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“Take-home-message” - a new method for computing eigenvalues

One-parameter problem T (λ)x = 0 or yHT (λ) = 0H (det(T (λ)) = 0)

Bordered system for rank(T (λ)) = n− 1

[
T (λ) w

vH 0

]

︸ ︷︷ ︸

M(λ)

[
x(λ)
f(λ)

]

=

[
0
1

]

M(λ) is nonsingular if vHx 6= 0 and wHy 6= 0.
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“Take-home-message” - a new method for computing eigenvalues

One-parameter problem T (λ)x = 0 or yHT (λ) = 0H (det(T (λ)) = 0)

Bordered system for rank(T (λ)) = n− 1

[
T (λ) w

vH 0

]

︸ ︷︷ ︸

M(λ)

[
x(λ)
f(λ)

]

=

[
0
1

]

M(λ) is nonsingular if vHx 6= 0 and wHy 6= 0. Cramer’s rule

f(λ) =
det(T (λ))

det(M(λ))
,
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“Take-home-message” - a new method for computing eigenvalues

One-parameter problem T (λ)x = 0 or yHT (λ) = 0H (det(T (λ)) = 0)

Bordered system for rank(T (λ)) = n− 1

[
T (λ) w

vH 0

]

︸ ︷︷ ︸

M(λ)

[
x(λ)
f(λ)

]

=

[
0
1

]

M(λ) is nonsingular if vHx 6= 0 and wHy 6= 0. Cramer’s rule

f(λ) =
det(T (λ))

det(M(λ))
,

Solve
f(λ) = 0 instead of det(T (λ)) = 0.
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“Take-home-message” - a new method for computing eigenvalues

One-parameter problem T (λ)x = 0 or yHT (λ) = 0H (det(T (λ)) = 0)

Bordered system for rank(T (λ)) = n− 1

[
T (λ) w

vH 0

]

︸ ︷︷ ︸

M(λ)

[
x(λ)
f(λ)

]

=

[
0
1

]

M(λ) is nonsingular if vHx 6= 0 and wHy 6= 0. Cramer’s rule

f(λ) =
det(T (λ))

det(M(λ))
,

Solve
f(λ) = 0 instead of det(T (λ)) = 0.

At f(λ) = 0:
T (λ)x(λ) = 0.
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“Take-home-message” - a new method for computing eigenvalues

One-parameter problem T (λ)x = 0 or yHT (λ) = 0H (det(T (λ)) = 0)

Bordered system for rank(T (λ)) = n− 1

[
T (λ) w

vH 0

]

︸ ︷︷ ︸

M(λ)

[
x(λ)
f(λ)

]

=

[
0
1

]

M(λ) is nonsingular if vHx 6= 0 and wHy 6= 0. Cramer’s rule

f(λ) =
det(T (λ))

det(M(λ))
,

Solve
f(λ) = 0 instead of det(T (λ)) = 0.

At f(λ) = 0:
T (λ)x(λ) = 0.

Solve f(λ) = 0 using Newton’s method λ
+ = λ−

f(λ)

fλ(λ)
.
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Continuous-time linear dynamical system

Consider

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t),

where A ∈ C
n×n, B ∈ C

n×p, C ∈ C
m×n and D ∈ C

m×p, input u(t) ∈ C
p,

output y(t) ∈ C
m.
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Continuous-time linear dynamical system

Consider

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t),

where A ∈ C
n×n, B ∈ C

n×p, C ∈ C
m×n and D ∈ C

m×p, input u(t) ∈ C
p,

output y(t) ∈ C
m.

Assume A is stable

H∞-norm is important quantity for measuring robust stability, error in
model order reduction ...
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H∞-norm of the transfer function

H∞-norm of the transfer function for continuous time systems

‖G‖∞ := sup
ω∈R

σmax(G(iω)),

σmax: maximum singular value

G(s) = C(sI − A)−1B +D is the transfer function

reciprocal of the H∞-norm: complex stability radius.
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H∞-norm of the transfer function

H∞-norm of the transfer function for continuous time systems

‖G‖∞ := sup
ω∈R

σmax(G(iω)),

σmax: maximum singular value

G(s) = C(sI − A)−1B +D is the transfer function

reciprocal of the H∞-norm: complex stability radius.

