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The problem

Problem and iterative methods

Find a small number of eigenvalues close to a shift ¢ and corresponding
eigenvectors of:
Ar =Xz, 2eC,zeC"

@ A is large, sparse, nonsymmetric
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The problem

Problem and iterative methods

Find a small number of eigenvalues close to a shift ¢ and corresponding
eigenvectors of:
Ar =Xz, 2eC,zeC"

@ A is large, sparse, nonsymmetric
@ Iterative solves (e.g. Power method)

@ Problem becomes 1

o
@ each step of the iterative method involves repeated application of
(A—oI)™! to a vector (inverse iteration)

(A—ol) 'z =
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The problem

Problem and iterative methods

Find a small number of eigenvalues close to a shift ¢ and corresponding
eigenvectors of:
Ar =Xz, 2eC,zeC"

(3

A is large, sparse, nonsymmetric

(3

Iterative solves (e.g. Power method)

Problem becomes

€

1
x
A—o
@ each step of the iterative method involves repeated application of
(A—oI)™! to a vector (inverse iteration)

(A—ol) 'z =

Inner iterative solve:

(3

(A-oly=x

using Krylov or Galerkin-Krylov method for linear systems.

€

leading to inner-outer iterative method.
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The problem

Shift-invert strategy

This talk:
Inner Iteration and preconditioning

Comparison of two methods: Inexact Rayleigh quotient iteration and
Simplified Jacobi-Davidson method
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RQI and JD

The algorithms

Inexact Rayleigh quotient iteration

solve , 4 ,
(A= pEN Dy =2,
inexactly.
: (O] . L H
Rescale z(+) = Y and update p(z(tY) = (T Ag0+D
ly@1 = _ _ ’
Test: eigenvalue residual 1) = (4 — p(z( V) 1)2(+D,
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RQI and JD

The algorithms

Inexact Rayleigh quotient iteration

solve _ 4 _
(A= pEN Dy =2,
inexactly.
: y@ i e (
Rescale 21 = and update p(z(FY) = (D™ Ag(+D

@Il
Test: eigenvalue residual 1) = (4 — p(z( V) 1)2(+D,

Inexact simplified Jacobi-Davidson method (without subspace expansion)

SO]Ve . BT . . N H . .
I — PROPNE) YA — p(x(l))I)(I — 20,0 )S(Z) _ _T(l)’

(%) (%)
Rescale 21D = u
e® -+ 0]
Test: eigenvalue residual Y = (A4 — p(zF) 120D,

and update p(z( D) = gD 47+
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An experiment

Matrix sherman5.mtx Rayleigh quotient shift; FOM as inner solver
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Figure: Rayleigh quotient iteration and Jacobi-Davidson method - without
preconditioner
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An experiment

Matrix sherman5.mtx Rayleigh quotient shift; FOM as inner solver
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Figure: Rayleigh quotient iteration and Jacobi-Davidson method - without
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An experiment

Matrix shermanb.mtx Rayleigh quotient shift; FOM as inner solver
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Figure: Rayleigh quotient iteration and Jacobi-Davidson method - without
preconditioner
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RQI and JD

An experiment

Matrix shermanb.mtx Rayleigh quotient shift; preconditioned FOM as inner
solver
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Figure: Rayleigh quotient iteration and Jacobi-Davidson method - with
preconditioner Pj




R and JD

An experiment

Matrix shermanb.mtx Rayleigh quotient shift; preconditioned FOM as inner
solver
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Figure: Rayleigh quotient iteration and Jacobi-Davidson method - with
preconditioner Pj
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R and JD

An experiment

Matrix shermanb.mtx Rayleigh quotient shift; preconditioned FOM as inner
solver
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Figure: Rayleigh quotient iteration and Jacobi-Davidson method - with
preconditioner Pj

UNIVERSITY OF




RQI and JD

An experiment

Matrix shermanb.mtx Rayleigh quotient shift; preconditioned FOM as inner

solver
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R and JD

An experiment

Matrix shermanb.mtx Rayleigh quotient shift; preconditioned FOM as inner

solver
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RQI and JD

An experiment

Matrix shermanb.mtx Rayleigh quotient shift; preconditioned FOM as inner
solver
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Figure: Rayleigh quotient iteration and Jacobi-Davidson method - with
preconditioner P>




RQI and JD

Rayleigh quotient iteration and Jacobi-Davidson: Exact solves

Rayleigh quotient iteration

Solve
(A=p(x))y==2

at each outer iteration.
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RQI and JD

Rayleigh quotient iteration and Jacobi-Davidson: Exact solves

Jacobi-Davidson method

Rayleigh quotient iteration Solve

Solve " .
(I —zx")(A—px))(I —zx")s = —r
(A=p(@))y ==z o
at each outer iteration, where

at each outer iteration. r = (A — p(z)I)z is the eigenvalue
residual and s L z.
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RQI and JD

Rayleigh quotient iteration and Jacobi-Davidson: Exact solves

Jacobi-Davidson method

Rayleigh quotient iteration Sl

Solve " .
(I —zx")(A—px))(I —zx")s = —r
(A=p(@))y ==z o
at each outer iteration, where

at each outer iteration. r = (A — p(z)I)z is the eigenvalue
residual and s L z.

