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“Take-home-message” - a new method for computing eigenvalues

One-parameter |

Bordered system for rank(7'(A)) =n — 1
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M(X)

M () is nonsingular if vz # 0 and w”y # 0. Cramer’s rule

_ det(T(V)
fN) = At (M)’
Solve
f(A) =0 instead of det(T'(\)) = 0.
At f(A) =0
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“Take-home-message” - a new method for computing eigenvalues

One-parameter |

Bordered system for rank(7'(A)) =n — 1

ER1FsINN
M(X)

M () is nonsingular if vz # 0 and w”y # 0. Cramer’s rule

_ det(T(V)
F) = det(M(N))’
Solve
f(A) =0 instead of det(T'(\)) = 0.
At f(A) =0:
T(N)z(X) =0.
Solve f()\) = 0 using Newton’s method AT = \ — ]{\(()\)\))
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Introduction

Continuous-time linear dynamical system

Consider
i(t) = Az(t) + Bu(t)
y(t) = Cx(t) + Du(t),

where A € C"*", Be C"*?, C € C™*" and D € C™*?, input u(t) € CP,
output y(t) € C™.
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Introduction

Continuous-time linear dynamical system

Consider

i(t) = Az(t) + Bu(t)

y(t) = Ca(t) + Du(t),
where A € C"*", Be C"*?, C € C™*" and D € C™*?, input u(t) € CP,
output y(t) € C™.

m Assume A is stable

m Ho.-norm is important quantity for measuring robust stability, error in
model order reduction ...




Introduction

H.-norm of the transfer function

[Glloo = sup omax (G (iw)),
w€ER

B Omax: Mmaximum singular value
m G(s) = C(sI — A)™'B + D is the transfer function

m reciprocal of the Hoo-norm: complex stability radius.
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Introduction

H.-norm of the transfer function

[Glloo = sup omax (G (iw)),
w€ER

B Omax: Mmaximum singular value
G(s) = C(sI — A)~'B + D is the transfer function

m reciprocal of the Ho-norm: complex stability radius.
m For B=C =1 and D = 0: distance to instability (Van Loan 1984)

B(A) = miﬁ Omin(A — wil)

we

Omin: Minimum singular value
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Introduction

Distance to instability - definition

m Stability of A: spectral abscissa n(A) := max{Re(\) | A € A(A4)} < 0.
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Distance of a stable matrix A to instability
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Distance of a stable matrix A to instability

B(A) = min{||E|||n(A+ E) =0, E € C""}

m For a destabilising perturbation F
(A+E—-wil)z=0,
for some w € R and z € C™.
m SVD of A — wil:
A—wil =UEVE.
Minimising destabilising perturbation: Emin = —Omintunvil.
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Distance to instability - definition

Distance of a stable matrix A to instability

B(A) = min{||E|||n(A+ E) =0, E € C""}

m For a destabilising perturbation F
(A+E—-wil)z=0,
for some w € R and z € C™.
m SVD of A — wil:
A—wil =UEVE.
Minimising destabilising perturbation: Emin = —Omintunvil.
m Distance to instability,
B(A) = miﬁ Omin(A — wil).

we
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Introduction

Distance to instability (B =C =1, D =0)

B(A) = Mif Omin (A — wil).
Consider the singular values of A — wil:

(A—wil)v=0u and (A—wil)Pu= av.
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Distance to instability (B =C =1, D =0)

B(A) = Mif Omin (A — wil).
Consider the singular values of A — wil:

(A—wil)v=0u and (A—wil)Pu= av.

A —al v | % N
al —AH s
| S —

H(a)
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Distance to instability (B =C =1, D =0)

B(A) = mi{é Omin(A — wil).

we

Consider the singular values of A — wil:

(A—wil)v=0u and (A—wil)Pu= av.

A —al v | % N
al —AH s
| S —

H(a)

Theorem (Byers 1988)

The 2n x 2n Hamiltonian matriz

e =| 4 4 |

has an eigenvalue on the imaginary azis if and only if o > B(A).
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Introduction

Results on H(v) (for general B,C, D)

Theorem (Boyd, Balakrishnan, Kabamba 1989)

Let A be stable, v > omax(D), G(s) = C(sI — A)"'*B+ D. The 2n x 2n
Hamiltonian matric
Hiy) = A— BR(y)"'DHC —yBR(y)"'B#

