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Distance to instability - definition

e Stability of matrix A € C"*™: A(A) in open left half plane

¢ Better measure of stability: distance of A to instability /stability radius

Define spectral abscissa

n(A) := max{Re(\) | A € A(A)}
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e Stability of matrix A € C"*™: A(A) in open left half plane

¢ Better measure of stability: distance of A to instability /stability radius
Define spectral abscissa

n(A) := max{Re(\) | A € A(A)}

Distance to instability

Distance of a stable matrix A to instability
B(A) = min{||E[||n(A+ E) =0, E € C"*"}

If A+ E has an eigenvalue on the imaginary axis, F is destabilising

perturbation.
(A+E—wil)z=0,

for some w € R and z € C".
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Distance to instability - known results

Distance to instability of a matrix (Van Loan 1984),
ﬂ(A) — glel% UIIliIl(A N OJZ[),

where omin(A — wil) is the smallest singular value of A — wil.
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Distance to instability - known results

Distance to instability of a matrix (Van Loan 1984),
B(A) = min omin(A — wil),
where omin(A — wil) is the smallest singular value of A — wil.

Theorem (Byers 1988)

The 2n x 2n Hamiltonian matriz

e =| & 4|

has an eigenvalue wi on the imaginary azis if and only if o > B(A).
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Results on H(a)

H(a) has a pure imaginary eigenvalue wi:

Lo i | o] =l 2]

H(a)
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Results on H(a)

H(a) has a pure imaginary eigenvalue wi:

Lo i | o] =l 2]

H(a)

=
(A—wil)v=ou and (A—wil)"u= .
If @* is the minimum value of o at which H(«) has a pure imaginary

eigenvalue w*i with corresponding z* = { Z* } then o = B(A).

Assume o™ = B(A) is unique.

4 of 32



Existing numerical methods

e Bisection approach by Byers

o choose lower and upper bound on « (0 and omin(A))
o take mean value s and calculate all the eigenvalues of H(s), update lower and
upper bound according to pure imaginary eigenvalues of H(s)
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Existing numerical methods

e Bisection approach by Byers
o choose lower and upper bound on « (0 and omin(A))
o take mean value s and calculate all the eigenvalues of H(s), update lower and
upper bound according to pure imaginary eigenvalues of H(s)

e Boyd/Balakrishnan method

o given an upper bound a > $(A), compute all pure imaginary eigenvalues
w1, iwa, . .., 1w, of H(a) ordered so that w1 <ws < ... <wy

W+ W41 -

k=1,

o set s = ..l —1 and update oo = ming opmin(A — sgil)
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Existing numerical methods

e Bisection approach by Byers
o choose lower and upper bound on « (0 and omin(A))
o take mean value s and calculate all the eigenvalues of H(s), update lower and
upper bound according to pure imaginary eigenvalues of H(s)

e Boyd/Balakrishnan method

o given an upper bound a > $(A), compute all pure imaginary eigenvalues
w1, iwa, . .., 1w, of H(a) ordered so that w1 <ws < ... <wy
o set s = %,k:l,.

e He/Watson algorithm
o find the minimum of f(w) = omin(A — wil)
o uses inverse iteration algorithm to find a stationary w
o check on all the corresponding eigenvalues of H(a)

..l —1 and update oo = ming opmin(A — sgil)
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Results on H(a)

Assumption
A —al

FRNR.5 ] of algebraic

(wi, ) is a defective eigenpair of H(a) = {
multiplicity 2.
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Results on H(a)

Assumption
A —al

FRNR.5 ] of algebraic

(wi, ) is a defective eigenpair of H(a) = {
multiplicity 2.

(H(a) —wil)z =0, xz#0, and dimker(H(a)—wil)=1,
y?(H(e) —wil) =0, y#0, and y"z=0,

0 In}

y=Jz, J:{_In 0

(H(a) —wil)z =z, and y"2#0,

Jordan block of dimension 2 at the critical value of «
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Parameter dependent matrix eigenvalue problem H(w. )

Problem
How do we find a 2-dimensional Jordan block in H(«)?

