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Distance to instability
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Distance to instability

Stability of matrix A ∈ C
n×n: Λ(A) in open left half plane

Measure of stability: distance of A to instability

Define spectral abscissa

η(A) := max{Re(λ) |λ ∈ Λ(A)}
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Distance to instability

Stability of matrix A ∈ C
n×n: Λ(A) in open left half plane

Measure of stability: distance of A to instability

Define spectral abscissa

η(A) := max{Re(λ) |λ ∈ Λ(A)}

Distance to instability

Distance of a stable matrix A to instability

β(A) = min{‖E‖ | η(A+ E) = 0, E ∈ C
n×n}

If η(A) is negative, A is stable.

If A+ E has an eigenvalue on the imaginary axis, E is destabilising
perturbation
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Distance to instability - known results

For a destabilising perturbation E

(A+E − ωiI)z = 0,

for some ω ∈ R and z ∈ C
n.
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Distance to instability - known results

For a destabilising perturbation E

(A+E − ωiI)z = 0,

for some ω ∈ R and z ∈ C
n.

Measure for distance to instability of a matrix (Van Loan 1984),

β(A) = min
ω∈R

σmin(A− ωiI),

where σmin(A− ωiI) is the smallest singular value of A− ωiI .
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Distance to instability - known results

For a destabilising perturbation E

(A+E − ωiI)z = 0,

for some ω ∈ R and z ∈ C
n.

Measure for distance to instability of a matrix (Van Loan 1984),

β(A) = min
ω∈R

σmin(A− ωiI),

where σmin(A− ωiI) is the smallest singular value of A− ωiI .

Theorem (Byers 1988)

The 2n× 2n Hamiltonian matrix

H(α) =

[
A −αI
αI −AH

]

.

has an eigenvalue on the imaginary axis if and only if α ≥ β(A).
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Results on H(α)

If H(α) has a pure imaginary eigenvalue ωi, then from

[
A −αI
αI −AH

]

︸ ︷︷ ︸

H(α)

[
v
u

]

= ωi

[
v
u

]
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Results on H(α)

If H(α) has a pure imaginary eigenvalue ωi, then from

[
A −αI
αI −AH

]

︸ ︷︷ ︸

H(α)

[
v
u

]

= ωi

[
v
u

]

it follows that

(A− ωiI)v = αu and (A− ωiI)Hu = αv.

If α∗ is the minimum value of α at which H(α) has a pure imaginary

eigenvalue ω∗i with corresponding x∗ =

[
v∗

u∗

]

then α∗ = β(A).

Assume α∗ = β(A) is unique.
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Existing numerical methods

Bisection approach by Byers
choose lower and upper bound on α (0 and σmin(A))
take mean value s and calculate all the eigenvalues of H(s), update
lower and upper bound according to pure imaginary eigenvalues of H(s)
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Existing numerical methods

Bisection approach by Byers
choose lower and upper bound on α (0 and σmin(A))
take mean value s and calculate all the eigenvalues of H(s), update
lower and upper bound according to pure imaginary eigenvalues of H(s)

Boyd/Balakrishnan method
given an upper bound α ≥ β(A), compute all pure imaginary eigenvalues
iw1, iw2, . . . , iwl of H(α) ordered so that w1 ≤ w2 ≤ . . . ≤ wl

set sk =
wk+wk+1

2
, k = 1, . . . l− 1 and update α = mink σmin(A− skiI)
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Existing numerical methods

Bisection approach by Byers
choose lower and upper bound on α (0 and σmin(A))
take mean value s and calculate all the eigenvalues of H(s), update
lower and upper bound according to pure imaginary eigenvalues of H(s)

Boyd/Balakrishnan method
given an upper bound α ≥ β(A), compute all pure imaginary eigenvalues
iw1, iw2, . . . , iwl of H(α) ordered so that w1 ≤ w2 ≤ . . . ≤ wl

set sk =
wk+wk+1

2
, k = 1, . . . l− 1 and update α = mink σmin(A− skiI)

He/Watson algorithm
find the minimum of f(ω) = σmin(A− ωiI)
uses inverse iteration algorithm to find a stationary ω
check on all the corresponding eigenvalues of H(α)
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Results on H(α)

Assumption

(ωi, x) is a defective eigenpair of H(α) =

[
A −αI
αI −AH

]

of algebraic

multiplicity 2.
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Results on H(α)

Assumption

(ωi, x) is a defective eigenpair of H(α) =

[
A −αI
αI −AH

]

of algebraic

multiplicity 2.