V=1 N0HS(y)"'C  —AH + CEDR(y)'B¥

where R(y) = D¥ D —~*I and S(y) = DD — 4*I has eigenvalues on the
imaginary azis if and only if v < ||G||oo-
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Introduction

Results on H(v) (for general B,C, D)

Theorem (Boyd, Balakrishnan, Kabamba 1989)
Let A be stable, v > omax(D), G(s) = C(sI — A)"'*B+ D. The 2n x 2n
Hamiltonian matriz
Hiy) = A— BR(y)"'DHC —yBR(vy) !B
V=1 AcHS()T'c —AR + CHDR(y) B

where R(y) = D¥ D —~*I and S(y) = DD — 4*I has eigenvalues on the
imaginary azis if and only if v < |G| -

m 7 is a singular value of G(iw) if and only if H(v) — iwI is singular.
Find the largest possible value of v = +* such that H(vy) has imaginary
eigenvalues.

m Assume 7" = ||G||« is simple.
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Background

Existing/other approaches

= Bisection approach by Byers (for distance to instability)
m choose lower and upper bound on « (0 and omin(A))
= take mean value s and calculate all the eigenvalues of H(s), update
lower and upper bound according to pure imaginary eigenvalues of H(s)
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Existing/other approaches

= Bisection approach by Byers (for distance to instability)

m choose lower and upper bound on a (0 and opyin(A))
= take mean value s and calculate all the eigenvalues of H(s), update
lower and upper bound according to pure imaginary eigenvalues of H(s)

= Boyd/Balakrishnan method (BBBS) for Hso-norm

m given an lower bound v < ||G||s0, compute all pure imaginary
eigenvalues ‘w1, twa, . . ., tw; of H(y) ordered so that w1 < w2 < ... < wy

Wh + W41 L
%7 k=1,.

m set s = ..l —1 and update v = maxy omaxG(skil)
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Background

Existing/other approaches

= Bisection approach by Byers (for distance to instability)

m choose lower and upper bound on a (0 and opyin(A))
= take mean value s and calculate all the eigenvalues of H(s), update
lower and upper bound according to pure imaginary eigenvalues of H(s)

= Boyd/Balakrishnan method (BBBS) for Hso-norm

m given an lower bound v < ||G||s0, compute all pure imaginary
eigenvalues ‘w1, twa, . . ., tw; of H(y) ordered so that w1 < w2 < ... < wy

Wh + W41 L
%7 k=1,.

m set s = ..l —1 and update v = maxy omaxG(skil)

m Spectral value sets (Guglielmi/Giirbiizbalaban/Overton)

m relies on calculating the rightmost point in spectral value
sets/structured pseudospectra

= approximation of the Ho-norm using a Newton-bisection method

» Kressner/Vandereycken combined this method with subspace
acceleration

m Benner/Voigt developed a similar idea, but for descriptor systems —
Poster tonight
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Background

Results on H(v*)

Hamiltonian matrix:

H(y) = [ Oﬁc _SlH ]+ [ OED }R(y)*l[ L pod B Y.

Assumption

(wi,x) is a defective eigenpair of H(~*) of algebraic multiplicity 2.
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Results on H(v*)

Hamiltonian matrix:

H(y) = [ Oﬁc _SlH ]+ [ CED }R(y)*l[ L pod B Y.

Assumption

(wi,x) is a defective eigenpair of H(~*) of algebraic multiplicity 2.

(H") —w'il)z=0, x#0, and dimker(H(y")—w"il) =1,

yT(H(y") —w*il) =0, y#0, and y"z=0,
0 I

y=Jx, J:{_I 0

] , mHJm:0,
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Background

Results on H(v*)

Hamiltonian matrix:

H(y) = [ Oﬁc _SlH ]+ [ CED }R(y)*l[ L pod B Y.

Assumption

(wi,x) is a defective eigenpair of H(~*) of algebraic multiplicity 2.

