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Introduction

Four-dimensional variational assimilation (4DVar)

Minimise the cost function

n
J(x0) = (x0 —x¢) "B (x0 — x§) + Z(Yi — Hi(x:)"R; My — Hi(xs))
1=0
subject to model dynamics x; = My_;xq
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Tikhonov regularisation

Ill-posed problems

Given an operator A we wish to solve
Ax=Db

it is well-posed if
> solution exits
» solution is unique
> is stable (A~! continuous)

Equation is ill-posed if it is not well-posed.
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Tikhonov regularisation

Ill-posed problems

Given an operator A we wish to solve

Ax=Db

it is well-posed if
> solution exits
» solution is unique
> is stable (A~! continuous)
Equation is ill-posed if it is not well-posed.
but ..
In finite dimensions existence and uniqueness can be imposed, but
» discrete problem of underlying ill-posed problem becomes ill-conditioned
> singular values of A decay to zero

» A~ is unstable!
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Tikhonov regularisation

A way out of this - Tikhonov regularisation

Solution to the minimisation problem

Xo = arg min{[|Ax —bl|? + allx|*}
(ATA +al)"*ATb

where « is called the regularisation parameter.
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Tikhonov regularisation

Tikhonov regularisation using Singular Value Decomposition

Using the SVD of A
is given by

UXVT the regularised solution in Tikhonov regularisation

(ATA + D) 'ATDb
(vETUuTus VT + avvT)-lvsTuTh

di i)y,
Vdiag Tt U
1 1

Xa

n s? uZTb
Xa = E -, Vi
sy T«

i=1 v
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Link between 4DVar and Tikhonov regularisation

Relation between 4DVar and Tikhonov regularisation

4DVar minimises

J(x0) = (x0 = x§ )" B (x0 =) + D> _(vi — Hi(x:))"R; (ys — Hi(x:))
i=0

subject to model dynamics x; = My_;xq
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Link between 4DVar and Tikhonov regularisation

Relation between 4DVar and Tikhonov regularisation

4DVar minimises

J(x0) = (x0 = x§ )" B (x0 =) + D> _(vi — Hi(x:))"R; (ys — Hi(x:))
i=0

subject to model dynamics x; = My_;xq
or

J(x0) = (x0 = x¢)" B~ (x0 — x§) + (¥ = H(x0)) "R~ (3 — H(x0))
where
H=[HI, (HiM(t1,t0))7, ... (HnM(tn, t0))T]"
Y= ynl”
and R is block diagonal with R; on diagonal.
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Link between 4DVar and Tikhonov regularisation

Relation between 4DVar and Tikhonov regularisation

Solution to the optimisation problem

Linearise about xg then the solution to the optimisation problem
J(x0) = (x0 = x§) "B~ (x0 — x§) + (¥ — H(x0)) "R~ (¥ — H(x0))
is given by

xo=xF + B +H'R'H)'HTR'd, d=HxF -3)
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Link between 4DVar and Tikhonov regularisation

Relation between 4DVar and Tikhonov regularisation

Solution to the optimisation problem

Linearise about xg then the solution to the optimisation problem
J(x0) = (x0 = x§) "B~ (x0 — x§) + (¥ = H(x0)) "R~ (3 — H(x0))
is given by
xo=xF + B +H'R'H)'HTR'd, d=HxF -3)
Singular value decomposition
Assume B = 0231 and R = 0(231 and define the SVD of the observability matrix H
H=Uux=v’

Then the optimal analysis can be written as

T 2
ujd 2 _ %
2
9B

—Vj, where p* = —=.

52

_ B J
X0 = X +27,u2+s2v s
J i
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Link between 4DVar and Tikhonov regularisation

Relation between 4DVar and Tikhonov regularisation

If B and R are not multiples of the identity

J(x0) = (x0 — x§) B (x0 — x§) + (¥ — H(x0)) "R~ (¥ — H(x0))
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Link between 4DVar and Tikhonov regularisation

Relation between 4DVar and Tikhonov regularisation

If B and R are not multiples of the identity

J(x0) = (x0 — x§) B (x0 — x§) + (¥ — H(x0)) "R~ (¥ — H(x0))

Variable transformations

B =0%Fp and R = 02 Fp and define new variable z := F/?
B O B

x0 — x&)

2 —1/2 45 —1/2 —1/2
J(z) = u?|z)3 + |F /24 — B, /PHF ' 23

12 can be interpreted as a regularisation parameter.
This is Tikhonov regularisation!