(H(α)− ωiI)x = 0, x 6= 0, and dimker(H(α)− ωiI) = 1,

yH(H(α)− ωiI) = 0, y 6= 0, and yHx = 0,

y = Jx, J =

[
0 In

−In 0

]

,
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Results on H(α)

Assumption

(ωi, x) is a defective eigenpair of H(α) =

[
A −αI
αI −AH

]

of algebraic

multiplicity 2.

(H(α)− ωiI)x = 0, x 6= 0, and dimker(H(α)− ωiI) = 1,

yH(H(α)− ωiI) = 0, y 6= 0, and yHx = 0,

y = Jx, J =

[
0 In

−In 0

]

,

(H(α)− ωiI)x̂ = x, and yH x̂ 6= 0,
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Results on H(α)

Problem

How do we find a 2-dimensional Jordan block in H(α)?

(H(α)− ωiI)
︸ ︷︷ ︸

H(ω,α)

x = 0, x 6= 0,
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Bordered systems

One-parameter problem B(λ)x = 0 or yHB(λ) = 0H (det(B(λ)) = 0)

Bordered system
[

B(λ) b
cH 0

]

︸ ︷︷ ︸

M(λ)

[
x(λ)
f(λ)

]

=

[
0
1

]

is nonsingular if cHx 6= 0 and yHb 6= 0 and rank(B(λ)) = n− 1.
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Bordered systems

One-parameter problem B(λ)x = 0 or yHB(λ) = 0H (det(B(λ)) = 0)

Bordered system
[

B(λ) b
cH 0

]

︸ ︷︷ ︸

M(λ)

[
x(λ)
f(λ)

]

=

[
0
1

]

is nonsingular if cHx 6= 0 and yHb 6= 0 and rank(B(λ)) = n− 1. Cramer’s
rule

f(λ) =
det(B(λ))

det(M(λ))
,
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Bordered systems

One-parameter problem B(λ)x = 0 or yHB(λ) = 0H (det(B(λ)) = 0)

Bordered system
[

B(λ) b
cH 0

]

︸ ︷︷ ︸

M(λ)

[
x(λ)
f(λ)

]

=

[
0
1

]

is nonsingular if cHx 6= 0 and yHb 6= 0 and rank(B(λ)) = n− 1. Cramer’s
rule

f(λ) =
det(B(λ))

det(M(λ))
,

Solve
f(λ) = 0 instead of det(B(λ)) = 0.
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Bordered systems

One-parameter problem B(λ)x = 0 or yHB(λ) = 0H (det(B(λ)) = 0)

Bordered system
[

B(λ) b
cH 0

]

︸ ︷︷ ︸

M(λ)

[
x(λ)
f(λ)

]

=

[
0
1

]

is nonsingular if cHx 6= 0 and yHb 6= 0 and rank(B(λ)) = n− 1. Cramer’s
rule

f(λ) =
det(B(λ))

det(M(λ))
,

Solve
f(λ) = 0 instead of det(B(λ)) = 0.

At f(λ) = 0:
B(λ)x(λ) = 0.
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Bordered systems

One-parameter problem B(λ)x = 0 or yHB(λ) = 0H (det(B(λ)) = 0)

Bordered system
[

B(λ) b
cH 0

]

︸ ︷︷ ︸

M(λ)

[
x(λ)
f(λ)

]

=

[
0
1

]

is nonsingular if cHx 6= 0 and yHb 6= 0 and rank(B(λ)) = n− 1. Cramer’s
rule

f(λ) =
det(B(λ))

det(M(λ))
,

Solve
f(λ) = 0 instead of det(B(λ)) = 0.

At f(λ) = 0:
B(λ)x(λ) = 0.

Solve f(λ) = 0 using Newton’s method λ+ = λ−
f(λ)

fλ(λ)
.
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Results on H(α)

Problem

How do we find a 2-dimensional Jordan block in H(α)?

