,a) =0 instead of det(H(w,q)) =0,
where
f(w,a) = 2(w,a)" J(H(a) — wil)z(w,a)

is real.

y of Bath




Implicit Determinant Method

The implicit determinant method

Differentiate the linea:

Differentiate [ H(a) = wil  Je } [ T

0 .
oH 0 } = [ 1 ] with respect to w:

H 0

[ H(a) —wil Je } [ xwé
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Implicit Determinant Method

The implicit determinant method

Differentiate the linea:

Differentiate [ H(a) = wil  Je } [ T

0 .
oH 0 } = [ 1 ] with respect to w

c 0

[ H(a) —wil Je } [ xwé

First row
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Implicit Determinant Method

The implicit determinant method

Differentiate the linea:

Differentiate [ H (O‘i; el ‘{)c } [ ?EZ’Z; } = [ (1) ] with respect to w
g 4] 5 )[4

First row
folw,@) = iy"z=0,
because of Jordan block of dimension 2.
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Implicit Determinant Method

The implicit determinant method

Differentiate the linea:

Differentiate [ H(O‘)c; wil Jc } [

First row
folw,@) = iy"z=0,
because of Jordan block of dimension 2. Solve

} = [ (1) ] with respect to w:
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Implicit Determinant Method

The implicit determinant method

Differentiate [ H(O‘)c; wil Jc } [

} = [ (1) ] with respect to w:

First row
folw,@) = iy"z=0,
because of Jordan block of dimension 2. Solve
_ | flwa) | _

g(w,a) = |: folw,a) | = 0.
Also,

(H(a) — wil)zy(w, o) = iz,
and y7z.,(w,a) # 0, hence fuw(w,a) # 0.

y of Bath



Implicit Determinant Method

Newton’s method for real function g in two real variables

Solve

using Newton’s method:

- @)
G(wm’a(z)){Aw }

Aa®

BT el A
ot | = o | T | Ag® |

of Bath




Implicit Determinant Method

Jacobian for Newton’s method

fu (w(i), a(i)) fa (w(i), a(i))
fow (w(i), a(i)) foo (w(i) , a(i))

Glw®, o)

University of Bath

nce to nearby unstable and defective matrices



Implicit Determinant Method

Jacobian for Newton’s method

Jacobian

@ _q® @
@ oy _ | fow,a)  fa(w™,a™)
Gw",a) = [ fww(w(i),a(i)) fwa(w(i),a(i)) .

and the Jacobian elements are evaluated by differentiating the system

e s -1

with respect to w and a.

Melina Freitag University of Bath

earby unstable and de: ve matrices



Implicit Determinant Method

Implementation

= one (sparse) LU factorisation of

[ H(aif; wil {)c }

m solve with bordered system matrix and 5 different right hand sides in
order to obtain f(w,«) and entries for Jacobian

" fw(w,a) fa(waa)
G(w7a) % [ fww(w,a) fwa(w7a) :|

m very fast quadratically convergent Newton method in 2 dimensions
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Implicit Determinant Method

Remarks

0 fa(w",a")
Joo (W™, @) fualw® a®) |’

= full-rank Jacobian G(w™,a”) =




Implicit Determinant Method

Remarks

. . s 0 fa(w®, a”)
full-rank Jacobian G(w™,a™) = Sl A & [P

- @50 = foul®,0)  fualw™0")

B fow(W*,a®) <0and fo(w*,a®) > 0.

f (w, a) =0

Figure: Curve f(w,a) =0 in the (w, a)-plane for fuu(w*,a*) <0




Implicit Determinant Method

Remarks

. . s 0 fa(w®, a”)
full-rank Jacobian G(w™,a™) = Sl A & [P

- @50 = foul®,0)  fualw™0")

B fow(W*,a®) <0and fo(w*,a®) > 0.

w f (w, a) =0

Figure: Curve f(w,a) =0 in the (w, a)-plane for fuu(w*,a*) <0

_1}] (l) ] leads to the Hermitian system

e e -1

= Multiplication by [




Implicit Determinant Method

Remarks

. . s 0 fa(w®, a”)
full-rank Jacobian G(w™,a™) = Sl A & [P

- @50 = foul®,0)  fualw™0")

B fow(W*,a®) <0and fo(w*,a®) > 0.

f (w, a) =0

Figure: Curve f(w,a) =0 in the (w, a)-plane for fuu(w*,a*) <0

_1}] (l) ] leads to the Hermitian system

e e -1

= Multiplication by [

m Test step.