For B = C = I and D = 0: distance to instability (Van Loan 1984)

β(A) = min
ω∈R

σmin(A− ωiI)

σmin: minimum singular value
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Distance to instability - definition

Stability of A: spectral abscissa η(A) := max{Re(λ) |λ ∈ Λ(A)} < 0.
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Distance to instability - definition

Stability of A: spectral abscissa η(A) := max{Re(λ) |λ ∈ Λ(A)} < 0.

Better measure of stability: Distance to instability

Distance of a stable matrix A to instability

β(A) = min{‖E‖ | η(A+ E) = 0, E ∈ C
n×n}
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Distance to instability - definition

Stability of A: spectral abscissa η(A) := max{Re(λ) |λ ∈ Λ(A)} < 0.

Better measure of stability: Distance to instability

Distance of a stable matrix A to instability

β(A) = min{‖E‖ | η(A+ E) = 0, E ∈ C
n×n}

For a destabilising perturbation E

(A+E − ωiI)z = 0,

for some ω ∈ R and z ∈ C
n.
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Distance to instability - definition

Stability of A: spectral abscissa η(A) := max{Re(λ) |λ ∈ Λ(A)} < 0.

Better measure of stability: Distance to instability

Distance of a stable matrix A to instability

β(A) = min{‖E‖ | η(A+ E) = 0, E ∈ C
n×n}

For a destabilising perturbation E

(A+E − ωiI)z = 0,

for some ω ∈ R and z ∈ C
n.

SVD of A− ωiI :
A− ωiI = UΣV H

.

Minimising destabilising perturbation: Emin = −σminunv
H
n .
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Distance to instability - definition

Stability of A: spectral abscissa η(A) := max{Re(λ) |λ ∈ Λ(A)} < 0.

Better measure of stability: Distance to instability

Distance of a stable matrix A to instability

β(A) = min{‖E‖ | η(A+ E) = 0, E ∈ C
n×n}

For a destabilising perturbation E

(A+E − ωiI)z = 0,

for some ω ∈ R and z ∈ C
n.

SVD of A− ωiI :
A− ωiI = UΣV H

.

Minimising destabilising perturbation: Emin = −σminunv
H
n .

Distance to instability,

β(A) = min
ω∈R

σmin(A− ωiI).
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Distance to instability (B = C = I, D = 0)

β(A) = min
ω∈R

σmin(A− ωiI).

Consider the singular values of A− ωiI :

(A− ωiI)v = αu and (A− ωiI)Hu = αv.
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Distance to instability (B = C = I, D = 0)

β(A) = min
ω∈R

σmin(A− ωiI).

Consider the singular values of A− ωiI :

(A− ωiI)v = αu and (A− ωiI)Hu = αv.

[
A −αI

αI −AH

]

︸ ︷︷ ︸

H(α)

[
v

u

]

= ωi

[
v

u

]
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Distance to instability (B = C = I, D = 0)

β(A) = min
ω∈R

σmin(A− ωiI).

Consider the singular values of A− ωiI :

(A− ωiI)v = αu and (A− ωiI)Hu = αv.

[
A −αI

αI −AH

]

︸ ︷︷ ︸

H(α)

[
v

u

]

= ωi

[
v

u

]

Theorem (Byers 1988)

The 2n× 2n Hamiltonian matrix

H(α) =

[
A −αI

αI −AH

]

.

has an eigenvalue on the imaginary axis if and only if α ≥ β(A).
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Results on H(γ) (for general B,C,D)

Theorem (Boyd, Balakrishnan, Kabamba 1989)

Let A be stable, γ > σmax(D), G(s) = C(sI − A)−1B +D. The 2n× 2n
Hamiltonian matrix

H(γ) =

[
A−BR(γ)−1DHC −γBR(γ)−1BH

γCHS(γ)−1C −AH +CHDR(γ)−1BH

]

where R(γ) = DHD − γ2I and S(γ) = DDH − γ2I has eigenvalues on the

imaginary axis if and only if γ ≤ ‖G‖∞.
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Results on H(γ) (for general B,C,D)

Theorem (Boyd, Balakrishnan, Kabamba 1989)

Let A be stable, γ > σmax(D), G(s) = C(sI − A)−1B +D. The 2n× 2n
Hamiltonian matrix

H(γ) =

[
A−BR(γ)−1DHC −γBR(γ)−1BH

γCHS(γ)−1C −AH +CHDR(γ)−1BH

]

where R(γ) = DHD − γ2I and S(γ) = DDH − γ2I has eigenvalues on the

imaginary axis if and only if γ ≤ ‖G‖∞.