(H(α)− ωiI)
︸ ︷︷ ︸

H(ω,α)

x = 0, x 6= 0,
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The bordered matrix

Theorem (Two-parameter problem)

Let (ω, α, x) solve

(H(α)− ωiI)x = 0, x 6= 0,
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The bordered matrix

Theorem (Two-parameter problem)

Let (ω, α, x) solve

(H(α)− ωiI)x = 0, x 6= 0,

Zero is a double eigenvalue of H(α)− ωiI belonging to a 2-dimensional
Jordan block with

yHx = 0, for y ∈ ker(H(α)− ωiI)H \ {0}.
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The bordered matrix

Theorem (Two-parameter problem)

Let (ω, α, x) solve

(H(α)− ωiI)x = 0, x 6= 0,

Zero is a double eigenvalue of H(α)− ωiI belonging to a 2-dimensional
Jordan block with

yHx = 0, for y ∈ ker(H(α)− ωiI)H \ {0}.

For some c ∈ C
n assume

cHx 6= 0.
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The bordered matrix

Theorem (Two-parameter problem)

Let (ω, α, x) solve

(H(α)− ωiI)x = 0, x 6= 0,

Zero is a double eigenvalue of H(α)− ωiI belonging to a 2-dimensional
Jordan block with

yHx = 0, for y ∈ ker(H(α)− ωiI)H \ {0}.

For some c ∈ C
n assume

cHx 6= 0.

Then the bordered matrix

M(ω, α) =

[
H(α)− ωiI Jc

cH 0

]

, J =

[
0 In

−In 0

]

is nonsingular.
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The implicit determinant method

Two-parameter problem

H(ω,α)x = 0 or det(H(ω,α)) = 0
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The implicit determinant method

Two-parameter problem

H(ω,α)x = 0 or det(H(ω,α)) = 0

Bordered system

[
H(α)− ωiI Jc

cH 0

]

︸ ︷︷ ︸

M(ω,α)

[
x(ω,α)
f(ω, α)

]

=

[
0
1

]
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The implicit determinant method

Two-parameter problem

H(ω,α)x = 0 or det(H(ω,α)) = 0

Bordered system

[
H(α)− ωiI Jc

cH 0

]

︸ ︷︷ ︸

M(ω,α)

[
x(ω,α)
f(ω, α)

]

=

[
0
1

]

Cramer’s rule

f(ω, α) =
det(H(ω,α))

det(M(ω, α))
,
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The implicit determinant method

Two-parameter problem

H(ω,α)x = 0 or det(H(ω,α)) = 0

Bordered system

[
H(α)− ωiI Jc

cH 0

]

︸ ︷︷ ︸

M(ω,α)

[
x(ω,α)
f(ω, α)

]

=

[
0
1

]

Cramer’s rule

f(ω, α) =
det(H(ω,α))

det(M(ω, α))
,

Solve
f(ω, α) = 0 instead of det(H(ω,α)) = 0,

where
f(ω, α) = x(ω,α)HJ(H(α)− ωiI)x(ω,α)

is real.
Melina Freitag University of Bath
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The implicit determinant method

Differentiate the linear system

Differentiate

[
H(α)− ωiI Jc

cH 0

] [
x(ω,α)
f(ω, α)

]

=

[
0
1

]

with respect to ω:

[
H(α)− ωiI Jc

cH 0

] [
xω(ω,α)
fω(ω,α)

]

=

[
ix(ω,α)

0

]

.
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The implicit determinant method

Differentiate the linear system

Differentiate

[
H(α)− ωiI Jc

cH 0

] [
x(ω,α)
f(ω, α)

]

=

[
0
1

]

with respect to ω:

[
H(α)− ωiI Jc

cH 0

] [
xω(ω,α)
fω(ω,α)

]

=

[
ix(ω,α)

0

]

.

First row
fω(ω, α) = iyHx
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The implicit determinant method

Differentiate the linear system

Differentiate

[
H(α)− ωiI Jc

cH 0

] [
x(ω,α)
f(ω, α)

]

=

[
0
1

]

with respect to ω:

[
H(α)− ωiI Jc

cH 0

] [
xω(ω,α)
fω(ω,α)

]

=

[
ix(ω,α)

0

]

.

First row
fω(ω, α) = iyHx= 0,

because of Jordan block of dimension 2.
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The implicit determinant method

Differentiate the linear system

Differentiate

[
H(α)− ωiI Jc

cH 0

] [
x(ω,α)
f(ω, α)

]

=

[
0
1

]

with respect to ω:

[
H(α)− ωiI Jc

cH 0

] [
xω(ω,α)
fω(ω,α)

]

=

[
ix(ω,α)

0

]

.

