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Distance to instability - definition

• Stability of matrix A ∈ C
n×n: Λ(A) in open left half plane

• Better measure of stability: distance of A to instability/stability radius

Define spectral abscissa

η(A) := max{Re(λ) |λ ∈ Λ(A)}

2 of 32



Distance to instability - definition

• Stability of matrix A ∈ C
n×n: Λ(A) in open left half plane

• Better measure of stability: distance of A to instability/stability radius

Define spectral abscissa

η(A) := max{Re(λ) |λ ∈ Λ(A)}

Distance to instability

Distance of a stable matrix A to instability

β(A) = min{‖E‖ | η(A+ E) = 0, E ∈ C
n×n}

If A+ E has an eigenvalue on the imaginary axis, E is destabilising
perturbation.
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• Stability of matrix A ∈ C
n×n: Λ(A) in open left half plane

• Better measure of stability: distance of A to instability/stability radius

Define spectral abscissa

η(A) := max{Re(λ) |λ ∈ Λ(A)}

Distance to instability

Distance of a stable matrix A to instability

β(A) = min{‖E‖ | η(A+ E) = 0, E ∈ C
n×n}

If A+ E has an eigenvalue on the imaginary axis, E is destabilising
perturbation.

(A+ E − ωiI)z = 0,

for some ω ∈ R and z ∈ C
n.
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Distance to instability - known results

Distance to instability of a matrix (Van Loan 1984),

β(A) = min
ω∈R

σmin(A− ωiI),

where σmin(A− ωiI) is the smallest singular value of A− ωiI .
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Distance to instability - known results

Distance to instability of a matrix (Van Loan 1984),

β(A) = min
ω∈R

σmin(A− ωiI),

where σmin(A− ωiI) is the smallest singular value of A− ωiI .

Theorem (Byers 1988)

The 2n× 2n Hamiltonian matrix

H(α) =

[
A −αI

αI −AH

]

.

has an eigenvalue ωi on the imaginary axis if and only if α ≥ β(A).
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Results on H(α)

H(α) has a pure imaginary eigenvalue ωi:

[
A −αI

αI −AH

]

︸ ︷︷ ︸

H(α)

[
v

u

]

= ωi

[
v

u

]
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Results on H(α)

H(α) has a pure imaginary eigenvalue ωi:

[
A −αI

αI −AH

]

︸ ︷︷ ︸

H(α)

[
v

u

]

= ωi

[
v

u

]

⇒
(A− ωiI)v = αu and (A− ωiI)Hu = αv.

If α∗ is the minimum value of α at which H(α) has a pure imaginary

eigenvalue ω∗i with corresponding x∗ =

[
v∗

u∗

]

then α∗ = β(A).

Assume α∗ = β(A) is unique.
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Existing numerical methods

• Bisection approach by Byers
◦ choose lower and upper bound on α (0 and σmin(A))
◦ take mean value s and calculate all the eigenvalues of H(s), update lower and

upper bound according to pure imaginary eigenvalues of H(s)
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upper bound according to pure imaginary eigenvalues of H(s)

• Boyd/Balakrishnan method
◦ given an upper bound α ≥ β(A), compute all pure imaginary eigenvalues

iw1, iw2, . . . , iwl of H(α) ordered so that w1 ≤ w2 ≤ . . . ≤ wl

◦ set sk =
wk+wk+1

2
, k = 1, . . . l− 1 and update α = mink σmin(A− skiI)
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◦ take mean value s and calculate all the eigenvalues of H(s), update lower and

upper bound according to pure imaginary eigenvalues of H(s)

• Boyd/Balakrishnan method
◦ given an upper bound α ≥ β(A), compute all pure imaginary eigenvalues

iw1, iw2, . . . , iwl of H(α) ordered so that w1 ≤ w2 ≤ . . . ≤ wl

◦ set sk =
wk+wk+1

2
, k = 1, . . . l− 1 and update α = mink σmin(A− skiI)

• He/Watson algorithm
◦ find the minimum of f(ω) = σmin(A− ωiI)
◦ uses inverse iteration algorithm to find a stationary ω
◦ check on all the corresponding eigenvalues of H(α)
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Results on H(α)

Assumption

(ωi, x) is a defective eigenpair of H(α) =

[
A −αI

αI −AH

]

of algebraic

multiplicity 2.

