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Problem and iterative methods

Find a small number of eigenvalues close to a shift ¢ and corresponding
eigenvectors of:
Arx =Xz, 2eC,zeC"

@ A is large, sparse, nonsymmetric = iterative solves (e.g. Arnoldi
method)
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Problem and iterative methods

Find a small number of eigenvalues close to a shift ¢ and corresponding
eigenvectors of:
Arx =Xz, 2eC,zeC"

@ A is large, sparse, nonsymmetric = iterative solves (e.g. Arnoldi
method)

@ Problem becomes 1

x

A—o

@ each step of the iterative method involves repeated application of
(A—oI)"! to a vector

(A—ol) 'z =
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Problem and iterative methods

Find a small number of eigenvalues close to a shift ¢ and corresponding
eigenvectors of:
Az =Xz, AeC,xzeC"

@ A is large, sparse, nonsymmetric = iterative solves (e.g. Arnoldi
method)

@ Problem becomes 1

x

A—o

@ each step of the iterative method involves repeated application of
(A—oI)"! to a vector

@ Inner iterative solve:

(A—ol) 'z =

(A-ocly==
using Krylov or Galerkin-Krylov method for linear systems.

@ leading to inner-outer iterative method.
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Arnoldi and IRA

The algorithm

Arnoldi’s method

@ Arnoldi method constructs an orthogonal basis of k-dimensional
Krylov subspace
ICIC (Aa ql) = Span{ql ) Aqu A2q17 seoy Ak_lql}v
H Hy,
AQr = QrHy + qrt1hrt1,ke = Qria { h H ]
lk+1,k€k

QHQr =1

@ Eigenvalues of the upper Hessenberg matrix Hj are eigenvalue
approximations of (“outlying”) eigenvalues of A

Irell = [l Az — 0| = |(AQK — QiHy)ull = |hkr1,xlek ul,
@ at each step: application of A to g:

Agr = Gr+1
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SI Arnoldi and IRA

Enhancements: Shift-Invert Arnoldi and IRA

Shift-Invert Arnoldi’s method A := A~"' (¢ = 0)
@ Arnoldi factorisation
1 H Hy,
AT Qr = QrHr + grr1hrtiker = Qrta { h " ]
k+1,k€k

@ Eigenvalues of the upper Hessenberg matrix Hj are eigenvalue
approximations of (“outlying”) eigenvalues of A~*

@ at each step: application of A™" to qr: A 'qx = Grr1-

% UNIVERSITY OF

of Bath




SI Arnoldi and IRA

Enhancements: Shift-Invert Arnoldi and IRA

Shift-Invert Arnoldi’s method A := A~"' (¢ = 0)

@ Arnoldi factorisation

_ H;
A'Qr = QuHy + Qk+1hk+1,k61{v{ = Qk+1 { . ]

Pky1kel
@ Eigenvalues of the upper Hessenberg matrix Hj are eigenvalue
approximations of (“outlying”) eigenvalues of A~*

@ at each step: application of A™" to qr: A 'qx = Grr1-

Implicitly Restarted Arnoldi
@ perform m = k + p Arnoldi iterations
@ IRA: restart from step k: AQr = QuHr + qut1 g1,k ef
——

— 0
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This talk

Extend the results by Simoncini (2005) for Arnoldi to IRA

Extend the idea of tuning (previous talk) to Arnoldi and IRA
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Inexact Arnoldi/IRA

Inexact solves (Simoncini 2005), Bouras and Frayssé (2000)

@ Wish to solve

lar — Agesa | = ||di|| < 7%




Inexact Arnoldi/IRA

Inexact solves (Simoncini 2005), Bouras and Frayssé (2000)

@ Wish to solve ~
llge — AGesall = llde |l < 7%
@ after m steps leads to inexact Arnoldi relation

- Hy, Hm
A 1Qm:Qm+1 |: h H :|+Dm:Qm+1 [ h H :|+[dl“dm}

m+1,mEf m+1,mEm
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t Arnoldi/IRA

Inexact solves (Simoncini 2005), Bouras and Frayssé (2000)

@ Wish to solve ~
llge — AGesall = llde |l < 7%
@ after m steps leads to inexact Arnoldi relation

- Hy, Hm
A 1Qm:Qm+1 |: h H :|+Dm:Qm+1 [ h H :|+[dl“dm}

m+1,mEf m+1,mEm

@ u eigenvector of H,,:

ol = AT Q= Quu HYull = [mr, il + D

Dpu = deuk, if |uk| small, then ||di| allowed to be large!
k=1
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Inexact Arnoldi/IRA

Inexact solves (Simoncini 2005), Bouras and Frayssé (2000)

@ Wish to solve ~
llge — AGesall = llde |l < 7%
@ after m steps leads to inexact Arnoldi relation

H, H,
A71 m = &m " Drn = m m di]... d7n
Q Qm+1 { B tmel! }-ﬁ- Qm+1 [ Bt 1. mel! ]"‘[ 1] |dm]
@ u eigenvector of H,,:

Irmll = 1A' Qm = QuHm)ull = [Am+1.mlemul + Dinu,

Dpu = deuk, if |ug| small, then ||dx| allowed to be large!
k=1
@ Simoncini (2005) has shown

lug| < C(k, m)|lr—1|l

which leads to 1
lde|l = C(k,m)
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Inexact Arnoldi/IRA

Numerical Examples

shermanb.mtx nonsymmetric matrix from the Matrix Market library
(3312 x 3312).