(H") —w'il)z=0, x#0, and dimker(H(y")—w"il) =1,

yT(H(y") —w*il) =0, y#0, and y"z=0,
0 I

y=Jx, J:{_I 0

] , mHJm:0,

(H(y*) —w*il)é =z, and y7& #£0,

Jordan block of dimension 2 at the critical value of v = v*
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Background

Parameter dependent matrix eigenvalue problem H(w,~)

How do we find a 2-dimensional Jordan block in H(~y)?
(H(y) —wil)x =0, z#0, z"Jr=0
—_————

H(w,7)
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Background

Converting the problem into a Hermitian eigenvalue problem
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Background

Converting the problem into a Hermitian eigenvalue problem

(H()J —wid)Jz =0, J= [ b é ] ,

H(y)J = { AOH 0’30 } 3 { CED ]R(v)‘l[ g ore ]
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Background

Converting the problem into a Hermitian eigenvalue problem

(H()J —wid)Jz =0, J= { b é ] ,

H(y)J = { AOH 0’30 } 3 { CED ]R(v)‘l[ g ore ]

m (H(vy)J —wiJ) is the Schur complement of

0 A —wl B
AP 4wl CHC ciD
H("}’,UJ) _ BH DHC DHD B 72[ c (C2n+p,2n+P7
N e’

R(v)
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Background

Converting the problem into a Hermitian eigenvalue problem

(H()J —wid)Jz =0, J= { b é ] ,

H(y)J = { AOH 0’30 } 3 { CED ]R(v)‘l[ g ore ]

m (H(vy)J —wiJ) is the Schur complement of

0 A —iwl B
A" yiwr CHC cfp
H(vy,w) = BH DHC H 721_ c C2n+p,2n+P7
N————
R(~v)

= With our assumptions
detH(vy,w) =0 < det(H(y)J —wiJ)=0.
Jx }

H(y,w)z =0 where z= { o

University of Bath




Background

Parameter dependent matrix eigenvalue problem H (v, w)

H(y,w)z=0, z#0, z= [ {:C ] where 2 Jz = 0.
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Implicit Determinant Method

The implicit determinant method

H(y,w)z=0 or det(H(y,w)) =0 dimkerH(y,w)=1
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Implicit Determinant Method

The implicit determinant method

H(y,w)z=0 or det(H(y,w)) =0 dimkerH(y,w)=1

Bordered system
e s ]|

M (v,w)

M (v, w) is nonsingular if v z # 0.
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Implicit Determinant Method

The implicit determinant method

Two-parameter problem

H(y,w)z=0 or det(H(y,w)) =0 dimkerH(y,w)=1

e s ]|

M (v,w)

Bordered system

M (v, w) is nonsingular if vz # 0. Cramer’s rule

_ det(H(y,w))

forw) = S0t (@)
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Implicit Determinant Method

The implicit determinant method

Two-parameter problem

H(y,w)z=0 or det(H(y,w)) =0 dimkerH(y,w)=1

e s ]|

M (v,w)

Bordered system

M (v, w) is nonsingular if vz # 0. Cramer’s rule

_ det(H(y,w))

forw) = S0t (@)

Solve
f(v,w) =0 instead of det(H(v,w)) =0,

where f(v,w) is real.

Melina of Bath




Implicit Determinant Method

The implicit determinant method

m Differentiate { ,H(ryf}w) v } [ ch('y,w) ] [ (; ] with respect to w,

v 0 (v, w)
A —iwl B
where H(vy,w) + n F o"e O

IDEcl BDE DR 2T
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Implicit Determinant Method

The implicit determinant method

m Differentiate { ,H(ryf}w) v } [ ;(v,w) ] = [ (; ] with respect to w,

v 0 (v, w)
A —iwl B
where H(vy,w) + n F o"e O

IDEcl BDE DR 2T

m First row multiplied by left eigenvector z = { i:c } from the left

fW(77w) n ZI‘HJZ'
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Implicit Determinant Method

The implicit determinant method

m Differentiate { ,H(ryf}w) v } [ ;(v,w) ] [ (; ] with respect to w,

v 0 (v, w)
A —iwl B
where H(vy,w) + n F o"e O

IDEcl BDE DR 2T

m First row multiplied by left eigenvector z = { i:c } from the left

Fo(n = ig" Jo=0,

because of Jordan block of dimension 2.

of Bath




Implicit Determinant Method

Newton’s method for real function g in two real variables

m Solve

g(y,w) = { J{J%’ﬁ) } =

using quadratically convergent Newton’s method.
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m Solve

g(y,w) = { J{J%’ﬁ) } =

using quadratically convergent Newton’s method.

m Jacobian elements: differentiate the system

with respect to w and 7.
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m Solve

g(y,w) = { J{J%’ﬁ) } =

using quadratically convergent Newton’s method.

m Jacobian elements: differentiate the system

=i

with respect to w and 7.