6 of 32



Results on H(α)

Assumption

(ωi, x) is a defective eigenpair of H(α) =

[
A −αI

αI −AH

]

of algebraic
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−In 0
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Results on H(α)

Assumption

(ωi, x) is a defective eigenpair of H(α) =

[
A −αI

αI −AH

]

of algebraic

multiplicity 2.

(H(α)− ωiI)x = 0, x 6= 0, and dimker(H(α)− ωiI) = 1,

y
H(H(α)− ωiI) = 0, y 6= 0, and y

H
x = 0,

y = Jx, J =

[
0 In

−In 0

]

,

(H(α)− ωiI)x̂ = x, and y
H
x̂ 6= 0,

Jordan block of dimension 2 at the critical value of α
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Parameter dependent matrix eigenvalue problem H(ω,α)

Problem
How do we find a 2-dimensional Jordan block in H(α)?

(H(α)− ωiI)
︸ ︷︷ ︸

H(ω,α)

x = 0, x 6= 0,
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Bordered systems - a “new” method for finding eigenvalues

One-parameter problem B(λ)x = 0 or yHB(λ) = 0H (det(B(λ)) = 0)

Bordered system
[

B(λ) b

cH 0

]

︸ ︷︷ ︸

M(λ)

[
x(λ)
f(λ)

]

=

[
0
1

]

is nonsingular if cHx 6= 0 and yHb 6= 0 and rank(B(λ)) = n− 1.
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B(λ)x(λ) = 0.
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Bordered systems - a “new” method for finding eigenvalues

One-parameter problem B(λ)x = 0 or yHB(λ) = 0H (det(B(λ)) = 0)

Bordered system
[

B(λ) b

cH 0

]

︸ ︷︷ ︸

M(λ)

[
x(λ)
f(λ)

]

=

[
0
1

]

is nonsingular if cHx 6= 0 and yHb 6= 0 and rank(B(λ)) = n− 1. Cramer’s rule

f(λ) =
det(B(λ))

det(M(λ))
,

Solve
f(λ) = 0 instead of det(B(λ)) = 0.

At f(λ) = 0:
B(λ)x(λ) = 0.

Solve f(λ) = 0 using Newton’s method λ
+ = λ− f(λ)

fλ(λ)
.

8 of 32



Parameter dependent matrix eigenvalue problem H(ω,α)

Problem
How do we find a 2-dimensional Jordan block in H(α)?

(H(α)− ωiI)
︸ ︷︷ ︸

H(ω,α)

x = 0, x 6= 0,
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The bordered matrix

Theorem (Two-parameter problem)

• Let (ω,α, x) solve
(H(α)− ωiI)x = 0, x 6= 0,

• Zero is a double eigenvalue of H(α)− ωiI belonging to a 2-dimensional

Jordan block with

y
H
x = 0, for y ∈ ker(H(α)− ωiI)H \ {0}.

Then the bordered matrix

M(ω, α) =

[
H(α)− ωiI Jc

cH 0

]

, J =

[
0 In

−In 0

]

is nonsingular if cHx 6= 0.
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The implicit determinant method

Two-parameter problem

H(ω,α)x = 0 or det(H(ω,α)) = 0

11 of 32



The implicit determinant method

Two-parameter problem

H(ω,α)x = 0 or det(H(ω,α)) = 0

Bordered system

[
H(α)− ωiI Jc

cH 0

]

︸ ︷︷ ︸

M(ω,α)

[
x(ω,α)
f(ω, α)

]

=

[
0
1

]

11 of 32



The implicit determinant method

Two-parameter problem

H(ω,α)x = 0 or det(H(ω,α)) = 0

Bordered system

[
H(α)− ωiI Jc

cH 0

]

︸ ︷︷ ︸

M(ω,α)