(H(a) —wil)z =0, x#0,

|
H(w,ax)
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Bordered systems - a “new” method for finding eigenvalues

One-parameter problem B(\)z = 0 or y? B(\) = 02 (det(B()\)) = 0)

Bordered system
Exlveasi

M(N)

is nonsingular if ¢z # 0 and y7b # 0 and rank(B()\)) =n — 1.
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Bordered systems - a “new” method for finding eigenvalues
One-parameter problem B(\)z = 0 or y? B(\) = 02 (det(B()\)) = 0)

Bordered system
Exlveasi

M(N)

is nonsingular if ¢z # 0 and b # 0 and rank(B()\)) = n — 1. Cramer’s rule

_ det(B()))
FO) = det(M (X))’
Solve
f(A) =0 instead of det(B(\))=0.
At f(A) =0:

B(\)z(X) = 0.

Solve f(\) = 0 using Newton’s method A™ = X — ﬂ
()
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Parameter dependent matrix eigenvalue problem H(w. )

Problem
How do we find a 2-dimensional Jordan block in H(«)?

(H(a) —wil)z =0, x#0,

|
H(w,ax)
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The bordered matrix

Theorem (Two-parameter problem)

o Let (w,a,x) solve
(H(a) —wil)x =0, z#0,

e Zero is a double eigenvalue of H(a) — wil belonging to a 2-dimensional
Jordan block with

yTe =0, for ye ker(H(c)—wil)™\ {0}.

Then the bordered matriz
M(w, a) = H(al; wil Jc } Y - { 70 Vi ]

is nonsingular if ¢z # 0.
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The implicit determinant method

Two-parameter problem

H(w,a)x=0 or det(H(w,a))=0
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The implicit determinant method

Two-parameter problem

H(w,a)x =0 or det(H(w,a))=0
Bordered system

Cramer’s rule
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The implicit determinant method

Two-parameter problem

H(w,a)x =0 or det(H(w,a))=0
Bordered system

Cramer’s rule

B det(H (w, o))

= Jet(M ;)"
Solve
f(w,o) =0 instead of det(H(w,a)) =0,
where
flw,a) = z(w, a)HJ(H(a) — wil)z(w, )
is real.
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The implicit determinant method

Differentiate the linear system
Differentiate [ H(aiH— wil {)C ] { (g

(o= %1123 )
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The implicit determinant method

Differentiate the linear system

Differentiate [ H(aiH— wil {)C ] { ?EZ:Z; ] = { 1 } with respect to w:
H(a) —wil Je To(w,a) | | iz(w,a)
cft 0 folw, ) | — 0 ’
First row
folw,a) =iy«



The implicit determinant method

Differentiate the linear system

Differentiate [ H(O‘ZH_ wil {)C ] { ?EZZ; ] ] { ) } with respect to w:
e 2zR]-[%7]

First row
folw,a) = inyg: 0,

because of Jordan block of dimension 2.
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The implicit determinant method

Differentiate the linear system
Differentiate [ H(aiH— wil {)C ] { (g

(o= %1123 )
First row A

because of Jordan block of dimension 2. Solve

i B { f(wﬂ)) } -0

folw,a
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The implicit determinant method

Differentiate the linear system

Differentiate [ H(aiH— wil {)C ] { (e

(o= %1123 )
First row A

because of Jordan block of dimension 2. Solve

i B { f(wﬂ)) } -0

folw,a

Also,
(H(a) — wil)zw(w, o) = iz,

and y™z,,(w, @) # 0, hence fuu(w,a) # 0.
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Newton’s method for real function ¢ in two real variables

Solve

using Newton’s method:

i i Aw(i) i i
G(UJ( ),Ol( )) |: Aa(i) :| = _g(w( ),Ot( ))7

Sl T L
Q) | T @ An@ele
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Jacobian for Newton’s method

Jacobian
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Jacobian for Newton’s method