J(x) = | Ax — b||” + ax|3
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Motivation: Results from image process

Blurred and exact images

The blurring process as a linear model

» Let X be the exact image
> Let B be the blurred image

x1 by
x=vec(X)=| : | eRY, b=vecB)=| : | eRV
x}v b}v
N = m *n are related by the linear model

Ax=Db

where A is the discretisation of a point spread function.
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Motivation: Results from image process

Blurred and exact images

The blurring process as a linear model

» Let X be the exact image
> Let B be the blurred image

X1 bl
x=vec(X)=| : | eRY, b=vecB)=| : | eRV
XN by

N = m *n are related by the linear model
Ax=Db
where A is the discretisation of a point spread function.
Noise b = bexact + €
XNaive = AT1b = A7 'beyact + A le=x+ A" le

Melina Fre Ll-regularisation in 4D-Var



Motivation: Results from image proc

Need regularisation techniques!

Standard technique: Tikhonov regularisation

min {|[Ax — bl|3 + alx|3}

equivalent to

n
sf uZTb
Xo = E 5 A\’
=1 5% +a s;
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Motivation: Results from image proc

Need regularisation techniques

Standard technique: Tikhonov regularisation

min {|[Ax — bl|3 + alx|3}

equivalent to

n
sf uin
Xo = E 5 v
=1 5% +a s;

L1 regularisation
In image processing, Li-norm regularisation provides edge preserving image

deblurring!
min {[|Ax — b||3 + allx||1 }

Ll-regularisation in 4D-Var



T L St L i L PE=SE
100 180 200 250 300 350 400 450 500

Figure: Blurred picture




Motivation: Results from image proc

Results from image deblurring: L1 regularisation

Regularized solution
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Motivation: Results from ir

L1 regularisation

In image processing, Li-norm regularisation provides edge preserving image
deblurring!

» L1 regularisation beneficial in Data Assimilation?

» 4D Var smears out sharp fronts
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Motivation: Results from image proc

L1 regularisation

In image processing, Li-norm regularisation provides edge preserving image
deblurring!

» L1 regularisation beneficial in Data Assimilation?
» 4D Var smears out sharp fronts

» L1 regularisation has the potential to overcome this problem
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First results on L1l-regularisation in 4DVar

Example

Burger’s equation

ok e =0, () = 5

ut+u6x B

with initial conditions

w(z,0) = 2 0<z<25
05 25<z<10.

Discretising

2(j) = 10 ~ 1/2)A% U°<x(j)>={j5 N

WithAz:ﬁandj:l,...,N.
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First results on L1l-regularisation in 4DVar

Exact solution and model error

Exact solution - method of characteristics
Riemann problem

u(z,t) = 2 0<x<25+4st
0.5 25+st<z<10,

where s = 1.25

Numerical solution - model error

» the Lax-Friedrich method (smearing out the shock)
uptt = (U" 1+ UM ) - (f( 1) = FUFY))-
» the Lax-Wendroff method (oscillations near the shock).

Uyt = U= S W) - SO )+

2
s (A, G = U = A, W) = FUF-)
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First results on L1l-regularisation in 4DVar

3 Regularisation Methods

4DVar

N
1 1
JU) = SIUE = U0lap + 5 D11V — Hi(Ua)IR,

=1
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First results on L1l-regularisation in 4DVar

3 Regularisation Methods
4DVar

N
1 1
JU) = SIUE = U0lap + 5 D11V — Hi(Ua)IR,

=1
L1 regularisation

N
1 1
JWO) = 125 = 201 + 5 3 = HiUi) IR,
=1

where p =1 (or p = 1.0001) and Z = (aB)~1/2U.
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First results on L1l-regularisation in 4DVar

3 Regularisation Methods

4DVar

N
1 1
JU) = SIUE = U0lap + 5 D11V — Hi(Ua)IR,

=1
L1 regularisation

N
1 1
%) = 125 = 2N + 5 SOV - HuU)I3,

=1
where p =1 (or p = 1.0001) and Z = (aB)~1/2U.
Total Variation regularisation

N
1 1
JU) = EIID(Z% - 205 + B > IYi = Hi(Ui)| %,
i=1

where D is a matrix approximating the derivative of the solution.
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results on Ll-reg

Setup

v

At = 0.001

length of the assimilation window: 100 time steps

v

» perfect observations

» Here: consider only Lax-Friedrich method

Ll-regularisation in 4D-Var
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——©— background

background
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Figure: Truth, Imperfect model
and Background after 200 time
steps

Figure: Initial conditions for
Truth, Imperfect model and
Background, t = 0
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t results on L1l-regularisation in 4DVar

Singular value analysis - observations everywhere

Optimal solution (4DVar)

2 T4 2
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rst results on Ll-regularisation in 4DVar

Singular value analysis - observations every 2 time steps and every 20
points in space

Optimal solution (4DVar)