First row
fω(ω, α) = iyHx= 0,

because of Jordan block of dimension 2. Solve

g(ω,α) =

[
f(ω, α)
fω(ω,α)

]

= 0.
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The implicit determinant method

Differentiate the linear system

Differentiate

[
H(α)− ωiI Jc

cH 0

] [
x(ω,α)
f(ω, α)

]

=

[
0
1

]

with respect to ω:

[
H(α)− ωiI Jc

cH 0

] [
xω(ω,α)
fω(ω,α)

]

=

[
ix(ω,α)

0

]

.

First row
fω(ω, α) = iyHx= 0,

because of Jordan block of dimension 2. Solve

g(ω,α) =

[
f(ω, α)
fω(ω,α)

]

= 0.

Also,
(H(α)− ωiI)xω(ω,α) = ix,

and yHxω(ω, α) 6= 0, hence fωω(ω, α) 6= 0.

Melina Freitag University of Bath

Distance to nearby unstable and defective matrices



Introduction Background Implicit Determinant Method Examples

Newton’s method for real function g in two real variables

Solve

g(ω,α) =

[
f(ω, α)
fω(ω,α)

]

= 0,

using Newton’s method:

G(ω(i), α(i))

[
∆ω(i)

∆α(i)

]

= −g(ω(i), α(i)),

[
ω(i+1)

α(i+1)

]

=

[
ω(i)

α(i)

]

+

[
∆ω(i)

∆α(i)

]

.
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Jacobian for Newton’s method

Jacobian

G(ω(i), α(i)) =

[
fω(ω

(i), α(i)) fα(ω
(i), α(i))

fωω(ω
(i), α(i)) fωα(ω

(i), α(i))

]

.
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Jacobian for Newton’s method

Jacobian

G(ω(i), α(i)) =

[
fω(ω

(i), α(i)) fα(ω
(i), α(i))

fωω(ω
(i), α(i)) fωα(ω

(i), α(i))

]

.

and the Jacobian elements are evaluated by differentiating the system

[
H(α)− ωiI Jc

cH 0

] [
x(ω,α)
f(ω, α)

]

=

[
0
1

]

,

with respect to ω and α.
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Implementation

one (sparse) LU factorisation of

[
H(α)− ωiI Jc

cH 0

]

solve with bordered system matrix and 5 different right hand sides in
order to obtain f(ω, α) and entries for Jacobian

G(ω, α) =

[
fω(ω,α) fα(ω, α)
fωω(ω,α) fωα(ω,α)

]

very fast quadratically convergent Newton method in 2 dimensions
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Remarks

full-rank Jacobian G(ω∗, α∗) =

[
0 fα(ω

∗, α∗)
fωω(ω

∗, α∗) fωα(ω
∗, α∗)

]

,
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Remarks

full-rank Jacobian G(ω∗, α∗) =

[
0 fα(ω

∗, α∗)
fωω(ω

∗, α∗) fωα(ω
∗, α∗)

]

,

fωω(ω
∗, α∗) < 0 and fα(ω

∗, α∗) > 0.

α

ω

ω*

ω
2

ω
1

αα*

f(ω,α)=0

Figure: Curve f(ω, α) = 0 in the (ω, α)-plane for fωω(ω∗, α∗) < 0
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Remarks

full-rank Jacobian G(ω∗, α∗) =

[
0 fα(ω

∗, α∗)
fωω(ω

∗, α∗) fωα(ω
∗, α∗)

]

,

fωω(ω
∗, α∗) < 0 and fα(ω

∗, α∗) > 0.

α

ω

ω*

ω
2

ω
1

αα*

f(ω,α)=0

Figure: Curve f(ω, α) = 0 in the (ω, α)-plane for fωω(ω∗, α∗) < 0

Multiplication by

[
−J 0
0H 1

]

leads to the Hermitian system

[
−JH(α) + ωiJ c

cH 0

] [
x(ω,α)
f(ω,α)

]

=

[
0
1

]

.
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Remarks

full-rank Jacobian G(ω∗, α∗) =

[
0 fα(ω

∗, α∗)
fωω(ω

∗, α∗) fωα(ω
∗, α∗)

]

,

fωω(ω
∗, α∗) < 0 and fα(ω

∗, α∗) > 0.

α

ω

ω*

ω
2

ω
1

αα*

f(ω,α)=0

Figure: Curve f(ω, α) = 0 in the (ω, α)-plane for fωω(ω∗, α∗) < 0

Multiplication by

[
−J 0
0H 1

]

leads to the Hermitian system

[
−JH(α) + ωiJ c

cH 0

] [
x(ω,α)
f(ω,α)

]

=

[
0
1

]

.