@ smallest eigenvalue: A; &~ 4.69 x 1072,

@ Preconditioned GMRES as inner solver (both fixed tolerance and
relaxation strategy),

@ standard and tuned preconditioner (incomplete LU).
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Fixed tolerance
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Figure: Inner iterations vs outer Figure: Eigenvalue residual norms vs
iterations total number of inner iterations
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inner iterations
.
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—e— Amoldi relaxed tolerance|
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Figure: Inner iterations vs outer
iterations
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total number of inner iterations
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Inexact Arnoldi/IRA

Relaxation strategy for invariant subspaces (F./Spence 2008)

@ m = k + p steps of the Arnoldi factorisation

H
AQrk+p = QrtpHitp + Qrtpt1Pk4p+1,k+p€1tp
@ let H,, have Schur decomposition

0 x

Hup=Hyp=[ U Wg]{o TﬂMU wy |7
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Inexact Arnoldi/

Relaxation strategy for invariant subspaces (F./Spence 2008)

@ m = k + p steps of the Arnoldi factorisation
AQri+p = QuipHitp + Qo1 Mot p1,k4pChip
@ let H,, have Schur decomposition

0 x

Hm:Hk+p:[U W2]|:0 T22

@ let Hy be decomposed as Oy = Up® H, Uy
o let R = qk_‘_lhk_‘_l’kekHUk be the residual after k Arnoldi steps.
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Inexact Arnoldi/IRA

Relaxation strategy for invariant subspaces (F./Spence 2008)

@ m = k + p steps of the Arnoldi factorisation

H
AQiip = QrypHirp + Grtpr1Pbtpt1, k4 pChap

<

let H,, have Schur decomposition

0 x

Hy=Hypp=[ U WQ]{O Tn}[U wy |7

©

let Hy be decomposed as Oy = U H,Up
let Rr = qr+1 hk_‘_l’kekH Uk be the residual after k Arnoldi steps.

©

©

Then U = { U1 } with U”U = I, such that

U2

[ B |

Ul < ——————
U] < sp(Ts2, OF)

h T = i T — . vor
where sep(Ts2, O%) gﬂ&” 5V — VO %BA’STI:I
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Inexact Arnoldi/IRA

Relaxation strategy for IRA (F./Spence 2008)

Theorem

For any given € € R with € > 0 assume that

€ sep(T22, Ok)
< {Zm—B R

2k

if 1>k,

otherwise.

Then

[AQmU — QumUO — Ry < e.
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Inexact Arnoldi/IRA

Relaxation strategy for IRA (F./Spence 2008)

Theorem

For any given € € R with € > 0 assume that

€ sep(T22, Ok)
< {Zm—B R

2k

if 1>k,

otherwise.

Then

AQmU — QmUSO — Ry < .

@ In practice: perform m = k + p initial steps and then relax the ‘
tolerance from the first restart.
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Inexact Arnoldi/IRA

Numerical Example

shermanb.mtx nonsymmetric matrix from the Matrix Market library
(3312 x 3312).

@ k = 8 eigenvalues closest to zero
@ TRA with exact shifts p =4

@ Preconditioned GMRES as inner solver (fixed tolerance and relaxation
strategy),

@ standard and tuned preconditioner (incomplete LU).
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Fixed tolerance

inner iterations
w
8

10 —e— Arnoldi fixed tolerance

10 —e— Amoldi fixed tolerance

)
E
S
<
g
>
h=]
7]
S

o 5 10 15 20 25 30 35 40 45
outer iterations

Figure: Inner iterations vs outer
iterations
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Figure: Eigenvalue residual norms vs
total number of inner iterations
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Relaxation

60 10 —e— Amoldi fixed tolerance
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Figure: Inner iterations vs outer Figure: Eigenvalue residual norms vs
iterations total number of inner iterations
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Preconditioners

Tuning the preconditioner AP~ 1§11 = q

@ Introduce preconditioner P and solve
AP 'Gyr =k, P 7lGki1 = qen

using GMRES:
i} = min max[p(u)]do]
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Preconditioners

Tuning the preconditioner AP~ 1§11 = q

@ Introduce preconditioner P and solve
AP 'Gyr =k, P 7lGki1 = qen

using GMRES:
i} = min max[p(u)]do]

@ use a tuned preconditioner for Arnoldi’s method

PrQr = AQr; given by Pr=P+ (A— P)QkaH
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Preconditioners

The inner iteration for AP~ g1 = qs

Theorem (Properties of the tuned preconditioner PrQr = AQxk)

Let P with P = A+ E be a preconditioner for A and assume k steps of

Arnoldi’s method have been carried out; then k eigenvalues of AP, are
equal to one:

[AP;'|AQk = AQx

and n — k eigenvalues equivalent to eigenvalues of L € C*~**"=F with

IL = Il < C|E].
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Preconditioners

The inner iteration for AP~ g1 = qs

Theorem (Properties of the tuned preconditioner PrQr = AQxk)

Let P with P = A+ E be a preconditioner for A and assume k steps of
Arnoldi’s method have been carried out; then k eigenvalues of AP, are
equal to one:

[AP;'|AQk = AQx

and n — k eigenvalues equivalent to eigenvalues of L € C*~**"=F with
IL =TI < ClE].
Implementation

@ Sherman-Morrison-Woodbury.

