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The problem

Problem and iterative methods

Find a small number of eigenvalues and eigenvectors of:

Az =Xz, AeC,zeC"

@ A is large, sparse, nonsymmetric
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The problem

Problem and iterative methods

Find a small number of eigenvalues and eigenvectors of:

Az =Xz, AeC,zeC"

@ A is large, sparse, nonsymmetric
@ Iterative solves

@ Power method

¢ Simultaneous iteration
@ Arnoldi method

9 Jacobi-Davidson method

@ Usually involves repeated application of the matrix A to a vector

@ Generally convergence to largest/outlying eigenvector
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© Inverse iteration and Shift-invert Arnoldi method
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Inv. It. and SI Arnoldi

Shift-invert strategy

@ Wish to find an eigenvalue close to a shift o
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Inv. It. and SI Arnoldi

Shift-invert strategy

@ Wish to find an eigenvalue close to a shift o

A

3

@ Problem becomes 1

7z

A—o

@ each step of the iterative method involves repeated application of
(A— o) ! to a vector

(A-ol) 'z =

@ Inner iterative solve:

(A-oly=x

using Krylov method for linear systems.
@ leading to inner-outer iterative method. %BA’SI’I:I




Inv. It. and SI Arnoldi

Shift-invert strategy

This talk:
Inner Iteration and preconditioning
fixed shifts only.
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© Inexact inverse iteration
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Inexact Inv. It.

The algorithm

Inexact inverse iteration

fori:ltol... do
choose 7%

solve , 4 4 ,
(4 - on)y® - = 4 < 7,
(%)
Rescale z"t1) = y(—l-)a
lly @]

: Pl
Update 2@+ — (1) Aac_(”‘l)’ | |
Test: eigenvalue residual T = (4 — \CHD )0+,

end for

Convergence rates
If , 4
O = clr®|

then convergence rate is linear (same convergence rate as for exact solves). vesmor
wwyoiilll
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Inexact Inv. It.

The inner iteration for (A —ol)y =«

Standard GMRES theory for yo = 0 and A diagonalisable

lz = (A= olye]| < w(W) min max_|p(A;)|z]l
pEPE j=1,...,

where \; are eigenvalues of A — ol and (A — O‘I) =WAW ™"
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Inexact Inv. It.

The inner iteration for (A —ol)y =«

Standard GMRES theory for yo = 0 and A diagonalisable
lz = (A= olye]| < w(W) min max_|p(A;)|z]l
pEPE j=1,....n

where \; are eigenvalues of A — ol and (A — aI) =WAW ™"

Number of inner iterations

kZC1+Cleg”Ti”

for ||z — (A— oDyl < 7.
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Inexact Inv. It.

The inner iteration for (A —ol)y =«

More detailed GMRES theory for yo = 0
-y A2 = Al
2 = (A= oDye]| < &W) 22 min max [p(A;)|[|Qzll
A1 PEPL_1 =2,

where \; are eigenvalues of A — ol.

Number of inner iterations

k> C, +Chlog ”QI”

where O projects onto the space not spanned by the eigenvector.
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Inexact Inv. It.

The inner iteration for (A —ol)y =«

Good news!

Csllr™]|

k9 > O + Chlog 5
7— 1

bl

where 79 = C||r||. Iteration number approximately constant!
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Inexact Inv. It.

The inner iteration for (A —ol)y =«

Good news!

Gallr®]

k9 > O + Chlog 5
72

bl

where 7 = C||r?||. Tteration number approximately constant!

Bad news :-(

For a standard preconditioner P

(A— U[)P—lg(i) = ® p—lg(i) _ y(i)
: N (8
KD > o+ og 127 _ o oriog ©-
7—(2) 7‘(1)

where 7 = C||7(?||. Tteration number increases!
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Inexact Inv. It.

The inner iteration for (A — ol)P~'j ==z

How to overcome this problem

@ Use a different preconditioner, namely one that satisfies
Piz® = Ax(i), P;:=P+(A-— P)ac(i)x(i)H

@ minor modification and minor extra computational cost,
o [AP;1Az® = Az®.
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Inexact Inv. It.

The inner iteration for (A —ol)P71j =2

How to overcome this problem

@ Use a different preconditioner, namely one that satisfies
Piz® = Aa:(i), P;:=P+(A-— P)ac(i)x(i)H

@ minor modification and minor extra computational cost,
o [AP;1Az® = Az®.

Why does that work?