Jacobian

) . (@) (1) (@) (1)
@ @y _ | fe,a)  fa(wt,al™)
Gw, a) = { fww(w(i)7a(i)) fwa(w(i)7a(i))

and the Jacobian elements are evaluated by differentiating the system

et [ ]=10]

with respect to w and a.
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Implementation

e one (sparse) LU factorisation of

{ H(oz)c}; wil {)c }

e solve with bordered system matrix and 5 different right hand sides in order
to obtain f(w, ) and entries for Jacobian

s =[ Los) floe) ]

e very fast quadratically convergent Newton method in 2 dimensions
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Remarks

0 fa(w?,a")

e full-rank Jacobian G(w*,a*) = i R
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Remarks

e full-rank Jacobian G(w*,a*) = { f (o?* a*) fa(a*’ CL*)) }7

* fuw(w,a®) <0and fo(w*, o) >0.

w f(w, a) =0

@,
W |-
o

T a a

Figure: Curve f(w,a) =0 in the (w, a)-plane for fouo(w*,a*) <0
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Remarks

fww(w*7a*) fWa(W*7a*)
* fuw(w,a®) <0and fo(w*, o) >0.

e full-rank Jacobian G(w*,a*) = { 0 & oL q) },

£ OB £

Figure: Curve f(w,a) =0 in the (w, a)-plane for fouo(w*,a*) <0

e Multiplication by [ _}I] (1) ] leads to the Hermitian system

[ Sl )= 1)
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Remarks

fww(w*7a*) fWa(W*7a*)
* fuw(w,a®) <0and fo(w*, o) >0.

e full-rank Jacobian G(w*,a*) = { 0 & oL q) },

£ OB £

Figure: Curve f(w,a) =0 in the (w, a)-plane for fouo(w*,a*) <0

e Multiplication by [ _}I] (1) ] leads to the Hermitian system

[ Sl )= 1)
e Test step.
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Example 1
Consider
—0.4+ 61 1
3 1 —gris o 1N
A= 1 —-1-3: 1

1 —5+1
which has eigenvalues (rounded to 3 significant digits)

A(A) = {-0.41 + 5.80i, —0.04 + 0.95¢, —0.92 — 2.62¢, —5.13 4 0.874}
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Example 1
Consider
—0.4+ 61 1
3 1 g Tl 19
A= 1 —-1-3: 1

1 —5+1
which has eigenvalues (rounded to 3 significant digits)

A(A) = {-0.41 + 5.80i, —0.04 + 0.95¢, —0.92 — 2.62¢, —5.13 4 0.874}

Starting values:

(0) _
a'’ =0
w©: imaginary part of the eigenvalue of A closest to the imaginary axis
(0) (0
_ 0 _ | v ©) o, © 4O -
c=z" = [ w(w®, 0 ) ], where v(w'”, a'") and u(w'™, a'”) are right and

left singular vectors of A — w(®il
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Example 1
Table: Results for Example 1.
NEWTON METHOD

i | w® a® | lg(@@, @)

0 | 0.953057740164838 0 -

1 | 0.953036248966048 0.031887014318100 1.5949900020014e-02
2 | 0.953014724735990 0.031887009443620 2.2577279982423e-04
3 | 0.953014724704841 0.031887014303200 2.4473093206567e-09
4 | 0.953014724704841 0.031887014303200 8.2762961087551e-16
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Example 2

Orr-Sommerfeld operator

1 2
— L*v—4(UL—U")v=ALv, where L= and U=1-2z°

2
YR dx? K
Discretise the operator on v € [—1,1] using finite differences with v =1,

R = 1000 and n = 1000.

Rightmost eigenvalues of the Orr-Sommerfeld matrix

“02 *
*
-03 *
*
-04
*
-05
* *
-0.6
*
T e
-07 * *
*
-08 * *
*
09 * *
*
*
15 z f o I 2
-10° -10 -10° -10 -10 -10

Figure: Eigenvalues of the Orr-Sommerfeld matrix in Example 3.
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Example 2

