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Problem and iterative methods

Find a small number of eigenvalues close to a shift σ and corresponding
eigenvectors of:

Ax = λx, λ ∈ C, x ∈ C
n

A is large, sparse, nonsymmetric
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Problem and iterative methods

Find a small number of eigenvalues close to a shift σ and corresponding
eigenvectors of:

Ax = λx, λ ∈ C, x ∈ C
n

A is large, sparse, nonsymmetric

Iterative solves (e.g. Power method)
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Problem and iterative methods

Find a small number of eigenvalues close to a shift σ and corresponding
eigenvectors of:

Ax = λx, λ ∈ C, x ∈ C
n

A is large, sparse, nonsymmetric

Iterative solves (e.g. Power method)

Problem becomes

(A− σI)−1x =
1

λ− σ
x

each step of the iterative method involves repeated application of
(A− σI)−1 to a vector (inverse iteration)
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Problem and iterative methods

Find a small number of eigenvalues close to a shift σ and corresponding
eigenvectors of:

Ax = λx, λ ∈ C, x ∈ C
n

A is large, sparse, nonsymmetric

Iterative solves (e.g. Power method)

Problem becomes

(A− σI)−1x =
1

λ− σ
x

each step of the iterative method involves repeated application of
(A− σI)−1 to a vector (inverse iteration)

Inner iterative solve:
(A− σI)y = x

using Krylov or Galerkin-Krylov method for linear systems.

leading to inner-outer iterative method.
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Shift-invert strategy

This talk:
Inner Iteration and preconditioning

Comparison of two methods: Inexact Rayleigh quotient iteration and
Simplified Jacobi-Davidson method
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The algorithms

Inexact Rayleigh quotient iteration

solve
(A− ρ(x(i))I)y(i) = x(i),

inexactly.

Rescale x(i+1) =
y(i)

‖y(i)‖
and update ρ(x(i+1)) = x(i+1)H

Ax(i+1),

Test: eigenvalue residual r(i+1) = (A− ρ(x(i+1))I)x(i+1).

Melina Freitag University of Bath

RQI and JD method with tuned preconditioners for eigensolvers



The problem RQI and JD The tuned preconditioner Prec. RQI and JD Extensions Conclusions

The algorithms

Inexact Rayleigh quotient iteration

solve
(A− ρ(x(i))I)y(i) = x(i),

inexactly.

Rescale x(i+1) =
y(i)

‖y(i)‖
and update ρ(x(i+1)) = x(i+1)H

Ax(i+1),

Test: eigenvalue residual r(i+1) = (A− ρ(x(i+1))I)x(i+1).

Inexact simplified Jacobi-Davidson method (without subspace expansion)

solve
(I − x(i)x(i)H

)(A− ρ(x(i))I)(I − x(i)x(i)H

)s(i) = −r(i),

Rescale x(i+1) =
x(i) + s(i)

‖x(i) + s(i)‖
and update ρ(x(i+1)) = x(i+1)H

Ax(i+1),

Test: eigenvalue residual r(i+1) = (A− ρ(x(i+1))I)x(i+1).
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An experiment

Matrix sherman5.mtx Rayleigh quotient shift; FOM as inner solver
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Rayleigh Quotient iteration without preconditioner

Figure: Rayleigh quotient iteration and Jacobi-Davidson method - without
preconditioner
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An experiment

Matrix sherman5.mtx Rayleigh quotient shift; FOM as inner solver
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Rayleigh Quotient iteration without preconditioner
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simplified Jacobi−Davidson without preconditoner

Figure: Rayleigh quotient iteration and Jacobi-Davidson method - without
preconditioner
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An experiment

Matrix sherman5.mtx Rayleigh quotient shift; FOM as inner solver
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simplified Jacobi−Davidson without preconditoner
Rayleigh Quotient iteration without preconditioner

Figure: Rayleigh quotient iteration and Jacobi-Davidson method - without
preconditioner
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An experiment

Matrix sherman5.mtx Rayleigh quotient shift; preconditioned FOM as inner
solver
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Rayleigh Quotient iteration with standard preconditioner

Figure: Rayleigh quotient iteration and Jacobi-Davidson method - with
preconditioner P1
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An experiment

Matrix sherman5.mtx Rayleigh quotient shift; preconditioned FOM as inner
solver
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Rayleigh Quotient iteration with standard preconditioner
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simplified Jacobi−Davidson without preconditoner

Figure: Rayleigh quotient iteration and Jacobi-Davidson method - with
preconditioner P1
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An experiment

Matrix sherman5.mtx Rayleigh quotient shift; preconditioned FOM as inner
solver
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simplified Jacobi−Davidson with standard preconditoner

Rayleigh Quotient iteration with standard preconditioner

Figure: Rayleigh quotient iteration and Jacobi-Davidson method - with
preconditioner P1
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An experiment

Matrix sherman5.mtx Rayleigh quotient shift; preconditioned FOM as inner
solver
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Rayleigh Quotient iteration with tuned preconditioner

Figure: Rayleigh quotient iteration and Jacobi-Davidson method - with
preconditioner P2
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An experiment

Matrix sherman5.mtx Rayleigh quotient shift; preconditioned FOM as inner
solver
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Rayleigh Quotient iteration with tuned preconditioner
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simplified Jacobi−Davidson without preconditoner

Figure: Rayleigh quotient iteration and Jacobi-Davidson method - with
preconditioner P2
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An experiment

Matrix sherman5.mtx Rayleigh quotient shift; preconditioned FOM as inner
solver
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simplified Jacobi−Davidson with tuned preconditoner
Rayleigh Quotient iteration with tuned preconditioner

Figure: Rayleigh quotient iteration and Jacobi-Davidson method - with
preconditioner P2
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Rayleigh quotient iteration and Jacobi-Davidson: Exact solves

Rayleigh quotient iteration

Solve

(A− ρ(x)I)y = x

at each outer iteration.