[
x(ω,α)
f(ω, α)

]

=

[
0
1

]

Cramer’s rule

f(ω, α) =
det(H(ω,α))

det(M(ω, α))
,

11 of 32



The implicit determinant method

Two-parameter problem

H(ω,α)x = 0 or det(H(ω,α)) = 0

Bordered system

[
H(α)− ωiI Jc

cH 0

]

︸ ︷︷ ︸

M(ω,α)

[
x(ω,α)
f(ω, α)

]

=

[
0
1

]

Cramer’s rule

f(ω, α) =
det(H(ω,α))

det(M(ω, α))
,

Solve
f(ω, α) = 0 instead of det(H(ω,α)) = 0,

where
f(ω, α) = x(ω,α)HJ(H(α)− ωiI)x(ω,α)

is real.
11 of 32



The implicit determinant method

Differentiate the linear system

Differentiate

[
H(α)− ωiI Jc

cH 0

] [
x(ω,α)
f(ω, α)

]

=

[
0
1

]

with respect to ω:

[
H(α)− ωiI Jc

cH 0

] [
xω(ω,α)
fω(ω,α)

]

=

[
ix(ω,α)

0

]

.
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Differentiate
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with respect to ω:

[
H(α)− ωiI Jc

cH 0

] [
xω(ω,α)
fω(ω,α)

]

=

[
ix(ω,α)

0

]

.

First row
fω(ω, α) = iy

H
x= 0,

because of Jordan block of dimension 2. Solve

g(ω,α) =

[
f(ω, α)
fω(ω,α)

]

= 0.

12 of 32



The implicit determinant method

Differentiate the linear system

Differentiate

[
H(α)− ωiI Jc

cH 0

] [
x(ω,α)
f(ω, α)

]

=

[
0
1

]

with respect to ω:

[
H(α)− ωiI Jc

cH 0

] [
xω(ω,α)
fω(ω,α)

]

=

[
ix(ω,α)

0

]

.

First row
fω(ω, α) = iy

H
x= 0,

because of Jordan block of dimension 2. Solve

g(ω,α) =

[
f(ω, α)
fω(ω,α)

]

= 0.

Also,
(H(α)− ωiI)xω(ω,α) = ix,

and yHxω(ω, α) 6= 0, hence fωω(ω,α) 6= 0.
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Newton’s method for real function g in two real variables

Solve

g(ω,α) =

[
f(ω, α)
fω(ω,α)

]

= 0,

using Newton’s method:

G(ω(i)
, α

(i))

[
∆ω(i)

∆α(i)

]

= −g(ω(i)
, α

(i)),

[
ω(i+1)

α(i+1)

]

=

[
ω(i)

α(i)

]

+

[
∆ω(i)

∆α(i)

]

.
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Jacobian for Newton’s method

Jacobian

G(ω(i)
, α

(i)) =

[
fω(ω

(i), α(i)) fα(ω
(i), α(i))

fωω(ω
(i), α(i)) fωα(ω

(i), α(i))

]

.
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Jacobian for Newton’s method

Jacobian

G(ω(i)
, α

(i)) =

[
fω(ω

(i), α(i)) fα(ω
(i), α(i))

fωω(ω
(i), α(i)) fωα(ω

(i), α(i))

]

.

and the Jacobian elements are evaluated by differentiating the system

[
H(α)− ωiI Jc

cH 0

] [
x(ω,α)
f(ω, α)

]

=

[
0
1

]

,

with respect to ω and α.
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Implementation

• one (sparse) LU factorisation of

[
H(α)− ωiI Jc

cH 0

]

• solve with bordered system matrix and 5 different right hand sides in order
to obtain f(ω, α) and entries for Jacobian

G(ω,α) =

[
fω(ω, α) fα(ω,α)
fωω(ω, α) fωα(ω, α)

]

• very fast quadratically convergent Newton method in 2 dimensions
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Remarks

• full-rank Jacobian G(ω∗, α∗) =

[
0 fα(ω

∗, α∗)
fωω(ω

∗, α∗) fωα(ω
∗, α∗)

]

,
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Remarks

• full-rank Jacobian G(ω∗, α∗) =

[
0 fα(ω

∗, α∗)
fωω(ω

∗, α∗) fωα(ω
∗, α∗)

]

,

• fωω(ω
∗, α∗) < 0 and fα(ω

∗, α∗) > 0.