γ is a singular value of G(iω) if and only if H(γ)− iωI is singular.
Find the largest possible value of γ = γ∗ such that H(γ) has imaginary
eigenvalues.

Assume γ∗ = ‖G‖∞ is simple.
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Existing/other approaches

Bisection approach by Byers (for distance to instability)
choose lower and upper bound on α (0 and σmin(A))
take mean value s and calculate all the eigenvalues of H(s), update
lower and upper bound according to pure imaginary eigenvalues of H(s)

Melina Freitag University of Bath

Calculating the H∞-norm and the Real Stability Radius



Introduction Background Implicit Determinant Method Examples

Existing/other approaches

Bisection approach by Byers (for distance to instability)
choose lower and upper bound on α (0 and σmin(A))
take mean value s and calculate all the eigenvalues of H(s), update
lower and upper bound according to pure imaginary eigenvalues of H(s)

Boyd/Balakrishnan method (BBBS) for H∞-norm
given an lower bound γ ≤ ‖G‖∞, compute all pure imaginary
eigenvalues iw1, iw2, . . . , iwl of H(γ) ordered so that w1 ≤ w2 ≤ . . . ≤ wl

set sk =
wk+wk+1

2
, k = 1, . . . l− 1 and update γ = maxk σmaxG(skiI)
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Existing/other approaches

Bisection approach by Byers (for distance to instability)
choose lower and upper bound on α (0 and σmin(A))
take mean value s and calculate all the eigenvalues of H(s), update
lower and upper bound according to pure imaginary eigenvalues of H(s)

Boyd/Balakrishnan method (BBBS) for H∞-norm
given an lower bound γ ≤ ‖G‖∞, compute all pure imaginary
eigenvalues iw1, iw2, . . . , iwl of H(γ) ordered so that w1 ≤ w2 ≤ . . . ≤ wl

set sk =
wk+wk+1

2
, k = 1, . . . l− 1 and update γ = maxk σmaxG(skiI)

Spectral value sets (Guglielmi/Gürbüzbalaban/Overton)
relies on calculating the rightmost point in spectral value
sets/structured pseudospectra
approximation of the H∞-norm using a Newton-bisection method
Kressner/Vandereycken combined this method with subspace
acceleration
Benner/Voigt developed a similar idea, but for descriptor systems →
Poster tonight
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Results on H(γ∗)

Hamiltonian matrix:

H(γ) =

[
A 0

CHC −AH

]

+

[
B

CHD

]

R(γ)−1 [ −DHC BH
]
.

Assumption

(ω∗i, x) is a defective eigenpair of H(γ∗) of algebraic multiplicity 2.
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Results on H(γ∗)

Hamiltonian matrix:

H(γ) =

[
A 0

CHC −AH

]

+

[
B

CHD

]

R(γ)−1 [ −DHC BH
]
.

Assumption

(ω∗i, x) is a defective eigenpair of H(γ∗) of algebraic multiplicity 2.

(H(γ∗)− ω
∗
iI)x = 0, x 6= 0, and dimker(H(γ∗)− ω

∗
iI) = 1,
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Results on H(γ∗)

Hamiltonian matrix:

H(γ) =

[
A 0

CHC −AH

]

+

[
B

CHD

]

R(γ)−1 [ −DHC BH
]
.

Assumption

(ω∗i, x) is a defective eigenpair of H(γ∗) of algebraic multiplicity 2.

(H(γ∗)− ω
∗
iI)x = 0, x 6= 0, and dimker(H(γ∗)− ω

∗
iI) = 1,

y
H(H(γ∗)− ω

∗
iI) = 0, y 6= 0, and y

H
x = 0,

y = Jx, J =

[
0 I

−I 0

]

, x
H
Jx = 0,
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Results on H(γ∗)

Hamiltonian matrix:

H(γ) =

[
A 0

CHC −AH

]

+

[
B

CHD

]

R(γ)−1 [ −DHC BH
]
.