Exact solves
Sleijpen and van der Vorst (1996):

y=a(z+s)

for some constant «. Solutions are equivalent!
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RQI and JD

Rayleigh quotient iteration and Jacobi-Davidson: Exact solves

Jacobi-Davidson method

Rayleigh quotient iteration Sl

Solve .
(I—zx7)(A—p(x))s=—r
(A—plx))y==x o
at each outer iteration, where

at each outer iteration. r = (A — p(z)I)z is the eigenvalue
residual and s L z.

Exact solves
Sleijpen and van der Vorst (1996):

y=a(z+s)

for some constant «. Solutions are equivalent!
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RQI and JD

Rayleigh quotient iteration and Jacobi-Davidson: Exact solves

Jacobi-Davidson method

Rayleigh quotient iteration Sl

Solve
(A= p(@)D)s —ya = —(A— p(x)D)x
(A—p(@))y=2 L
at each outer iteration, where

at each outer iteration. r = (A — p(z)I)z is the eigenvalue
residual and s L z.

Exact solves
Sleijpen and van der Vorst (1996):

y=a(z+s)

for some constant «. Solutions are equivalent!
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RQI and JD

Rayleigh quotient iteration and Jacobi-Davidson: Inexact solves

Jacobi-Davidson method

Rayleigh quotient iteration Sl

Solve . o
(I —zx")(A—px))(I —zx")s = —r
A—plx))y==x
( pl)) at each outer iteration, where

at each outer iteration. r = (A — p(z)I)z is the eigenvalue
residual and s L z.

Galerkin-Krylov Solver

@ Simoncini and Eldén (2002), (Hochstenbach and Sleijpen (2003) for
two-sided RQ iteration), based on result by Stathopoulos and Saad
(1998)

Y1 = B(x + sk)
for some constant 3 if both systems are solved using a Galerkin-Krylov
subspace method

VERSITY OF

%5 BATH

University of Bath

method with tuned preconditior



An experiment - Inexact solves

Matrix sherman5.mtx Rayleigh quotient shift; FOM as inner solver
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Figure: Rayleigh quotient iteration and Jacobi-Davidson method - without
preconditioner
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RQI and JD

Rayleigh quotient iteration and Jacobi-Davidson: Preconditioned Solves

Preconditioning for JD method
Preconditioning for RQ iteration Solve

Solve (I —zz™) (A= p(z))(I — zz™)P'5 = —r

-1~ ~
(A= p(@))P" g =z, (with s = P'5) has to be solved. Note
(with y = p-1 §) at each iteration. the restricted preconditioner

P := (I —zz™)P(I — zz™).

Equivalence does not hold!
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RQI and JD

An experiment - with standard preconditioner

Matrix sherman5.mtx Rayleigh quotient shift; preconditioned FOM as inner
solver
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eigenvalue residual

o 2 4 6 8 10 12 14 16 18 20
outer iteration

Figure: Rayleigh quotient iteration and Jacobi-Davidson method - with standard
preconditioner




RQI and JD

Preconditioners

Need a better preconditioner for Rayleigh quotient iteration.
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The tuned preconditioner

The tuned preconditioner

Advantage of Jacobi-Davidson
(I — zz™) (A — p(a))(I — z2™)PT5 = —r
(with s = P'5). The preconditioner

P = (I —zz™)P(I — za™).

is restricted (to the subspace orthogonal to z).
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The tuned preconditioner

The tuned preconditioner

Advantage of Jacobi-Davidson
(I — zz™) (A — p(a))(I — z2™)PT5 = —r
(with s = P'5). The preconditioner
P = (I —zz™)P(I — za™).

is restricted (to the subspace orthogonal to x).

The new (tuned) preconditioner for inexact Rayleigh quotient iteration
Use
P = Izz™ + P(I — 22™)

which satisfies
Pr=x2 aswellas P lz=2
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tuned precond

The tuned preconditioner

Implementation

P =zz® + P(I — za™)

P=P+(I—P)zz”
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tuned precond

The tuned preconditioner

Implementation

P =zz® + P(I — za™)

P=P+(I—P)zz”
minor modification and minor extra computational cost

(Pl —2)z P!