B sj ujd >_ 9%
u0:u0+g — vj, where p®= —-.
u2 +s2 s o2
J VN B
x10°
35
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sation in 4DVar

4DVar - observations everywhere

4 4
—o— Truth —o— Truth
—6— Imperfect mode| —6— Imperfect mode|
—o— Final solution_|| —o— Final solution_||

-1 -1

o1z s 4 5 6 7 8 9 F 1 2 3 4 s 6 1 8 9 10
Figure: Truth and Background Figure: Truth and Background
and final solution at time t =0 and final solution after 50 time
(beginning of the assimilation steps (middle of the assimilation
window) using 4DVar window) using 4DVar
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sation in 4DVar

4DVar - observations everywhere

—&— Truth 4

—o&— Imperfect mode| —o&— Truth

—&— Final solution —o— Imperfect mode|
3 1 —o&— Final solution

-2

Figure: Truth and Background
and final solution after 100 time
steps (end of the assimilation
window) using 4DVar

Figure: Truth and Background
and final solution after 200 time
steps using 4DVar
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—&— Truth
—o&— Imperfect mode|
—&— Final solution

—&— Truth
—o&— Imperfect mode|
—&— Final solution

-2

Figure: Truth and Background
and final solution at time ¢t = 0
(beginning of the assimilation
window) using L1

-2

Figure: Truth and Background
and final solution after 50 time
steps (middle of the assimilation
window) using L1
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First results on L1-reg

arisation in 4DVar

L1/TV regularisation - observations everywhere
(e} B

—e— Truth

—o&— Imperfect mode| —&— Truth
—&— Final solution —o— Imperfect mode|
R —o— Final solution

-2

Figure: Truth and Background
and final solution after 100 time
steps (end of the assimilation

window) using L1

Figure: Truth and Background
and final solution after 200 time
steps using L1
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RMS error

RMS error

[~~~ before assimilatior)|

0 20 40 60 8 100 120 140
Time step

Figure: Root mean square error
using 4D-Var.

160

0 20 40 60 8 _ 100
Time step

120 140 160 180

Figure: Root mean square error
using L1/TV regularisation.
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First results on L1-reg arisation in 4DVar

4DVar - observations every 2 time steps and every 20 points in space

a 4
—e— Truth —e— Truth
—o&— Imperfect mode| —o&— Imperfect mode|
3 —&— Final solution 3 —&— Final solution

O]
-1
2 -2
o 1 2 3 a4 5 6 7 8 9 1C 0 1 2 3 a4 5 6 7 8 9 10

Figure: Truth and Background Figure: Truth and Background
and final solution at time t =0 and final solution after 50 time
(beginning of the assimilation steps (middle of the assimilation
window) using 4DVar window) using 4DVar
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First results on L1-reg

arisation in 4DVar

4DVar - observations every 2 time steps and every 20 points in space

-2

—o— Truth a

—o&— Imperfect mode| —&— Truth

—6— Final solution Imperfect mode|
R Final solution

Figure: Truth and Background
and final solution after 100 time
steps (end of the assimilation
window) using 4DVar

Figure: Truth and Background
and final solution after 200 time
steps using 4DVar
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First results on L1-reg

arisation in 4DVar

L1/TV regularisation - observations every 2 time steps

points in space

and every 20

a 4
—e— Truth —e— Truth
—o&— Imperfect mode| —o&— Imperfect mode|
3 —&— Final solution 3 —&— Final solution
1 \ 1
o 0
-1 -1
-2 -2
o 1 2 4 5 6 7 8 9 1 o 1 2 3 4 5 6 7 8 9 10

Figure: Truth and Background
and final solution at time ¢t = 0
(beginning of the assimilation

window) using L1

Figure: Truth and Background

and final solution after

50 time

steps (middle of the assimilation

window) using L1
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First results on L1-reg

L1/TV regularisation

points in space

arisation in 4DVar

- observations every 2 time steps and every 20

—o— Truth a

—o&— Imperfect mode| —&— Truth

—&— Final solution —o— Imperfect mode|
R —©— Final solution

-2

Figure: Truth and Background
and final solution after 100 time
steps (end of the assimilation
window) using L1

Figure: Truth and Background
and final solution after 200 time
steps using L1
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Time step

Figure: Root mean square error
using 4D-Var.

Time step

Figure: Root mean square error
using L1/TV regularisation.
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First results on L1-reg arisation in 4DVar

Conclusions, questions and further work

» Ll-norm and TV regularisation recovers discontinuity better than 4DVar
» experiments with Lax-Wendroff similar
» experiments with noisy observations/different B matrices similar

» TV regularisation seems in general faster than L1 regularisation, but giving
same results

» Implementation using quadratic programming tools
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