Test step.
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Example 1

Consider

A =







−0.4 + 6i 1
1 −0.1 + i 1

1 −1− 3i 1
1 −5 + i







which has eigenvalues (rounded to 3 significant digits)

Λ(A) = {−0.41 + 5.80i,−0.04 + 0.95i,−0.92 − 2.62i,−5.13 + 0.87i}
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Example 1

Consider

A =







−0.4 + 6i 1
1 −0.1 + i 1

1 −1− 3i 1
1 −5 + i







which has eigenvalues (rounded to 3 significant digits)

Λ(A) = {−0.41 + 5.80i,−0.04 + 0.95i,−0.92 − 2.62i,−5.13 + 0.87i}

Starting values:
α(0) = 0
ω(0): imaginary part of the eigenvalue of A closest to the imaginary axis

c = x(0) =

[
v(ω(0), α(0))

u(ω(0), α(0))

]

, where v(ω(0), α(0)) and u(ω(0), α(0)) are right

and left singular vectors of A− ω(0)iI
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Example 1

Table: Results for Example 1.

Newton method

i ω(i) α(i) ‖g(ω(i), α(i))‖

0 0.953057740164838 0 -
1 0.953036248966048 0.031887014318100 1.5949900020014e-02
2 0.953014724735990 0.031887009443620 2.2577279982423e-04
3 0.953014724704841 0.031887014303200 2.4473093206567e-09
4 0.953014724704841 0.031887014303200 8.2762961087551e-16
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Example 2

Brusselator matrix bwm200.mtx

−50 −40 −30 −20 −10 0
−5

−4

−3

−2

−1

0

1

2

3

4

5
Rightmost eigenvalues of the Brusselator matrix

Figure: Rightmost eigenvalues of the Brusselator matrix in Example 2.
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Example 2

Table: Results for Example 2.

Newton method

i ω(i) α(i) ‖g(ω(i), α(i))‖

0 2.139497522076343 0 -
1 2.139497522045502 0.000008240971700 4.191183100020208e-06
2 2.139497522014727 0.000008240971687 3.828424651364583e-07
3 2.139497522014739 0.000008240971689 1.624908978281682e-10
4 2.139497522014746 0.000008240971691 8.163859421299612e-11
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Example 2

Table: CPU times for Example 2.

“Outer” iterations
“Inner” iterations (Eigenvalue computation Total

Algorithm for Hamiltonian matrix) CPU
quantity CPU time quantity CPU time time

Boyd/Balakrishnan 5 1.38 s 5 2.30 s 3.68 s
He/Watson 90 1.68 s 1 0.44 s 2.12 s
Newton 4 0.84 s 1 0.45 s 1.29 s
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Example 3

Orr-Sommerfeld operator

1

γR
L2v − i(UL− U ′′)v = λLv, where L =

d2

dx2
− γ2 and U = 1− x2.

Discretise the operator on v ∈ [−1, 1] using finite differences with γ = 1,
R = 1000 and n = 1000.
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Figure: Eigenvalues of the Orr-Sommerfeld matrix in Example 3.

Melina Freitag University of Bath

Distance to nearby unstable and defective matrices



Introduction Background Implicit Determinant Method Examples

Example 3

Convergence to ω = 0.199755999447167 and α = 0.001978172281960 within
5 iterations.

Table: CPU times for Example 3.

“Outer” iterations
“Inner” iterations (Eigenvalue computation Total

Algorithm for Hamiltonian matrix) CPU
quantity CPU time quantity CPU time time

Boyd/Balakrishnan 6 3.49 s 6 63.28 s 66.77 s
He/Watson 1786 244.14 s 1 10.54 s 254.68 s
Newton 5 5.67 s 1 10.33 s 16.00 s

Melina Freitag University of Bath

Distance to nearby unstable and defective matrices



Introduction Background Implicit Determinant Method Examples

Example 4

Tolosa matrix tols340.mtx
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Figure: Eigenvalues of the Tolosa matrix in Example 4.
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Example 4

Convergence to ω = 1.559998439945282 and α = 0.000019997968879 within
4 iterations.

Table: CPU times for Example 4.