Assumption

(ω∗i, x) is a defective eigenpair of H(γ∗) of algebraic multiplicity 2.

(H(γ∗)− ω
∗
iI)x = 0, x 6= 0, and dimker(H(γ∗)− ω

∗
iI) = 1,

y
H(H(γ∗)− ω

∗
iI) = 0, y 6= 0, and y

H
x = 0,

y = Jx, J =

[
0 I

−I 0

]

, x
H
Jx = 0,

(H(γ∗)− ω
∗
iI)x̂ = x, and y

H
x̂ 6= 0,

Jordan block of dimension 2 at the critical value of γ = γ∗
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Parameter dependent matrix eigenvalue problem H(ω, γ)

Problem

How do we find a 2-dimensional Jordan block in H(γ)?

(H(γ)− ωiI)
︸ ︷︷ ︸

H(ω,γ)

x = 0, x 6= 0, x
H
Jx = 0
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Converting the problem into a Hermitian eigenvalue problem

(H(γ)− ωiI)x = 0, J =

[
0 I

−I 0

]

,

H(γ) =

[
A 0

CHC −AH

]

+

[
B

CHD

]

R(γ)−1
[
−DHC BH

]
.
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Converting the problem into a Hermitian eigenvalue problem

(H(γ)J − ωiJ)Jx = 0, J =

[
0 I

−I 0

]

,

H(γ)J =

[
0 A

AH CHC

]

−

[
B

CHD

]

R(γ)−1 [
BH DHC

]
.
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Converting the problem into a Hermitian eigenvalue problem

(H(γ)J − ωiJ)Jx = 0, J =

[
0 I

−I 0

]

,

H(γ)J =

[
0 A

AH CHC

]

−

[
B

CHD

]

R(γ)−1 [
BH DHC

]
.

(H(γ)J − ωiJ) is the Schur complement of

H(γ, ω) =








0 A− iωI B

AH + iωI CHC CHD

BH DHC D
H
D − γ

2
I

︸ ︷︷ ︸

R(γ)







∈ C

2n+p,2n+p
,
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Converting the problem into a Hermitian eigenvalue problem

(H(γ)J − ωiJ)Jx = 0, J =

[
0 I

−I 0

]

,

H(γ)J =

[
0 A

AH CHC

]

−

[
B

CHD

]

R(γ)−1 [
BH DHC

]
.

(H(γ)J − ωiJ) is the Schur complement of

H(γ, ω) =








0 A− iωI B

AH + iωI CHC CHD

BH DHC D
H
D − γ

2
I

︸ ︷︷ ︸

R(γ)







∈ C

2n+p,2n+p
,

With our assumptions

detH(γ, ω) = 0 ⇔ det(H(γ)J − ωiJ) = 0.

H(γ, ω)z = 0 where z =

[
Jx

⋆

]
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Parameter dependent matrix eigenvalue problem H(γ, ω)

Problem

H(γ, ω)z = 0, z 6= 0, z =

[
Jx

⋆

]

where x
H
Jx = 0.
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The implicit determinant method

Two-parameter problem

H(γ, ω)z = 0 or det(H(γ, ω)) = 0 dimkerH(γ, ω) = 1
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The implicit determinant method

Two-parameter problem

H(γ, ω)z = 0 or det(H(γ, ω)) = 0 dimkerH(γ, ω) = 1

Bordered system

[
H(γ, ω) v

vH 0

]

︸ ︷︷ ︸

M(γ,ω)

[
z(γ,ω)
f(γ, ω)

]

=

[
0
1

]

M(γ, ω) is nonsingular if vHz 6= 0.
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The implicit determinant method

Two-parameter problem

H(γ, ω)z = 0 or det(H(γ, ω)) = 0 dimkerH(γ, ω) = 1

Bordered system

[
H(γ, ω) v

vH 0

]

︸ ︷︷ ︸

M(γ,ω)

[
z(γ,ω)
f(γ, ω)

]

=

[
0
1

]

M(γ, ω) is nonsingular if vHz 6= 0. Cramer’s rule

f(γ, ω) =
det(H(γ, ω))

det(M(γ, ω))
,

Melina Freitag University of Bath

Calculating the H∞-norm and the Real Stability Radius



Introduction Background Implicit Determinant Method Examples

The implicit determinant method

Two-parameter problem

H(γ, ω)z = 0 or det(H(γ, ω)) = 0 dimkerH(γ, ω) = 1

Bordered system

[
H(γ, ω) v

vH 0

]