Convergence to w = 0.199755999447167 and o = 0.001978172281960 within 5

iterations.
Table: CPU times for Example 3.
“Outer” iterations
“Inner” iterations (Eigenvalue computation Total
Algorithm for Hamiltonian matrix) CPU
quantity | CPU time quantity | CPU time time
Boyd/Balakrishnan 6 3.49 s 6 63.28 s 66.77 s
He/Watson 1786 244.14 s 1 10.54 s 254.68 s
Newton 5 5.67 s 1] 10.33 s 16.00 s
20 of 32



Example 3

Tolosa matrix tols340.mtx

Rightmost eigenvalues of the Tolosa matrix

400
300
200
. X o x *
100 * F* :
ok,
* Kok y
0 e x Ix
ok KX
-100 *, % *
* * *F *
~200 sk k
-300
-400
-500
-10° -10° -10' -10° -107"

Figure: Eigenvalues of the Tolosa matrix in Example 4.
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Example 3

Convergence to w = 1.559998439945282 and o = 0.000019997968879 within 4

iterations.
Table: CPU times for Example 4.
“Outer” iterations

“Inner” iterations (Eigenvalue computation Total

Algorithm for Hamiltonian matrix) CPU

quantity | CPU time quantity | CPU time time
Boyd/Balakrishnan 3 67.52 s 3 5.27 s 72.79 s
He/Watson > 33000 > 2230 s > 11 > 18 s > 2248 s

Newton 4 2.01s 1 1.69 s 3.7s
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Real versus complex stability radius

e Complex stability radius

/BC(A) = min Omin (A - UJ’LI),

w€eR

where omin (A — wil) is the smallest singular value of A — wil.
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Real versus complex stability radius

e Complex stability radius

/BC(A) = min Omin (A - UJ’LI),

w€eR

where omin (A — wil) is the smallest singular value of A — wil.
¢ Real stability radius (Qiu et al 1995)

A —wryl
Br(A) = min max o2p—1 ({ %] L;J{Y }),

w€R v€(0,1]

where 02,—1(+) is the second smallest singular value of the matrix (-). The
function to be maximised with respect to - is unimodal in (0, 1] and hence
the local maximiser will be a global maximiser.
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Relation to Hamiltonian matrix problem

Real stability radius

A —wryl
A) = i n— w — i n—
Br(A) min max ozn-—1 <{ “r A }) min max oz 1B(w,7),

B(w,7)
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Relation to Hamiltonian matrix problem

Real stability radius

A —wryl
A) = i n— w — i n— B 3 3
Pr(A) = min max ozn-1 <{ “r 4 D min max ozn-1 (w,7)

B(w,7)

Theorem (Boyd, Balakrishnan, Kabamba 1989)
Let A be a stable matriz and v € (0,1]. Then, for allw € R, a >0 is a
singular value of B(w,) if and only if iw is an eigenvalue of H(«a,~) given by

A —OzT«,TT 4 4
H(a,v) = = € R4
(@) |:OzFT$TWF _AT ]
where
A . —-A 0 2nX2n e =/L A _ 1 I ’YI 2nX2n
dm [ 0 ]ewm pa ] 0] mat [ 2 ]ewn
24 of 32



Results on H(a. )

Generic case
For fixed v, if « is a simple singular value, then (wi,z) is a defective eigenpair
of H(a,~) of algebraic multiplicity 2 if « is a simple .
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is nonsingular if ¢z # 0. Consider the linear system

et ey
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Results on H(a. )

Generic case

For fixed v, if « is a simple singular value, then (wi,z) is a defective eigenpair
of H(a,7y) of algebraic multiplicity 2 if « is a simple .

The bordered matrix

H(a,v) —iwl Jc ]

M(UJ,Q,’Y): [ CH 0

is nonsingular if ¢z # 0. Consider the linear system

et ) [seeg]-[2]

which now has an extra parameter v. Using similar theory as for the complex
stability radius case we obtain

fw, a,7)
g(w7a7’7) = fw(w7057')’) = 0
f’Y(w7 «, ’Y)

Characteristics of the (1, 1) block of the system are inherited to the scalar

function f
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Newton’s method

Solve the sequence of linear systems
WD _ @
G(w(i) a® ,y(i))

Qli+D) _ o

with starting value (w(o), a(o),'y(o)).