“Outer” iterations
“Inner” iterations (Eigenvalue computation Total

Algorithm for Hamiltonian matrix) CPU
quantity CPU time quantity CPU time time

Boyd/Balakrishnan 3 67.52 s 3 5.27 s 72.79 s
He/Watson > 33000 > 2230 s > 11 > 18 s > 2248 s
Newton 4 2.01 s 1 1.69 s 3.7 s
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Conclusions

new algorithm for computing the distance to unstable matrix

relies on finding a 2-dimensional Jordan block in 2-parameter matrix

only one LU decomposition per Newton step of bordered matrix M
necessary

numerical results show that new method outperforms earlier algorithms
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Part II

Distance to nearby defective matrix
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Distance to nearest defective matrix

For a matrix A ∈ C
n×n with n distinct eigenvalues

d(A) = inf{‖A−B‖, B is a defective matrix}
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Distance to nearest defective matrix

For a matrix A ∈ C
n×n with n distinct eigenvalues

d(A) = inf{‖A−B‖, B is a defective matrix}

determination of the sensitivity of an eigendecomposition

condition number of a simple eigenvalue: 1/|yHx|, where x and y are
normalised left and right eigenvectors
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Distance to nearest defective matrix

For a matrix A ∈ C
n×n with n distinct eigenvalues

d(A) = inf{‖A−B‖, B is a defective matrix}

determination of the sensitivity of an eigendecomposition

condition number of a simple eigenvalue: 1/|yHx|, where x and y are
normalised left and right eigenvectors

Relation to pseudospectrum Λε(A) = {σmin(A− zI) < ε}

Λε(A) = {z ∈ C |det(A+ E − zI) = 0, for some E ∈ C
n×n with ‖E‖ < ε}.

if Λε(A) has n components, then A+ E has n distinct eigenvalues for
all perturbation matrices E ∈ C

n×n with ‖E‖ < ε and hence A+ E is
not defective

seek the smallest perturbation matrix E such that the pseudospectra of
A+ E coalesce.
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Distance to nearby defective - known results

Theorem (Alam,Bora 2005)

Let A ∈ C
n×n and z ∈ C \ Λ(A), so that A− zI has a simple smallest

singular value ε > 0 with corresponding left and right singular vectors u and
v such that

(A− zI)v = εu.

Then z is an eigenvalue of B = A− εuvH with geometric multiplicity 1 and
corresponding left and right eigenvectors u and v respectively.
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Distance to nearby defective - known results

Theorem (Alam,Bora 2005)

Let A ∈ C
n×n and z ∈ C \ Λ(A), so that A− zI has a simple smallest

singular value ε > 0 with corresponding left and right singular vectors u and
v such that

(A− zI)v = εu.

Then z is an eigenvalue of B = A− εuvH with geometric multiplicity 1 and
corresponding left and right eigenvectors u and v respectively.

If uHv = 0, then z (as an eigenvalue of B) has algebraic multiplicity greater
than one, hence it is a nonderogatory defective eigenvalue of B and
‖A−B‖ = ε.
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Problem

Problem

Find z ∈ C, u, v ∈ C
n and ε ∈ R such that

(A− zI)v − εu = 0

εv − (A− zI)Hu = 0

and
uHv = 0.
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Problem

Problem

Find z ∈ C, u, v ∈ C
n and ε ∈ R such that

(A− zI)v − εu = 0

εv − (A− zI)Hu = 0

and
uHv = 0.

With z = α+ iβ
[

−εI A− (α+ iβ)I
(A− (α+ iβ)I)H −εI

]

︸ ︷︷ ︸

K(α,β,ε)

[
u
v

]

=

[
0
0

]

.
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Problem

Problem

Find z ∈ C, u, v ∈ C
n and ε ∈ R such that

(A− zI)v − εu = 0

εv − (A− zI)Hu = 0

and
uHv = 0.

With z = α+ iβ
[

−εI A− (α+ iβ)I
(A− (α+ iβ)I)H −εI

]

︸ ︷︷ ︸

K(α,β,ε)

[
u
v

]

=

[
0
0

]

.

x =

[
u
v

]

is both a right and left null vector of K(α, β, ε),

if ε > 0 is simple then dimkerK(α, β, ε) = 1.
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The bordered matrix

Theorem

Let (α, β, ε, x) solve

K(α, β, ε)x = 0, x 6= 0,

so that dim kerK(α, β, ε) = 1 and x ∈ ker(K(α, β, ε)) \ {0}.

For some c ∈ C
2n assume

cHx 6= 0.