Examples

Example 1

Consider
—0.4+ 61 1
1 —0.1412 1
A= 1 —1—3: 1

1 —5+1
which has eigenvalues (rounded to 3 significant digits)

A(A) = {-0.41 + 5.80i, —0.04 + 0.95¢, —0.92 — 2.62¢, —5.13 4 0.874}
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Examples

Example 1

Consider
—0.4+ 61 1
1 —0.1412 1
A= 1 —1—3: 1

1 —5+1
which has eigenvalues (rounded to 3 significant digits)
A(A) = {-0.41 + 5.80i, —0.04 + 0.95¢, —0.92 — 2.62¢, —5.13 4 0.874}

Starting values:
a® =0
w®: imaginary part of the eigenvalue of A closest to the imaginary axis

0) (0
c=z® = [ Ugw(o)’a(o)) }, where v(w®, a®) and u(w®, a?) are right
u(w', o

and left singular vectors of A — w®¢I

y of Bath




Example 1

Table: Results for Example 1.

Examples

NEWTON METHOD

o

@

[ llg(@@, a@)]

W N = O e

0.953057740164838
0.953036248966048
0.953014724735990
0.953014724704841

0

0.031887014318100
0.031887009443620
0.031887014303200

0.953014724704841

0.031887014303200

1.5949900020014e-02
2.2577279982423e-04
2.4473093206567e-09
8.2762961087551e-16




Brusselator matrix bwm200.mtx

Rightmost eigenvalues of the Brusselator matrix

K,
*
. *
*
*
*
* T ETTEE
*
*
*
* *
*
*ox *
50 40 30 20 10 0

Examples



Example 2

Table: Results for Example 2.

Examples

NEWTON METHOD

o

@

[ llg(@@, a@)]

W N = O e

2.139497522076343
2.139497522045502
2.139497522014727
2.139497522014739
2.139497522014746

0

0.000008240971700
0.000008240971687
0.000008240971689
0.000008240971691

4.191183100020208e-06
3.828424651364583e-07
1.624908978281682e-10
8.163859421299612e-11




Table: CPU times for Example 2.

Examples

“Outer” iterations

“Inner” iterations (Eigenvalue computation Total

Algorithm for Hamiltonian matrix) CPU
quantity | CPU time quantity |  CPU time time

Boyd/Balakrishnan 5 1.38 s 5 2.30 s 3.68 s
He/Watson 90 1.68 s 1 0.44 s 2.12 s
Newton 4 0.84 s il 0.45 s 1.29 s




Example 3

Orr-Sommerfeld operator

YR

L (UL —U")v = ALv,

Examples

2

L:al——'y2 and U=1-z>

where
dx?

Discretise the operator on v € [—1,1] using finite differences with v =1,

R = 1000 and n = 1000.

Rightmost eigenvalues of the Orr-Sommerfeld matrix

sity of Bath




Examples

Example 3

Convergence to w = 0.199755999447167 and o = 0.001978172281960 within
5 iterations.

Table: CPU times for Example 3.