@ Only minor extra costs (one back substitution per outer iteration)
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Tuning

Why does tuning help?

@ Arnoldi decomposition

AT'Qr = QrHy + Qrr1hr ker
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Preconditioners

Tuning

Why does tuning help?

@ Arnoldi decomposition

A'Qr = QrHy + Qk+1hk+1,k61€{

@ let A~! be transformed into upper Hessenberg form

[Qr Q174 [ Qe @t ]= #l

= H
hiy1,k€1ek

where [ Qr Qit ] is unitary and Hy € C** and Thy € C*%"~* are

upper Hessenberg.
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Preconditioners

Tuning

Why does tuning help?
@ Arnoldi decomposition
AT'Qr = QrHy + Qrr1hr ker
@ let A~! be transformed into upper Hessenberg form

[Qe Q@ 1747 [Qe @ )=, " a1,

B hk+1,k€1€k
where [ Qr Qit ] is unitary and Hy € C** and Thy € C*%"~* are

upper Hessenberg.

If hk+1,k 7& 0 then

I+% QF AP Qi
x TRYQETPQR) T 44

e

[ Qr Qu* ]HA]P);;l[ Qr Q" ]=
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Tuning
Why does tuning help?
@ Assume we have found an approximate invariant subspace, that is

AT 'Qr = QrHy + qrr1hrrker
—_—

~0
o let A~! have the upper Hessenberg form

[Qr @t 1747 [ Q@ Q] He i

= H
hiyireier” Too |’

where [ Qr Qunt ] is unitary and Hy € C** and Thy € C*%"F are
upper Hessenberg.

If hk+1,k = 0 then

k k
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Preconditioners

Tuning

Another advantage of tuning

@ System to be solved at each step of Arnoldi’s method is

AP Gt = ks PGkt = Gt
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Preconditioners

Tuning

Another advantage of tuning

@ System to be solved at each step of Arnoldi’s method is

AP Gt = ks PGkt = Gt

@ Assuming invariant subspace found then (A~ Qx = Q1 Hy):

AP g, = g1
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Preconditioners

Tuning

Another advantage of tuning

@ System to be solved at each step of Arnoldi’s method is
AP Gt = ks PGkt = Gt
@ Assuming invariant subspace found then (A~ Qx = Q1 Hy):
AP g, = g1

@ the right hand side of the system matrix is an eigenvector of the
system matrix!

@ Krylov methods converge in one iteration
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Preconditioners

Numerical Example (Arnoldi)

shermanb.mtx nonsymmetric matrix from the Matrix Market library
(3312 x 3312).

@ smallest eigenvalue: A; &~ 4.69 x 1072,

@ Preconditioned GMRES as inner solver (both fixed tolerance and
relaxation strategy),

@ standard and tuned preconditioner (incomplete LU).
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Relaxation
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Figure: Inner iterations vs outer
iterations
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Figure: Eigenvalue residual norms vs
total number of inner iterations
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Tuning the preconditioner

inner iterations
"
&

—=&— Arnoldi fixed tolerance
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2 4 6 8 10
outer iterations

Figure: Inner iterations vs outer
iterations
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Figure: Eigenvalue residual norms vs
total number of inner iterations
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Tuning and relaxation strategy

inner iterations

residual norms ||r*’||

—e— Amoldi fixed tolerance
—&— Arnoldi relaxed tolerance
—e— Amoldi fixed tolerance tuned

—&— Arnoldi relaxed tolerance tuned|
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Figure: Inner iterations vs outer
iterations
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sum of inner iterations

Figure: Eigenvalue residual norms vs
total number of inner iterations
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Preconditioners

Numerical Example (IRA)

shermanb.mtx nonsymmetric matrix from the Matrix Market library
(3312 x 3312).

@ k = 8 eigenvalues closest to zero
@ TRA with exact shifts p =4

@ Preconditioned GMRES as inner solver (fixed tolerance and relaxation
strategy),

@ standard and tuned preconditioner (incomplete LU).
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Relaxation
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Figure: Inner iterations vs outer Figure: Eigenvalue residual norms vs
iterations total number of inner iterations
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Tuning

inner iterations
w
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Figure: Inner iterations vs outer
iterations
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Tuning and relaxation strategy
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Conclusions

@ For eigencomputations it is advantageous to consider small rank
changes to the standard preconditioners (works for any preconditioner)

@ Extension of the relaxation strategy to IRA
@ Best results are obtained when relaxation and tuning are combined

@ Link to Jacobi-Davidson method?
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