Then the bordered Hermitian matrix

M(α, β, ε) =

[
K(α, β, ε) c

cH 0

]

is nonsingular.
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The implicit determinant method

Parameter dependent problem (three parameters!)

K(α, β, ε)x = 0 or det(K(α, β, ε)) = 0
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The implicit determinant method

Parameter dependent problem (three parameters!)

K(α, β, ε)x = 0 or det(K(α, β, ε)) = 0

Bordered system

[
K(α, β, ε) c

cH 0

] [
x(α, β, ε)
f(α, β, ε)

]

=

[
0
1

]

Melina Freitag University of Bath
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The implicit determinant method

Parameter dependent problem (three parameters!)

K(α, β, ε)x = 0 or det(K(α, β, ε)) = 0

Bordered system

[
K(α, β, ε) c

cH 0

] [
x(α, β, ε)
f(α, β, ε)

]

=

[
0
1

]

Cramer’s rule

f(α, β, ε) =
det (K(α, β, ε))

det (M(α, β, ε))
,
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The implicit determinant method

Parameter dependent problem (three parameters!)

K(α, β, ε)x = 0 or det(K(α, β, ε)) = 0

Bordered system

[
K(α, β, ε) c

cH 0

] [
x(α, β, ε)
f(α, β, ε)

]

=

[
0
1

]

Cramer’s rule

f(α, β, ε) =
det (K(α, β, ε))

det (M(α, β, ε))
,

Solve
f(α, β, ε) = 0.

instead of det(K(α, β, ε)) = 0, where f(α, β, ε) is real.
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The implicit determinant method

Differentiating the bordered system with respect to α and β

Differentiate the bordered system

[
K(α, β, ε) c

cH 0

] [
x(α, β, ε)
f(α, β, ε)

]

=

[
0
1

]

with respect to α.
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The implicit determinant method

Differentiating the bordered system with respect to α and β

Differentiate the bordered system

[
K(α, β, ε) c

cH 0

] [
x(α, β, ε)
f(α, β, ε)

]

=

[
0
1

]

with respect to α.

[
K(α, β, ε) c

cH 0

] [
xα(α, β, ε)
fα(α, β, ε)

]

=





v(α, β, ε)
u(α, β, ε)

0



 ,
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The implicit determinant method

Differentiating the bordered system with respect to α and β

Differentiate the bordered system

[
K(α, β, ε) c

cH 0

] [
x(α, β, ε)
f(α, β, ε)

]

=

[
0
1

]

with respect to α.

[
K(α, β, ε) c

cH 0

] [
xα(α, β, ε)
fα(α, β, ε)

]

=





v(α, β, ε)
u(α, β, ε)

0



 ,

multiply first row by xH =
[
uH vH

]
from the left

fα(α, β, ε) =
[
uH vH

]
[

v
u

]

= uHv + vHu = 2Re(uHv).
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The implicit determinant method

Differentiating the bordered system with respect to α and β

Differentiate the bordered system

[
K(α, β, ε) c

cH 0

] [
x(α, β, ε)
f(α, β, ε)

]

=

[
0
1

]

with respect to β.

[
K(α, β, ε) c

cH 0

] [
xβ(α, β, ε)
fβ(α, β, ε)

]

= i





v(α, β, ε)
−u(α, β, ε)

0



 .

multiply first row by xH =
[
uH vH

]
from the left

fβ(α, β, ε) = i(uHv − vHu) = −2Im(uHv).
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The implicit determinant method

Summary

Solution to detK(α, β, ε) = 0 with uHv = 0

m

Melina Freitag University of Bath

Distance to nearby unstable and defective matrices



Introduction Background Implicit Determinant Method Examples

The implicit determinant method

Summary

Solution to detK(α, β, ε) = 0 with uHv = 0

m

Solution to g(α, β, ε) = 0, where

g(α, β, ε) =





f(α, β, ε)
fα(α, β, ε)
fβ(α, β, ε)



 .
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Newton’s method for real function g in three real variables

Newton’s method:

G(α(i), β(i), ε(i))





∆α(i)

∆β(i)

∆ε(i)



 = −g(α(i), β(i), ε(i)),

with Jacobian

G(α(i), β(i), ε(i)) =






f
(i)
α f

(i)
β f

(i)
ε

f
(i)
αα f

(i)
αβ f

(i)
αε

f
(i)
βα f

(i)
ββ f

(i)
βε




 ,

where the Jacobian elements are evaluated by differentiating the system

[
K(α, β, ε) c

cH 0

] [
x(α, β, ε)
f(α, β, ε)