Pl=p*_
cHP-1g
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Prec. RQI and JD

Preconditioned Solves for inexact Rayleigh Quotient iteration and
inexact Jacobi-Davidson

Tuned preconditioner in RQI = preconditioned JD

Pr =x
RQ iteration with preconditioner P: (A — p(z))P~ 'y = x

Inner solves in RQ iteration build Krylov space

span{e, (A — p(@) )Pz, (A — p(@) )P, ...}
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Prec. RQI and JD

Preconditioned Solves for inexact Rayleigh Quotient iteration and
inexact Jacobi-Davidson

Tuned preconditioner in RQI = preconditioned JD

Pr =z

RQ iteration with preconditioner P: (A — p(z))P™ 'y = x

Inner solves in RQ iteration build Krylov space

span{z, (A — p(z))P 'z, (A — p(z))P~")?z,.. .}

JD with preconditioner P: (I — zz™)(A — p(x)I)(I — z2™)PT5 = —r
Inner solves in JD method build Krylov space
span{r, I1; (A — p(z))IIE P~ r, (I (A — p(z)IIE P~ 1)2r, ..}

P ozt versiTy or
—— ATH

where IT; = (I — zz™) and 1§ =T —
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. RQI and JD

Consider subspaces

A—A—p(x)I
Lemma
The subspaces
Ky = span{z, AP 'z, (AP~ ")z, ..., (AP~ ")Fz}
and
Ly = span{z,r, I, ATIS P~ 7, (HlAHQPP_1)2r, e (HlAHQPP_l)k_lr}
are equivalent.

Proof.
Extension of result by Stathopoulos and Saad (1998). |
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Prec. RQI and JD

Equivalence for inexact solves

Theorem
Let both
(A=p@) P 'j==2, y=P'§

and

(I —zz™) (A= p(a))(I — 22™)PT5 = —r, s=P'5
be solved with the same Galerkin-Krylov method. Then
Ve = 1(@ + si°).
Proof.
Extension of result by Simoncini and Eldén (2002). O
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Example

shermanb.mtx; Rayleigh quotient shift; preconditioned FOM as inner solver
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Figure: Convergence history of the Figure: standard preconditioner for
eigenvalue residuals; no JD, tuned preconditioner for RQ
preconditioner. Iteration P = P.
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Prec. RQI and JD

Equivalence between preconditioned JD and preconditioned RQI

Technique applies to any preconditioner for linear systems.
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Fixed shifts

Matrix shermanb.mtx Fixed shift; preconditioned FOM as inner solver

10°
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| — % — Inexact inverse iteration with standard preconditioner
0 F —#— Inexact inverse iteration with tuned
10 E
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Figure: Inexact inverse iteration and Jacobi-Davidson method - standard and
tuned preconditioner
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Petrov-Galerkin method (GMRES)

GMRES
V1= (IrgMRES||/|pgMRES )2

Matrix sherman5.mtx Fixed shift; preconditioned GMRES as inner solver

—6— simplified Jacobi-Davidson with standard preconditoner
. — * — Inexact inverse teration with standard preconditioner
10 —*— Inexact inverse iteration with tuned

k=% e ke ok ke ok ke ok —h K ke K —k K

eigenvalue residual
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8
outer iteration

Figure: Inexact inverse iteration and Jacobi-Davidson method - standard and
tuned preconditioner
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Petrov-Galerkin method (GMRES)

g4 RES|

= :
V1= (IrgMRES||/|pgMRES )2

Matrix sherman5.mtx Fixed shift; preconditioned GMRES as inner solver
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Figure: Inexact inverse iteration and Jacobi-Davidson method - standard and
tuned preconditioner




Improvement Pz = Ax

The tuned preconditoner Px = Ax

Instead of
P =xzz” + P(I — zz™)

use
P = Azz™ 4+ P(I — zz™)

which satisfies Pz = Az
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Extensions

Improvement Pz = Ax

The tuned preconditoner Px = Ax

Instead of
P =xzz” + P(I — zz™)

use
P = Azz™ 4+ P(I — zz™)

which satisfies Pz = Ax
P= P+ (A— P)zz™
minor modification and minor extra computational cost

P Az — z)z Pt
cHP=1Ax

pt=pt_{
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Tuning with Px = Ax

Matrix sherman5.mtx Rayleigh quotient shift; preconditioned FOM as inner
solver

Sk Sk k= ok K-k R =k Sk Kk ok

—©— simplified Jacobi-Davidson with standard preconditoner|
— * — Rayleigh Quotient iteration with standard preconditioner |
10 b —+— Rayleigh Quotient teration with tuned preconditioner

eigenvalue residual
N
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10

1070
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o 2 4 6 8 10 12 14 16 18 20
outer iteration

Figure: Rayleigh quotient iteration and Jacobi-Davidson method - standard and
tuned preconditioner
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Extensions