= Implementation: one (sparse) LU factorisation of

[ H(y,w) v }
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Implicit Determinant Method

Newton’s method for real function g in two real variables

m Solve

g(y,w) = { J{J%’:})) } =

using quadratically convergent Newton’s method.

m Jacobian elements: differentiate the system

=i

with respect to w and 7.
= Implementation: one (sparse) LU factorisation of

[ H(y,w) v }

o 0

0 Sy (7, w")
Juw(y",w")
nonsingular and fuw(y",w*) > 0 and fy(y*,w") > 0.

Jacobian of g at critical point: [

of Bath




Implicit Determinant Method

Remarks on solving linear system

m Transform the pair (A, B) into upper block staircase form, that is
(U7 AU, U BV) = (Q, tl), where U, V are unitary matrices




Implicit Determinant Method

Remarks on solving linear system

= Transform the pair (4,
(

(U7 AU, U BV) = Q, tl), where U, V are unitary matrices
UrP 0 O o £-§ 1
= With Q = 0 0 U |,P= ' € C™" and
0 vV o0 T -%Re: 0
0 A —iwl B
H(y,w)= | AT +iwl CHC c"p
B DEC D LD — VI
0 AF 0 0 —iwP
QY H(v,w)Q = ARETT + 0 —42I 0
T wP 0 0

lower anti-p+1  Hessenberg

of Bath




Distance to instability

Orr-Sommerfeld operator

YR

L (UL —U")v = ALv,

Examples

2

L:al——'y2 and U=1-z>

where
dx?

Discretise the operator on v € [—1,1] using finite differences with v =1,

R = 1000 and n = 1000.

Rightmost eigenvalues of the Orr-Sommerfeld matrix

Figure: Eigenvalues of the Orr-Sommerfeld matrix.

sity of Bath




Examples

Distance to instability

Convergence to w = 0.199756 and o = 0.001978 within 5 iterations.

Table: CPU times.

“Outer” iterations
“Inner” iterations (Eigenvalue computation Total
Algorithm for Hamiltonian matrix) CPU
quantity | CPU time quantity | CPU time time

[ Boyd/Balakrishnan || 6 [ 349s 6 [ 63.28 s [[ 66.77 s |
[ Newton [l 5 [ 567s | 1 [ 10.33 s [ 16.00 s |




Examples

Distance to instability

Tolosa matrix tols340.mtx

Rightmost eigenvalues of the Tolosa matrix

400
300

200 fw g o
100 * F* :

-100 *

** ’i *
-200
-300

-400

Figure: Eigenvalues of the Tolosa matrix.




Examples

Distance to instability

Convergence to w = 1.559998 and o = 0.0000199 within 4 iterations.

Table: CPU times.

“Outer” iterations
“Inner” iterations (Eigenvalue computation Total
Algorithm for Hamiltonian matrix) CPU
quantity | CPU time quantity | CPU time time

[ Boyd/Balakrishnan || 3 [ 67.52s 3 [ 5.27 s [ 72.79s ]
[ Newton [l 4 [ ¥ 2.00. 50| 1 [ 1.69 s [l




Examples

Ho,-norm - E

n m, p |G| LoM NI lnel1sys CPU(IDM) | CPU(SVS)
BBK 1 3,2 6.44051653¢ T 00 5 6.44051653¢ T 00 3.0006-01 2.1006-01
cBM 351 2,1 2.62076526e — 01 5 2.62976526¢ — 01 | 3.100e+00 | 1.106e+02
CSE2 63 32,1 2.03391753e — 02 4 2.03391753e — 02 5.400e-01 8.238e+01
CM1 23 3,1 8.16496496e — 01 5 8.16496589e — 01 2.100e-01 5.700e-01
CM3 123 3,1 8.16094047e — 01 i 8.21443671e — 01 3.900e-01 1.687e+01
CM4 243 3,1 1.58866664e + 00 5 1.44542364e + 00 1.360e+-00 6.475e+02
HE6 23 16 , 6 4.92937305e 4 02 1 4.92937159e + 02 4.800e-01 8.430e+400
HE7 23 16 , 9 3.46529860e + 02 5 3.46529860e + 02 3.100e-01 7.800e-01
ROC1 12 2,2 1.21658902¢ + 00 5 1.21658902¢ + 00 | 2.100e-01 4.200e-01
ROC2 13 1,4 1.33366743¢ — 01 2 1.33366743¢ — 01 | 3.600e-01 3.900e-01
ROC3 14 11,11 | 1.72310471e +04 | 4 1.72310471e + 04 | 3.000e-01 3.600e-01
ROCA 12 2,2 2.95650873¢ + 02 8 | 2.95650873e + 02 1.900e-01 3.500e-01
ROCS 10 2,3 9.79995384¢ — 03 1 9.79995186¢ — 03 | 2.800e-01 6.200e-01
ROC6 8 3,3 2.57633040e + 01 1 2.57633040e + 01 3.400e-01 2.200e-01
ROC7 8 3,1 1.12196212e + 00 9 1.12196215e + 00 1.000e-01 1.420e+400
ROC8 12 7,1 6.59896425e 4 00 5 6.59896425e + 00 2.800e-01 2.700e-01
ROC9 9 5,1 3.29185918e + 00 6 3.29404544e + 00 1.300e-01 5.000e-01
ROC10 9 2,2 1.01446326e — 01 4 1.01480433e — 01 3.300e-01 4.500e-01