α

ω

ω*

ω
2

ω
1

αα*

f(ω,α)=0

Figure: Curve f(ω, α) = 0 in the (ω, α)-plane for fωω(ω∗, α∗) < 0
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• Multiplication by

[
−J 0

0H 1

]

leads to the Hermitian system

[
−JH(α) + ωiJ c

cH 0

] [
x(ω,α)
f(ω, α)

]

=

[
0
1

]

.
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• Multiplication by

[
−J 0

0H 1

]

leads to the Hermitian system

[
−JH(α) + ωiJ c

cH 0

] [
x(ω,α)
f(ω, α)

]

=

[
0
1

]

.

• Test step.
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Example 1

Consider

A =







−0.4 + 6i 1
1 −0.1 + i 1

1 −1− 3i 1
1 −5 + i







which has eigenvalues (rounded to 3 significant digits)

Λ(A) = {−0.41 + 5.80i,−0.04 + 0.95i,−0.92 − 2.62i,−5.13 + 0.87i}
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Example 1

Consider

A =







−0.4 + 6i 1
1 −0.1 + i 1

1 −1− 3i 1
1 −5 + i







which has eigenvalues (rounded to 3 significant digits)

Λ(A) = {−0.41 + 5.80i,−0.04 + 0.95i,−0.92 − 2.62i,−5.13 + 0.87i}

Starting values:

α(0) = 0
ω(0): imaginary part of the eigenvalue of A closest to the imaginary axis

c = x(0) =

[
v(ω(0), α(0))

u(ω(0), α(0))

]

, where v(ω(0), α(0)) and u(ω(0), α(0)) are right and

left singular vectors of A− ω(0)iI
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Example 1

Table: Results for Example 1.

Newton method

i ω(i) α(i) ‖g(ω(i), α(i))‖

0 0.953057740164838 0 -
1 0.953036248966048 0.031887014318100 1.5949900020014e-02
2 0.953014724735990 0.031887009443620 2.2577279982423e-04
3 0.953014724704841 0.031887014303200 2.4473093206567e-09
4 0.953014724704841 0.031887014303200 8.2762961087551e-16
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Example 2

Orr-Sommerfeld operator

1

γR
L

2
v − i(UL− U

′′)v = λLv, where L =
d2

dx2
− γ

2 and U = 1− x
2
.

Discretise the operator on v ∈ [−1, 1] using finite differences with γ = 1,
R = 1000 and n = 1000.

−10
3

−10
2

−10
1

−10
0

−10
−1

−10
−2

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

Rightmost eigenvalues of the Orr−Sommerfeld matrix

Figure: Eigenvalues of the Orr-Sommerfeld matrix in Example 3.
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Example 2

Convergence to ω = 0.199755999447167 and α = 0.001978172281960 within 5
iterations.

Table: CPU times for Example 3.

“Outer” iterations
“Inner” iterations (Eigenvalue computation Total

Algorithm for Hamiltonian matrix) CPU
quantity CPU time quantity CPU time time

Boyd/Balakrishnan 6 3.49 s 6 63.28 s 66.77 s
He/Watson 1786 244.14 s 1 10.54 s 254.68 s
Newton 5 5.67 s 1 10.33 s 16.00 s
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Example 3

Tolosa matrix tols340.mtx

−10
3

−10
2

−10
1

−10
0

−10
−1

−500

−400

−300

−200

−100

0

100

200

300

400

500
Rightmost eigenvalues of the Tolosa  matrix

Figure: Eigenvalues of the Tolosa matrix in Example 4.
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Example 3

Convergence to ω = 1.559998439945282 and α = 0.000019997968879 within 4
iterations.

Table: CPU times for Example 4.