︸ ︷︷ ︸

M(γ,ω)

[
z(γ,ω)
f(γ, ω)

]

=

[
0
1

]

M(γ, ω) is nonsingular if vHz 6= 0. Cramer’s rule

f(γ, ω) =
det(H(γ, ω))

det(M(γ, ω))
,

Solve
f(γ, ω) = 0 instead of det(H(γ, ω)) = 0,

where f(γ, ω) is real.
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The implicit determinant method

Differentiate

[
H(γ, ω) v

vH 0

] [
z(γ, ω)
f(γ, ω)

]

=

[
0
1

]

with respect to ω,

where H(γ, ω) =





0 A− iωI B

AH + iωI CHC CHD

BH DHC DHD − γ2I



:
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The implicit determinant method

Differentiate

[
H(γ, ω) v

vH 0

] [
z(γ, ω)
f(γ, ω)

]

=

[
0
1

]

with respect to ω,

where H(γ, ω) =





0 A− iωI B

AH + iωI CHC CHD

BH DHC DHD − γ2I



:

[
H(γ, ω) v

vH 0

] [
zω(γ, ω)
fω(γ, ω)

]

= i







J

[
z1(γ, ω)
z2(γ, ω)

]

0
0






.
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The implicit determinant method

Differentiate

[
H(γ, ω) v

vH 0

] [
z(γ, ω)
f(γ, ω)

]

=

[
0
1

]

with respect to ω,

where H(γ, ω) =





0 A− iωI B

AH + iωI CHC CHD

BH DHC DHD − γ2I



:

[
H(γ, ω) v

vH 0

] [
zω(γ, ω)
fω(γ, ω)

]

= i







J

[
z1(γ, ω)
z2(γ, ω)

]

0
0






.

First row multiplied by left eigenvector z =

[
Jx

⋆

]

from the left

fω(γ, ω) = ix
H
Jx

.
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The implicit determinant method

Differentiate

[
H(γ, ω) v

vH 0

] [
z(γ, ω)
f(γ, ω)

]

=

[
0
1

]

with respect to ω,

where H(γ, ω) =





0 A− iωI B

AH + iωI CHC CHD

BH DHC DHD − γ2I



:

[
H(γ, ω) v

vH 0

] [
zω(γ, ω)
fω(γ, ω)

]

= i







J

[
z1(γ, ω)
z2(γ, ω)

]

0
0






.

First row multiplied by left eigenvector z =

[
Jx

⋆

]

from the left

fω(γ, ω) = ix
H
Jx= 0,

because of Jordan block of dimension 2.
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Newton’s method for real function g in two real variables

Solve

g(γ, ω) =

[
f(γ, ω)
fω(γ, ω)

]

= 0.

using quadratically convergent Newton’s method.
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Newton’s method for real function g in two real variables

Solve

g(γ, ω) =

[
f(γ, ω)
fω(γ, ω)

]

= 0.

using quadratically convergent Newton’s method.

Jacobian elements: differentiate the system

[
H(γ, ω) v

vH 0

] [
z(γ, ω)
f(γ, ω)

]

=

[
0
1

]

,

with respect to ω and γ.
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Newton’s method for real function g in two real variables

Solve

g(γ, ω) =

[
f(γ, ω)
fω(γ, ω)

]

= 0.

using quadratically convergent Newton’s method.

Jacobian elements: differentiate the system

[
H(γ, ω) v

vH 0

] [
z(γ, ω)
f(γ, ω)

]

=

[
0
1

]

,

with respect to ω and γ.

Implementation: one (sparse) LU factorisation of

[
H(γ, ω) v

vH 0

]
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Newton’s method for real function g in two real variables

Solve

g(γ, ω) =

[
f(γ, ω)
fω(γ, ω)

]

= 0.

using quadratically convergent Newton’s method.

Jacobian elements: differentiate the system

[
H(γ, ω) v

vH 0

] [
z(γ, ω)
f(γ, ω)

]

=

[
0
1

]

,

with respect to ω and γ.