“Outer” iterations
“Inner” iterations (Eigenvalue computation Total
Algorithm for Hamiltonian matrix) CPU
quantity | CPU time || quantity | CPU time time
Boyd /Balakrishnan 6 3.49 s 6 63.28 s 66.77 s
He/Watson 1786 244.14 s 1 10.54 s 254.68 s
Newton 5 5.67 s 1 10.33 s 16.00 s




Examples

Example 4

Tolosa matrix tols340.mtx

Rightmost eigenvalues of the Tolosa matrix

400
300

200 fw g o
100 * F* :

-100 *

** ’i *
-200
-300

-400

-1




Example 4

Examples

Convergence to w = 1.559998439945282 and o = 0.000019997968879 within

4 iterations.

Table: CPU times for Example 4.

“Outer” iterations
“Inner” iterations (Eigenvalue computation Total
Algorithm for Hamiltonian matrix) CPU
quantity | CPU time || quantity | CPU time time
Boyd /Balakrishnan 3 67.52 s 3 5.27 s 72.79 s
He/Watson > 33000 > 2230 s > 11 > 18 s > 2248 s
Newton 4 2.01 s 1 1.69 s 3.7s




Examples

Conclusions

= new algorithm for computing the distance to unstable matrix
m relies on finding a 2-dimensional Jordan block in 2-parameter matrix

m only one LU decomposition per Newton step of bordered matrix M
necessary

= numerical results show that new method outperforms earlier algorithms

sity of Bath
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Introduction

Distance to nearest defective matrix

For a matrix A € C"*™ with n distinct eigenvalues

d(A) =inf{||A— B||, B is a defective matrix}




Introduction

Distance to nearest defective matrix

For a matrix A € C"*™ with n distinct eigenvalues

d(A) =inf{||A— B||, B is a defective matrix}

m determination of the sensitivity of an eigendecomposition

= condition number of a simple eigenvalue: 1/|y™ x|, where = and y are
normalised left and right eigenvectors
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oduction

Distance to nearest defective matrix

For a matrix A € C"*"™ with n distinct eigenvalues

d(A) =inf{||A— B||, B is a defective matrix}

m determination of the sensitivity of an eigendecomposition

= condition number of a simple eigenvalue: 1/|y™ x|, where = and y are
normalised left and right eigenvectors

Relation to pseudospectrum A.(A) = {omin(A — 2zI) < &}

Ac(A) ={z€C|det(A+ E — zI) =0, for some E € C"*" with | E| < €}.
m if Ac(A) has n components, then A + F has n distinct eigenvalues for

all perturbation matrices E € C"*" with ||E| < ¢ and hence A + E is
not defective

m seek the smallest perturbation matrix E such that the pseudospectra of
A+ E coalesce.

of Bath




oduction

Distance to nearby defective - known results

Theorem (Alam,B

Let A€ C™™™ and z € C\ A(A), so that A — zI has a simple smallest

singular value € > 0 with corresponding left and right singular vectors u and
v such that

(A—zl)v=cu.

Then z is an eigenvalue of B = A — euv™ with geometric multiplicity 1 and
corresponding left and right eigenvectors u and v respectively.
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oduction

Distance to nearby defective - known results

Theorem (Alam,B

Let A€ C™™™ and z € C\ A(A), so that A — zI has a simple smallest
singular value € > 0 with corresponding left and right singular vectors u and
v such that

(A—zl)v=cu.

Then z is an eigenvalue of B = A — euv™ with geometric multiplicity 1 and
corresponding left and right eigenvectors u and v respectively.

Ifuflv =0, then z (as an eigenvalue of B) has algebraic multiplicity greater
than one, hence it is a nonderogatory defective eigenvalue of B and
|A— B| =e.

of Bath




Background

Problem

Find z € C, u,v € C" and ¢ € R such that

(A—zl)v—eu=0
ev—(A—2zI)"u=0

and

wfo=0.




Background

Problem

Find z € C, u,v € C" and ¢ € R such that

(A—zl)v—eu=0
ev—(A—2zI)"u=0

and
ufv=0.
With z = a +if
—el A—(a+ip)I w | [0
(A= (a+ip)D)E =, o || N

K(a,B,e)
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Background

Problem

Find z € C, u,v € C" and ¢ € R such that

(A—zl)v—eu=0
ev—(A—2zI)"u=0

and
ufv=0.
With z = a +if
—el A—(a+ip)I w | [0
(A= (a+ip)D)E =, o || N
K(a,B,€)

= [ ;L)L } is both a right and left null vector of K(a, 8,¢),

m if € > 0 is simple then dimker K («, 8,¢) = 1.