“Outer” iterations
“Inner” iterations (Eigenvalue computation Total

Algorithm for Hamiltonian matrix) CPU
quantity CPU time quantity CPU time time

Boyd/Balakrishnan 3 67.52 s 3 5.27 s 72.79 s
He/Watson > 33000 > 2230 s > 11 > 18 s > 2248 s
Newton 4 2.01 s 1 1.69 s 3.7 s
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Real versus complex stability radius

• Complex stability radius

βC(A) = min
ω∈R

σmin(A− ωiI),

where σmin(A− ωiI) is the smallest singular value of A− ωiI .
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Real versus complex stability radius

• Complex stability radius

βC(A) = min
ω∈R

σmin(A− ωiI),

where σmin(A− ωiI) is the smallest singular value of A− ωiI .

• Real stability radius (Qiu et al 1995)

βR(A) = min
ω∈R

max
γ∈(0,1]

σ2n−1

([
A −ωγI
ω
γ
I A

])

,

where σ2n−1(·) is the second smallest singular value of the matrix (·). The
function to be maximised with respect to γ is unimodal in (0, 1] and hence
the local maximiser will be a global maximiser.
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Relation to Hamiltonian matrix problem

Real stability radius

βR(A) = min
ω∈R

max
γ∈(0,1]

σ2n−1

([
A −ωγI
ω
γ
I A

])

︸ ︷︷ ︸

B(ω,γ)

= min
ω∈R

max
γ∈(0,1]

σ2n−1B(ω, γ),

24 of 32



Relation to Hamiltonian matrix problem

Real stability radius

βR(A) = min
ω∈R

max
γ∈(0,1]

σ2n−1

([
A −ωγI
ω
γ
I A

])

︸ ︷︷ ︸

B(ω,γ)

= min
ω∈R

max
γ∈(0,1]

σ2n−1B(ω, γ),

Theorem (Boyd, Balakrishnan, Kabamba 1989)

Let A be a stable matrix and γ ∈ (0, 1]. Then, for all ω ∈ R, α > 0 is a

singular value of B(ω, γ) if and only if iω is an eigenvalue of H(α, γ) given by

H(α, γ) :=

[
Â −αTγT

T
γ

αFT T
γ TγF −ÂT

]

∈ R
4n×4n

where

Â :=

[
−A 0
0 A

]

∈ R
2n×2n

, F =

[
−I 0
0 I

]

, Tγ =
1√
2

[
I γI
1
γ
I −I

]

∈ R
2n×2n

.
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Results on H(α, γ)

Generic case
For fixed γ, if α is a simple singular value, then (ωi, x) is a defective eigenpair
of H(α, γ) of algebraic multiplicity 2 if α is a simple .
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Generic case
For fixed γ, if α is a simple singular value, then (ωi, x) is a defective eigenpair
of H(α, γ) of algebraic multiplicity 2 if α is a simple .

The bordered matrix

M(ω, α, γ) =

[
H(α, γ)− iωI Jc

cH 0

]

is nonsingular if cHx 6= 0. Consider the linear system
[

H(α, γ)− ωiI Jc

cH 0

] [
x(ω,α, γ)
f(ω, α, γ)

]

=

[
0
1

]

which now has an extra parameter γ. Using similar theory as for the complex
stability radius case we obtain

g(ω,α, γ) =





f(ω, α, γ)
fω(ω,α, γ)
fγ(ω, α, γ)



 = 0.

Characteristics of the (1, 1) block of the system are inherited to the scalar
function f
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Newton’s method

Solve the sequence of linear systems

G(ω(i)
, α

(i)
, γ

(i))





ω(i+1) − ω(i)

γ(i+1) − γ(i)

α(i+1) − α(i)



 = −g(ω(i)
, α

(i)
, γ

(i)), , i = 1, 2, . . .