Implementation: one (sparse) LU factorisation of

[
H(γ, ω) v

vH 0

]

Jacobian of g at critical point:

[
0 fγ(γ

∗, ω∗)
fωω(γ

∗, ω∗) fωγ(γ
∗, ω∗)

]

is

nonsingular and fωω(γ
∗, ω∗) > 0 and fγ(γ

∗, ω∗) > 0.
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Remarks on solving linear system

Transform the pair (A,B) into upper block staircase form, that is

(UHAU,UHBV ) = ( , ), where U , V are unitary matrices
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Remarks on solving linear system

Transform the pair (A,B) into upper block staircase form, that is

(UHAU,UHBV ) = ( , ), where U , V are unitary matrices

With Q =





UP 0 0
0 0 U

0 V 0



, P =





0 · · · 1

. .
.

1 · · · 0



 ∈ C
n×n and

H(γ, ω) =





0 A− iωI B

AH + iωI CHC CHD

BH DHC DHD − γ2I



:

Q
HH(γ, ω)Q =





0 x

x x

x x x





︸ ︷︷ ︸

lower anti-p+1 Hessenberg

+





0 0 −iωP

0 −γ2I 0
iωP 0 0



 .
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Distance to instability

Orr-Sommerfeld operator

1

γR
L

2
v − i(UL− U

′′)v = λLv, where L =
d2

dx2
− γ

2 and U = 1− x
2
.

Discretise the operator on v ∈ [−1, 1] using finite differences with γ = 1,
R = 1000 and n = 1000.
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Rightmost eigenvalues of the Orr−Sommerfeld matrix

Figure: Eigenvalues of the Orr-Sommerfeld matrix.
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Distance to instability

Convergence to ω = 0.199756 and α = 0.001978 within 5 iterations.

Table: CPU times.

“Outer” iterations
“Inner” iterations (Eigenvalue computation Total

Algorithm for Hamiltonian matrix) CPU
quantity CPU time quantity CPU time time

Boyd/Balakrishnan 6 3.49 s 6 63.28 s 66.77 s
Newton 5 5.67 s 1 10.33 s 16.00 s
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Distance to instability

Tolosa matrix tols340.mtx
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Figure: Eigenvalues of the Tolosa matrix.
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Distance to instability

Convergence to ω = 1.559998 and α = 0.0000199 within 4 iterations.

Table: CPU times.

“Outer” iterations
“Inner” iterations (Eigenvalue computation Total

Algorithm for Hamiltonian matrix) CPU
quantity CPU time quantity CPU time time

Boyd/Balakrishnan 3 67.52 s 3 5.27 s 72.79 s
Newton 4 2.01 s 1 1.69 s 3.7 s
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H∞-norm - Examples

n m, p ||G||IDM
∞ NI ||G||SV S

∞ CPU(IDM) CPU(SVS)

BBK 4 2 , 2 6.44051653e + 00 5 6.44051653e + 00 3.000e-01 2.100e-01
CBM 351 2 , 1 2.62976526e − 01 5 2.62976526e − 01 3.100e+00 1.106e+02
CSE2 63 32 , 1 2.03391753e − 02 4 2.03391753e − 02 5.400e-01 8.238e+01
CM1 23 3 , 1 8.16496496e − 01 5 8.16496589e − 01 2.100e-01 5.700e-01
CM3 123 3 , 1 8.16094047e − 01 7 8.21443671e − 01 3.900e-01 1.687e+01
CM4 243 3 , 1 1.58866664e + 00 5 1.44542364e + 00 1.360e+00 6.475e+02
HE6 23 16 , 6 4.92937305e + 02 1 4.92937159e + 02 4.800e-01 8.430e+00
HE7 23 16 , 9 3.46529860e + 02 5 3.46529860e + 02 3.100e-01 7.800e-01
ROC1 12 2 , 2 1.21658902e + 00 5 1.21658902e + 00 2.100e-01 4.200e-01
ROC2 13 1 , 4 1.33366743e − 01 2 1.33366743e − 01 3.600e-01 3.900e-01
ROC3 14 11 , 11 1.72310471e + 04 4 1.72310471e + 04 3.000e-01 3.600e-01
ROC4 12 2 , 2 2.95650873e + 02 8 2.95650873e + 02 1.900e-01 3.500e-01
ROC5 10 2 , 3 9.79995384e − 03 1 9.79995186e − 03 2.800e-01 6.200e-01
ROC6 8 3 , 3 2.57633040e + 01 1 2.57633040e + 01 3.400e-01 2.200e-01
ROC7 8 3 , 1 1.12196212e + 00 9 1.12196215e + 00 1.000e-01 1.420e+00
ROC8 12 7 , 1 6.59896425e + 00 5 6.59896425e + 00 2.800e-01 2.700e-01
ROC9 9 5 , 1 3.29185918e + 00 6 3.29404544e + 00 1.300e-01 5.000e-01
ROC10 9 2 , 2 1.01446326e − 01 4 1.01480433e − 01 3.300e-01 4.500e-01
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H∞-norm - Examples