Melina of Bath




Background

The bordered matrix

Theorem

m Let (o, B,e,x) solve

K(a,B,e)e=0, #0,

so that dimker K (o, 8,e) =1 and z € ker(K(a, B,¢€)) \ {0}.

m For some ¢ € C*" assume
H
c x#0.

m Then the bordered Hermitian matrix

e ghe) C]

Mo pe) = | K7 ¢

is nonsingular.

Melina Fre

University of Bath

o nearby unstable and defective matrices



Implicit Determinant Method

The implicit determinant method

em (three parame

K(a,B,e)x =0 or det(K(w, f,e))=0




Implicit Determinant Method

The implicit determinant method

Parameter dependent m (three paramet

K(a,B,e)x =0 or det(K(w, f,e))=0

Bordered system

ke )R]
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Implicit Determinant Method

The implicit determinant method

rameter dependent em (three paramet

K(a,B,e)x =0 or det(K(w, f,e))=0

Bordered system

ke )R]

Cramer’s rule

_ det (K(a, f,€))
et (M(e, B,¢))’

fla, B,¢e)




Implicit Determinant Method

The implicit determinant method

Parameter dependent problem (three parameters!)

K(a,B,e)x =0 or det(K(w, f,e))=0

Bordered system
ke )R]

_ det (K(a, f,€))
et (M(e, B,¢))’

Cramer’s rule
f(a, Bse)
Solve
fle, B,e) = 0.
instead of det(K(a, 8,¢)) = 0, where f(a, 3,¢€) is real.

y of Bath




Implicit Determinant Method

The implicit determinant method

Differentiating the bo

Differentiate the bordered system

56 3] 53[0

C

with respect to a.
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Implicit Determinant Method

The implicit determinant method

Differentiate the bordered system

56 3] 53[0

c
with respect to a.

[ Hlege) « ] [ zola, B,¢) } _ v(a, B, )

0 || falepie) | T | AP
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Implicit Determinant Method

The implicit determinant method

Differentiating the bordered em with respect to « and (8

Differentiate the bordered system

e

with respect to a.

[ 5[ esg ] e |

multiply first row by 27 = [ ufl o ] from the left

Y } = u" v+ v u = 2Re(u"v).

falo,B,e) = [ u® v ] [ "

of Bath




Implicit Determinant Method

The implicit determinant method

Differentiating the bordered system with respect to o and S

Differentiate the bordered system

56 3] 53[0

c
with respect to 3.

[ 5] [piag )= | s

multiply first row by 2% = [ ufl o ] from the left

fale, B,e) = i(u" v — v u) = —2Im(u"v).

of Bath




Implicit Determinant Method

The implicit determinant method

Summ

Solution to det K (e, 8,e) = 0 with uv =0

0




Implicit Determinant Method

The implicit determinant method

Summary

Solution to det K (e, 8,e) = 0 with uv =0

0

Solution to g(«, 3,¢) = 0, where

f(a,B,¢)
g(a,ﬁ,é‘): fa(a,B,E)
fs(e, B,€)

ance to nearby un



Implicit Determinant Method

Newton’s method for real function g in three real variables

Newton’s method:

Aa®
G, 57, e®) | MY | = —g(a®,57,e®),
Ae(®
with Jacobian
¥ 2 By S
G@®, 8V, = | fad fop fa2
OO
where the Jacobian elements are evaluated by differentiating the system
K(o, B,e) ¢ z(a, Bye) | _ | 0
0| flape) | |1

with respect to o, S and e.

y of Bath




Implicit Determinant Method

Implementation

m one LU factorisation of

per Newton step
m very fast quadratically convergent Newton method in 3 dimensions

m Jacobian
0 0 e
G(OZ*,,B*,S*): f;a f;ﬁ f;e }
Ta fas  Jae

is nonsingular.