Assume we have found eigenvector 1

Azy =P = iz1 = (A — O'I)]P_lx1 = )\1)\_ U£B1
1

and convergence of Krylov method applied to (A — ol )P~ 'j =z in one
iteration. For general z®

VERSITY OF

i Cs|lr® _ ‘
k(l) > C’i/ +Cél log %, where 7_(z) _ CHT(l)”.

University of Bath




Inexact Inv. It.

Convection-Diffusion operator

Finite difference discretisation on a 32 x 32 grid of the convection-diffusion
operator
—Au + 5ug 4 5uy = A on  (0,1)%
with homogeneous Dirichlet boundary conditions (961 x 961 matrix).
@ smallest eigenvalue: A1 ~ 32.18560954,
@ Preconditioned GMRES with tolerance 7() = 0.017(" |,

@ standard and tuned preconditioner (incomplete LU).
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Convection-Diffusion operator

—o6— right preconditioning, 569 iterations

inner iterations

o —o— right preconditioning, 569 iterations

residual norms \[r{(i)}\|

g,

10

10°

2 4 6 8 10 12 14 16 18 20 22
outer iterations

Figure: Inner iterations vs outer
iterations

100 200 300 400 500 600

sum of inner iterations

Figure: Eigenvalue residual norms vs
total number of inner iterations

UNIVERSITY OF




Convection-Diffusion operator

—o— right preconditioning, 569 iterations
—#— tuned right preconditioning, 115 iterations

inner iterations

residual norms \[r{(i)}\|

g,

10

—o— right preconditioning, 569 iterations

—#— tuned right 115 iterations

10 12 14 16 18
outer iterations

Figure: Inner iterations vs outer
iterations

100 200 300 400 500
sum of inner iterations

Figure: Eigenvalue residual norms vs
total number of inner iterations
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© Inexact Shift-invert Arnoldi method
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Inexact SI Arnoldi method

The algorithm

Shift-invert Arnoldi-method

@ Arnoldi method constructs an orthogonal basis of k-dimensional
Krylov subspace
K@(A, q) = span{g™, AgW, A%V, ... AT VY,
AQ(i) _ Q(i)H(i) + q(i+1)h(i+1ﬂ')e_H (Q(i))HQ(i) — I
@ at each step, application of A to ¢¥

o Eigenvalues of H® are eigenvalue approximation of (outlying)
eigenvalues of A

@ Shift-Invert A := (A —ol)"!
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Inexact ST Arnoldi method

The algorithm

Shift-invert Arnoldi-method
@ Arnoldi method constructs an orthogonal basis of k-dimensional
Krylov subspace
KD (A, ¢W) = span{qg™, AqV, A%V, ..., AT gD},
AQ(i) _ Q(i)H(i) + q(i+1)h(i+1»i)e_H (Q(i))HQ(i) — I
@ at each step, application of A to ¢¥

o Eigenvalues of H® are eigenvalue approximation of (outlying)
eigenvalues of A

@ Shift-Invert A := (A —ol)"!

Inexact solves

The solve tolerance can be relaxed! (Simoncini 2005)

1

@ _ (a4 _ G0 — 1@ @ —
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Inexact SI Arnoldi method

The inner iteration for AG = q (o =0)

Tuning for Arnoldi’s method (consider o = 0)
Solve

APT'q=q, P'q=3
using a tuned preconditioner

P,Q" = AQY; givenby P;=P+(A—P)QWQW"
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Inexact ST Arnoldi method

The inner iteration for AG = q (o =0)

Tuning for Arnoldi’s method (consider o = 0)
Solve ~ ~
APT'q=q, P'q=3

using a tuned preconditioner

Theorem (Properties of the tuned preconditioner)

Let P with P = A+ E be a preconditioner for A and assume i steps of
Arnoldi’s method have been carried out; then i eigenvalues of AP;l are
equal to one:

[AP; 1]AQ"Y = AQ®

and n — 1 eigenvalues are perturbations one, close to the eigenvalues of

University of Bath

APt

Melina

Eigenvalue



xact SI Arnoldi method

Numerical Example

sherman5.mtx matrix from the Matrix Market library (3312 x 3312).
@ smallest eigenvalue: A; & 4.69 x 102,

@ Preconditioned GMRES as inner solver (fixed tolerance and relaxation
strategy),

@ standard and tuned preconditioner (incomplete LU).
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No tuning and standard preconditioner
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Tuning
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Relaxation
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Tuning and relaxation strategy
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© Conclusions
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Conclusions

@ Inexact solves for Inverse iteration and Krylov subspace methods
@ Inner iteration depends on preconditioner

@ For eigencomputations it is advantageous to consider modified
preconditioners (works for any preconditioner)

@ Extension to restarted methods is possible
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