n m, p ||G||IDM
∞ NI ||G||SV S

∞ CPU(IDM) CPU(SVS)

BBK 4 2 , 2 6.44051653e + 00 5 6.44051653e + 00 3.000e-01 2.100e-01
CBM 351 2 , 1 2.62976526e − 01 5 2.62976526e − 01 3.100e+00 1.106e+02
CSE2 63 32 , 1 2.03391753e − 02 4 2.03391753e − 02 5.400e-01 8.238e+01
CM1 23 3 , 1 8.16496496e − 01 5 8.16496589e − 01 2.100e-01 5.700e-01
CM3 123 3 , 1 8.16094047e − 01 7 8.21443671e − 01 3.900e-01 1.687e+01
CM4 243 3 , 1 1.58866664e + 00 5 1.44542364e + 00 1.360e+00 6.475e+02
HE6 23 16 , 6 4.92937305e + 02 1 4.92937159e + 02 4.800e-01 8.430e+00
HE7 23 16 , 9 3.46529860e + 02 5 3.46529860e + 02 3.100e-01 7.800e-01
ROC1 12 2 , 2 1.21658902e + 00 5 1.21658902e + 00 2.100e-01 4.200e-01
ROC2 13 1 , 4 1.33366743e − 01 2 1.33366743e − 01 3.600e-01 3.900e-01
ROC3 14 11 , 11 1.72310471e + 04 4 1.72310471e + 04 3.000e-01 3.600e-01
ROC4 12 2 , 2 2.95650873e + 02 8 2.95650873e + 02 1.900e-01 3.500e-01
ROC5 10 2 , 3 9.79995384e − 03 1 9.79995186e − 03 2.800e-01 6.200e-01
ROC6 8 3 , 3 2.57633040e + 01 1 2.57633040e + 01 3.400e-01 2.200e-01
ROC7 8 3 , 1 1.12196212e + 00 9 1.12196215e + 00 1.000e-01 1.420e+00
ROC8 12 7 , 1 6.59896425e + 00 5 6.59896425e + 00 2.800e-01 2.700e-01
ROC9 9 5 , 1 3.29185918e + 00 6 3.29404544e + 00 1.300e-01 5.000e-01
ROC10 9 2 , 2 1.01446326e − 01 4 1.01480433e − 01 3.300e-01 4.500e-01

NN18 1006 2 , 1 1.02336052e + 00 5 1.02336052e + 00 3.607e+01 4.604e+01
dwave 2048 6 , 4 3.80199635e + 04 1 3.80199635e + 04 1.516e+01 1.077e+02
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Final remarks

Conclusions

fast algorithm for computing the H∞-norm and distance to unstable
matrix

relies on finding a 2-dimensional Jordan block in 2-parameter matrix

only one LU decomposition per Newton step of bordered matrix

computation time can further be reduced using transformation into
staircase form

numerical results show that new method outperforms other algorithms

extension to descriptor systems and discrete time problems

relies on good starting guess (dominant poles, rightmost eigenvalues)
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Final remarks

Conclusions

fast algorithm for computing the H∞-norm and distance to unstable
matrix

relies on finding a 2-dimensional Jordan block in 2-parameter matrix

only one LU decomposition per Newton step of bordered matrix

computation time can further be reduced using transformation into
staircase form

numerical results show that new method outperforms other algorithms

extension to descriptor systems and discrete time problems

relies on good starting guess (dominant poles, rightmost eigenvalues)

Further work and extensions

iterative solvers for linear system

calculation of larger Jordan blocks
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Thank you.
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