Jacobian
fo(w®,a®, )
G0 1) = | fuw(@®,a,7®)
fur(w®, 6, 49)
26 of 32

,y(i+1) ¥ ,Y(i) e

_g(w(1)7a(l)7,y(1))7 U= 1727
F1@®,a®, 49y fo(w®, 0, 4@
Fur (@, 0@, 4D) - foa(@®, 0, 4®)
fw(w(l)a a(l)a'Y(l)) fra (W(Z)a a(l)a’Y(l))



Newton’s method

Solve the sequence of linear systems
WD _ 0

G(w(i)7a(i)7,y(i)) A+ ,y(i) i _g(w(i)7a(i),,y(i))7 i=1,2...
D) _ @

with starting value (w(®, a(®, ()
In the limit the Jacobian is

iUl Vo
Gw* a7 ) = | fou foy fla
fw'y f«/’y fwa
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Newton’s method

Solve the sequence of linear systems
G(w(l), Oz(l), ,y(z)) ,y(i+l) ol ,y(i) £ _g(w(z)7 Ot(l),’y(l)), Nl 2 f.

Qi+ _ @

with starting value (w(®, a(®, ()
In the limit the Jacobian is

0 O~
GWw a7 ) = | fou [fiy fia
fw'y f'y'y f:;a
e Can show f2 > 0.

o [iufiy — f5,° <0 as a(w*,v") is a saddle point of a(w,7).
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Example 4

Consider the matrix

—-0.4 7 0 0 0 0
-5 —-04 1 0 0 0
0 1 —1 628 0 0
4= 0 0 45— W 0 ’
0 0 0 d =5 "
0 0 0 0 0 =5

which has the eigenvalues
A(A) = {-0.3823 + 5.8081¢, —0.9360 + 2.8210¢, —5.1633, —5.0000},

all in the left half plane with the leftmost eigenvalue —0.3823 + 5.80814,
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Example 4 - Surface of g9, 1(w. )

Figure: Surface o2n—1(w,) of matrix A in Example 1.
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Example 4 - Results

Table: Results for Example 4.

i a® w® ,y(i) ||g(a(i),w(i),'y(i))|[
0 1.0000e-01 | 5.8081e+00 | 5.0000e-01 -

1 1.2271e-01 | 5.7679e+00 | 4.0236e-01 8.6013e+-00
2 1.9308e-01 | 5.7749e+00 | 4.3597e-01 3.9972e+4-00
3 3.7590e-01 | 5.8399e+4-00 | 7.8038e-01 1.9974e+00
4 3.5831e-01 | 5.7968e+00 | 8.7316e-01 3.0862e-01
5 3.6035e-01 | 5.8002e4-00 | 8.4257e-01 1.0443e-01
6 3.6118e-01 | 5.8034e+00 | 8.5126e-01 6.5223e-02
7 | 3.6120e-01 | 5.8036e+400 | 8.5294e-01 6.8681e-03
8 3.6120e-01 | 5.8036e+00 | 8.5295e-01 2.9883e-05
9 3.6120e-01 | 5.8036e+00 | 8.5295e-01 1.8938e-09
10 | 3.6120e-01 | 5.8036e+400 | 8.5295e-01 1.2108e-14

Quadratic convergence is obtained to the value a® = 0.3612 for the real
stability radius.
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Final remarks

Conclusions

e new algorithm for computing the distance to unstable matrix
e relies on finding a 2-dimensional Jordan block in 2-parameter matrix

e only one linear system solve decomposition per Newton step of bordered
matrix M necessary

e numerical results show that new method outperforms earlier algorithms
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Final remarks

Conclusions

e new algorithm for computing the distance to unstable matrix
e relies on finding a 2-dimensional Jordan block in 2-parameter matrix

e only one linear system solve decomposition per Newton step of bordered
matrix M necessary

e numerical results show that new method outperforms earlier algorithms

Ongoing work
e extension to structured stability radius

e extension to discrete distance to instabilty (Giirbiizbalaban et al)

e extension to calculating the Ho.o-norm
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Thank you.
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