]

=

[
0
1

]

with respect to α, β and ε.
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Implementation

one LU factorisation of
[

K(α, β, ε) c
cH 0

]

per Newton step

very fast quadratically convergent Newton method in 3 dimensions

Jacobian

G(α∗, β∗, ε∗) =





0 0 f∗

ε

f∗

αα f∗

αβ f∗

αε

f∗

βα f∗

ββ f∗

βε



 ,

is nonsingular.
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Example 1

Kahan matrix

A =










1 −c −c −c −c
s −sc −sc −sc

s2 −s2c −s2c

. . .
...

sn−1










,

where sn−1 = 0.1 and s2 + c2 = 1. We consider this matrix for n = 6.
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Example 1

Kahan matrix

A =










1 −c −c −c −c
s −sc −sc −sc

s2 −s2c −s2c

. . .
...

sn−1










,

where sn−1 = 0.1 and s2 + c2 = 1. We consider this matrix for n = 6.
Starting values:
α(0) = β(0) = 0
ε(0) = σmin, u

(0) = umin and v(0) = vmin, where σmin is the minimum
singular value of A with corresponding left and right singular vectors umin

and vmin

c = x(0)

‖g(α(i), β(i), ε(i))‖ < τ, where τ = 10−14.
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Example 1

dim = 6
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Figure: Pseudospectra plot for Kahan matrix for n = 6.
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Example 1

Table: Results for Example 1

i α(i) β(i) ε(i) ‖g(α(i), β(i), ε(i))‖ F
(i)
αβ

0 0 0 9.9694e-03 0 0
1 1.3643e-01 0 1.2145e-02 8.1049e-02 3.9318e-01
2 1.3319e-01 0 7.1339e-04 3.9165e-02 -1.0032e+00
3 1.2767e-01 0 4.9351e-04 4.3976e-03 -4.5529e-01
4 1.2763e-01 0 4.7049e-04 8.2870e-05 -4.3191e-01
5 1.2763e-01 0 4.7049e-04 4.7344e-08 -4.3136e-01
6 1.2763e-01 0 4.7049e-04 5.3655e-15 -4.3136e-01

Eigenvalues 1.5849× 10−1 and 10−1 coalesce at 1.2763 × 10−1 for a value of
ε = 4.7049 × 10−4.
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Example 2

A ∈ C
n×n taken from Matlab A = gallery(’grcar’,n)

dim = 20
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Figure: Pseudospectra plot for grcar matrix for n = 20.
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Example 2

Table: Results for Example 2.

i α(i) β(i) ε(i) ‖g(α(i), β(i), ε(i))‖ F
(i)
αβ

0 0 -2.5000e+00 0 0 0
1 9.5854e-02 -2.3299e+00 1.7989e-02 1.3806e-01 9.9103e-01
2 1.3904e-01 -2.2465e+00 1.3564e-03 3.2308e-02 -2.3623e-01
3 1.6141e-01 -2.2042e+00 7.2914e-04 1.1930e-02 -1.5963e-01
4 1.5554e-01 -2.1818e+00 4.5435e-04 3.4851e-03 -2.7982e-02
5 1.5338e-01 -2.1815e+00 4.9060e-04 3.4265e-04 -2.4693e-02
6 1.5331e-01 -2.1817e+00 4.9141e-04 2.3240e-05 -2.3956e-02
7 1.5331e-01 -2.1817e+00 4.9141e-04 1.6942e-08 -2.4012e-02
8 1.5331e-01 -2.1817e+00 4.9141e-04 4.6672e-14 -2.4012e-02
9 1.5331e-01 -2.1817e+00 4.9141e-04 4.5263e-17 -2.4012e-02

Eigenvalue pairs 1.0802 × 10−1 ± 2.2253i and 2.1882 × 10−1 ± 2.1132i
coalesce at 1.5331 × 10−1 ± 2.1817i for a value of ε = 4.9141 × 10−4
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Conclusions

new algorithm for computing a nearby defective matrix (in our
examples: nearest defective matrix)

only one LU decomposition per Newton step of bordered matrix M
necessary
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Thank you.
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Thank you.

More on this:
Talks by M. Overton, M. Gurbuzbalaban and A. Spence tomorrow.
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