with starting value (ω(0), α(0), γ(0)).
Jacobian

G(ω(i)
, α

(i)
, γ

(i)) =





fω(ω
(i), α(i), γ(i)) fγ(ω

(i), α(i), γ(i)) fα(ω
(i), α(i), γ(i))

fωω(ω
(i), α(i), γ(i)) fωγ(ω

(i), α(i), γ(i)) fωα(ω
(i), α(i), γ(i))

fωγ(ω
(i), α(i), γ(i)) fγγ(ω

(i), α(i), γ(i)) fγα(ω
(i), α(i), γ(i))




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Newton’s method

Solve the sequence of linear systems

G(ω(i)
, α

(i)
, γ

(i))





ω(i+1) − ω(i)

γ(i+1) − γ(i)

α(i+1) − α(i)



 = −g(ω(i)
, α

(i)
, γ

(i)), , i = 1, 2, . . .

with starting value (ω(0), α(0), γ(0))
In the limit the Jacobian is

G(ω∗
, α

∗
, γ

∗) =





0 0 f∗

α

f∗

ωω f∗

ωγ f∗

ωα

f∗

ωγ f∗

γγ f∗

γα



 .
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Newton’s method

Solve the sequence of linear systems

G(ω(i)
, α

(i)
, γ

(i))





ω(i+1) − ω(i)

γ(i+1) − γ(i)

α(i+1) − α(i)



 = −g(ω(i)
, α

(i)
, γ

(i)), , i = 1, 2, . . .

with starting value (ω(0), α(0), γ(0))
In the limit the Jacobian is

G(ω∗
, α

∗
, γ

∗) =





0 0 f∗

α

f∗

ωω f∗

ωγ f∗

ωα

f∗

ωγ f∗

γγ f∗

γα



 .

• Can show f∗

α > 0.

• f∗

ωωf
∗

γγ − f∗

ωγ
2 < 0 as α(ω∗, γ∗) is a saddle point of α(ω, γ).
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Example 4

Consider the matrix

A =











−0.4 7 0 0 0 0
−5 −0.4 1 0 0 0
0 1 −1 −2 0 0
0 0 4 −1 1 0
0 0 0 1 −5 2
0 0 0 0 0 −5











,

which has the eigenvalues

Λ(A) = {−0.3823 ± 5.8081i,−0.9360 ± 2.8210i,−5.1633,−5.0000},

all in the left half plane with the leftmost eigenvalue −0.3823 ± 5.8081i,
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Example 4 - Surface of σ2n−1(ω, γ)

Figure: Surface σ2n−1(ω, γ) of matrix A in Example 1.
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Example 4 - Results

Table: Results for Example 4.

i α(i) ω(i) γ(i) ‖g(α(i), ω(i), γ(i))‖
0 1.0000e-01 5.8081e+00 5.0000e-01 -
1 1.2271e-01 5.7679e+00 4.0236e-01 8.6013e+00
2 1.9308e-01 5.7749e+00 4.3597e-01 3.9972e+00
3 3.7590e-01 5.8399e+00 7.8038e-01 1.9974e+00
4 3.5831e-01 5.7968e+00 8.7316e-01 3.0862e-01
5 3.6035e-01 5.8002e+00 8.4257e-01 1.0443e-01
6 3.6118e-01 5.8034e+00 8.5126e-01 6.5223e-02
7 3.6120e-01 5.8036e+00 8.5294e-01 6.8681e-03
8 3.6120e-01 5.8036e+00 8.5295e-01 2.9883e-05
9 3.6120e-01 5.8036e+00 8.5295e-01 1.8938e-09
10 3.6120e-01 5.8036e+00 8.5295e-01 1.2108e-14

Quadratic convergence is obtained to the value α∗ = 0.3612 for the real
stability radius.

30 of 32



Final remarks

Conclusions

• new algorithm for computing the distance to unstable matrix

• relies on finding a 2-dimensional Jordan block in 2-parameter matrix

• only one linear system solve decomposition per Newton step of bordered
matrix M necessary

• numerical results show that new method outperforms earlier algorithms
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Ongoing work

• extension to structured stability radius

• extension to discrete distance to instabilty (Gürbüzbalaban et al)

• extension to calculating the H∞-norm
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Thank you.
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