Generalised eigenproblem Ax = AMzx

Solving
(A= p(x)M)P™'§ = Mz, with y=P"'g,

and

Maa™ MH

(I = T A —PeOM)I = wu")PTs = —r, with s =PT5,

using the same Galerkin-Krylov method and Pz = Mz are equivalent.
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Extensions

Generalised eigenproblem Ax = AMzx

Use Pr = Mx Matrix shermanb.mtx with a pos. def. tridiagonal M
Rayleigh quotient shift; preconditioned FOM as inner solver

Sk ok ok ok ek Sk Sk ko ke ok ke K

—6— simplified Jacobi-Davidson with standard preconditoner|
— % — Rayleigh Quotient teration with standard precondtioner|

—#— Rayleigh Quotient teration with tuned preconditioner

eigenvalue residual

2 4 6 8 10 12 14 16 18 20
outer iteration

Figure: Rayleigh quotient iteration and Jacobi-Davidson method - standard and
tuned preconditioner




Ex ns

Another motivation for Px = Ax

More detailed GMRES theory for (A —ol)y =

- A2 — A
e — (A~ onyell < RONPZZAL i max pv) el < 7
1 PEPR_1J=2,...,n

where \; are eigenvalues of A — ol.

Number of inner iterations

k> Cy + Calog ”Qm”

where Q projects onto the space not spanned by the eigenvector.
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Extensions

Another motivation for Px = Ax

Good news!

) (1)
E® > C1 + Czlog —CBJ!(T;) | »

where 7 = C||r?||. Tteration number approximately constant!
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Another motivation for Px = Ax

Good news!

Cs|lr ]|

k(i) >C1+Co log R
T

where 7 = C||r?||. Tteration number approximately constant!

Bad news :-(

For a standard preconditioner P
(A— O'I)Pilﬂ(i) = 2 Pflg(i) _ y(i)

HQ ||

k% > €] + Chlog =" = €] + Clog %,

where 7 = C||7(?||. Tteration number increases!
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Another motivation for Px = Ax

How to overcome this problem

Use tuned preconditioner:

Pz = Aac(i), P;:=P+ (A-— P)x(i)x(i)H

Why does that work?

Assume we have found eigenvector 1

Allfl = ]P:Bl = )\11;1 = (A _ UI)P71x1 _ )\1}\— 0’1:1
1

and convergence of Krylov method applied to (A — ol )P~ 'j =z in one
iteration. For general z®

Cs|lr ]|

— > Where 8 = |r?.
T

kY > ) + Chlog
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Extensions

Convection-Diffusion operator

Finite difference discretisation on a 32 x 32 grid of the convection-diffusion
operator
—Au + 5ug 4 5uy = du on  (0,1)%
with homogeneous Dirichlet boundary conditions (961 x 961 matrix).
@ smallest eigenvalue: A1 ~ 32.18560954,
@ Preconditioned GMRES with tolerance 7() = 0.017(" |,

@ standard and tuned preconditioner (incomplete LU).
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Convection-Diffusion operator
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Figure: Inner iterations vs outer Figure: Eigenvalue residual norms vs
iterations total number of inner iterations
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Convection-Diffusion operator

—o— right preconditioning, 569 iterations

—#— tuned right preconditioning, 115 iterations

inner iterations

residual norms \[r{(i)}\|

10

—o— right preconditioning, 569 iterations

—#— tuned right 115 iterations

10 12 14 16 18
outer iterations

Figure: Inner iterations vs outer
iterations

100 200 300 400 500 600
sum of inner iterations

Figure: Eigenvalue residual norms vs
total number of inner iterations
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Extensions

Extensions

Possible Extensions (ongoing work)
@ subspace iteration
Q@ Shift-invert Arnoldi iteration using a tuned preconditioner
PiQ(i) = AQ(i); given by P; =P+ (A— P)Q(i)Q(i)H

is equivalent to the Jacobi-Davidson method with a standard
preconditioner
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Extensions

Numerical Example

sherman5.mtx matrix from the Matrix Market library (3312 x 3312).
@ smallest eigenvalue: A\; ~ 4.69 x 1072,

@ Preconditioned GMRES as inner solver (fixed tolerance and relaxation
strategy),

@ standard and tuned preconditioner (incomplete LU).
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Extensions

No tuning and standard preconditioner
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Figure: Inner iterations vs outer Figure: Eigenvalue residual norms vs
iterations total number of inner iterations
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Tuning

— * — Arnoldi tolerance 1
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Figure: Inner iterations vs outer Figure: Eigenvalue residual norms vs
iterations total number of inner iterations

UNIVERSITY OF




Conclusions

@ For eigencomputations it is advantageous to consider modified
preconditioners (works for any preconditioner)

@ Analysis provides further understanding of preconditioned
Jacobi-Davidson method

@ Numerical results on eigenvalue problems obtained from Mixed FEM
Navier-Stokes with DD preconditioner show the same gains.
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