Example 1

Kahan matrix

where s" 71

Examples

=0.1 and s + ¢* = 1. We consider this matrix for n = 6.




Examples

Example 1

Kahan matrix

1 —¢c -—c —c —c

s —sc —sc —ScC

2 2 2

_ S —s‘c —s‘c
A= )

sn—l

where s"7! = 0.1 and s? + ¢ = 1. We consider this matrix for n = 6.
Starting values:

a® = 30 =

@ = Omin, u® = Umin and 0 = Umin, Where omin is the minimum
singular value of A with corresponding left and right singular vectors umin

and Vmin
c =20

lg(a®, 89 e <7, where 7=10""
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Example 1

08 -1.25
06 -15
04 -1.75
02 -2
0 -2.25
“02 -25
-0.4 -2.75
-0.6 -3
0.8 -3.25

GiR-g0 02 04 06 08 1 12

Figure: Pseudospectra plot for Kahan matrix for n = 6.
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Table: Results

for Example 1

i o) B(i) () ||g(a(i)7[g(i)75(i))|| Fcizﬁg

0 0 0 9.9694e-03 0 0

1 1.3643e-01 0 1.2145e-02 8.1049e-02 3.9318e-01

2 1.3319e-01 0 7.1339e-04 3.9165e-02 -1.0032e+-00
3 1.2767e-01 0 4.9351e-04 4.3976e-03 -4.5529e-01
4 1.2763e-01 0 4.7049e-04 8.2870e-05 -4.3191e-01
5 1.2763e-01 0 4.7049e-04 4.7344e-08 -4.3136e-01
6 1.2763e-01 0 4.7049e-04 5.3655e-15 -4.3136e-01

Examples

Eigenvalues 1.5849 x 10~ and 107! coalesce at 1.2763 x 10~! for a value of
£=4.7049 x 10~ *.
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A € C™*™ taken from Matlab A = gallery(’grcar’,n)

1
&

Figure: Pseudospectra plot for grcar matrix for n = 20.
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Table: Results for Example 2.

Examples

i o) 5(@') £ ||g(a(i>,ﬁ(i>,s(i))|| F(YB)

0 0 -2.5000e+-00 0 0 0

1 9.5854e-02 -2.3299e+00 1.7989e-02 1.3806e-01 9.9103e-01
2 1.3904e-01 -2.2465e+00 1.3564e-03 3.2308e-02 -2.3623e-01
3 1.6141e-01 -2.2042e+-00 7.2914e-04 1.1930e-02 -1.5963e-01
4 1.5554e-01 -2.1818e+-00 4.5435e-04 3.4851e-03 -2.7982e-02
5 1.5338e-01 -2.1815e+00 4.9060e-04 3.4265e-04 -2.4693e-02
6 1.5331e-01 -2.1817e+00 4.9141e-04 2.3240e-05 -2.3956e-02
7 1.5331e-01 -2.1817e+00 4.9141e-04 1.6942e-08 -2.4012e-02
8 1.5331e-01 -2.1817e+00 4.9141e-04 4.6672e-14 -2.4012e-02
9 1.5331e-01 -2.1817e+00 4.9141e-04 4.5263e-17 -2.4012e-02

Eigenvalue pairs 1.0802 x 107! £+ 2.2253 and 2.1882 x 10~* 4+ 2.1132:
coalesce at 1.5331 x 107! + 2.1817¢ for a value of € = 4.9141 x 10~
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Conclusions

m new algorithm for computing a nearby defective matrix (in our
examples: nearest defective matrix)

m only one LU decomposition per Newton step of bordered matrix M
necessary
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Thank you.




Thank you.

More on this:
Talks by M. Overton, M. Gurbuzbalaban and A. Spence tomorrow.
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