Examples

Ho,-norm - E

n m, p lla||LoM NI lel15ys CPU(IDM) | CPU(SVS)
BBK 4 2,2 6.44051653e + 00 5 6.44051653e 4+ 00 3.000e-01 2.100e-01
CBM 351 2,1 2.62976526e — 01 5 2.62976526e — 01 3.100e+00 1.106e+402
CSE2 63 32,1 2.03391753e — 02 4 2.03391753e — 02 5.400e-01 8.238e+01
CM1 23 3,1 8.16496496e — 01 5 8.16496589e — 01 2.100e-01 5.700e-01
CM3 123 3,1 8.16094047e — 01 7 8.21443671e — 01 3.900e-01 1.687e+01
cMa 243 3,1 1.58866664¢ + 00 5 1.44542364e + 00 | 1.360e4+00 | 6.475e402
HE6 23 16, 6 4.92937305¢ + 02 1 4.92937159¢ + 02 4.800e-01 8.430e+00
HE7 23 16, 9 3.46529860e + 02 5 3.46529860¢€ + 02 3.100e-01 7.800e-01
ROC1 12 2,2 1.21658902¢ + 00 5 1.21658902¢ + 00 2.100e-01 4.200e-01
ROC2 13 1,4 1.33366743¢ — 01 2 1.33366743¢ — 01 3.600e-01 3.900e-01
ROC3 14 11,11 1.72310471e + 04 4 1.72310471e + 04 3.000e-01 3.600e-01
ROC4 12 2,2 2.95650873e 4 02 8 2.95650873e 4 02 1.900e-01 3.500e-01
ROC5 10 2,3 9.79995384e — 03 1 9.79995186e — 03 2.800e-01 6.200e-01
ROC6 8 3,3 2.57633040e + 01 1 2.57633040e + 01 3.400e-01 2.200e-01
ROC7 8 3,1 1.12196212e + 00 9 1.12196215e + 00 1.000e-01 1.420e+00
ROC8 12 7,1 6.59896425e 4 00 5 6.59896425e 4 00 2.800e-01 2.700e-01
ROCO 9 5,1 3.29185918¢ + 00 6 3.29404544e 4 00 1.300e-01 5.000e-01
ROC10 9 2,2 1.01446326e — 01 4 1.01480433¢ — 01 3.300e-01 4.500e-01
NN18 1006 2,1 1.02336052e + 00 5 1.02336052e + 00 3.607e+01 4.604e+01
dwave 2048 6,4 3.80199635e 4 04 1 3.80199635e 4 04 1.516e4-01 1.077e402




Examples

Final remarks

m fast algorithm for computing the Ho.-norm and distance to unstable
matrix

m relies on finding a 2-dimensional Jordan block in 2-parameter matrix
m only one LU decomposition per Newton step of bordered matrix

m computation time can further be reduced using transformation into
staircase form

= numerical results show that new method outperforms other algorithms
m extension to descriptor systems and discrete time problems

m relies on good starting guess (dominant poles, rightmost eigenvalues)
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Final remarks

Conclusions

m fast algorithm for computing the Ho.-norm and distance to unstable
matrix

m relies on finding a 2-dimensional Jordan block in 2-parameter matrix
m only one LU decomposition per Newton step of bordered matrix

m computation time can further be reduced using transformation into
staircase form

= numerical results show that new method outperforms other algorithms
m extension to descriptor systems and discrete time problems

m relies on good starting guess (dominant poles, rightmost eigenvalues)

Further work and extensions

m iterative solvers for linear system

m calculation of larger Jordan blocks

Melina Freitag University of Bath

culating the Hoo-norm and the Real Stability Radius
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