Melina Freitag University of Bath

RQI and JD method with tuned preconditioners for eigensolvers



The problem RQI and JD The tuned preconditioner Prec. RQI and JD Extensions Conclusions

Rayleigh quotient iteration and Jacobi-Davidson: Exact solves

Rayleigh quotient iteration

Solve

(A− ρ(x)I)y = x

at each outer iteration.

Jacobi-Davidson method

Solve

(I − xxH)(A− ρ(x)I)(I − xxH)s = −r

at each outer iteration, where
r = (A− ρ(x)I)x is the eigenvalue
residual and s ⊥ x.
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Rayleigh quotient iteration and Jacobi-Davidson: Exact solves

Rayleigh quotient iteration

Solve

(A− ρ(x)I)y = x

at each outer iteration.

Jacobi-Davidson method

Solve

(I − xxH)(A− ρ(x)I)(I − xxH)s = −r

at each outer iteration, where
r = (A− ρ(x)I)x is the eigenvalue
residual and s ⊥ x.

Exact solves

Sleijpen and van der Vorst (1996):

y = α(x + s)

for some constant α. Solutions are equivalent!
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Rayleigh quotient iteration and Jacobi-Davidson: Exact solves

Rayleigh quotient iteration

Solve

(A− ρ(x)I)y = x

at each outer iteration.

Jacobi-Davidson method

Solve

(I − xxH)(A− ρ(x)I)s = −r

at each outer iteration, where
r = (A− ρ(x)I)x is the eigenvalue
residual and s ⊥ x.

Exact solves

Sleijpen and van der Vorst (1996):

y = α(x + s)

for some constant α. Solutions are equivalent!
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Rayleigh quotient iteration and Jacobi-Davidson: Exact solves

Rayleigh quotient iteration

Solve

(A− ρ(x)I)y = x

at each outer iteration.

Jacobi-Davidson method

Solve

(A− ρ(x)I)s− γx = −(A− ρ(x)I)x

at each outer iteration, where
r = (A− ρ(x)I)x is the eigenvalue
residual and s ⊥ x.

Exact solves

Sleijpen and van der Vorst (1996):

y = α(x + s)

for some constant α. Solutions are equivalent!
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Rayleigh quotient iteration and Jacobi-Davidson: Inexact solves

Rayleigh quotient iteration

Solve

(A− ρ(x)I)y = x

at each outer iteration.

Jacobi-Davidson method

Solve

(I − xxH)(A− ρ(x)I)(I − xxH)s = −r

at each outer iteration, where
r = (A− ρ(x)I)x is the eigenvalue
residual and s ⊥ x.

Galerkin-Krylov Solver

Simoncini and Eldén (2002), (Hochstenbach and Sleijpen (2003) for
two-sided RQ iteration), based on result by Stathopoulos and Saad
(1998)

yk+1 = β(x + sk)

for some constant β if both systems are solved using a Galerkin-Krylov
subspace method
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An experiment - Inexact solves

Matrix sherman5.mtx Rayleigh quotient shift; FOM as inner solver
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simplified Jacobi−Davidson without preconditoner
Rayleigh Quotient iteration without preconditioner

Figure: Rayleigh quotient iteration and Jacobi-Davidson method - without
preconditioner

Melina Freitag University of Bath

RQI and JD method with tuned preconditioners for eigensolvers



The problem RQI and JD The tuned preconditioner Prec. RQI and JD Extensions Conclusions

Rayleigh quotient iteration and Jacobi-Davidson: Preconditioned Solves

Preconditioning for RQ iteration

Solve

(A− ρ(x)I)P−1ỹ = x,

(with y = P−1ỹ) at each iteration.

Preconditioning for JD method

Solve

(I − xxH)(A− ρ(x)I)(I − xxH)P̃ †s̃ = −r

(with s = P̃ †s̃) has to be solved. Note
the restricted preconditioner

P̃ := (I − xxH)P (I − xxH).

Equivalence does not hold!
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An experiment - with standard preconditioner

Matrix sherman5.mtx Rayleigh quotient shift; preconditioned FOM as inner
solver
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simplified Jacobi−Davidson with standard preconditoner

Rayleigh Quotient iteration with standard preconditioner

Figure: Rayleigh quotient iteration and Jacobi-Davidson method - with standard
preconditioner
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Preconditioners

Need a better preconditioner for Rayleigh quotient iteration.
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The tuned preconditioner

Advantage of Jacobi-Davidson

(I − xxH)(A− ρ(x)I)(I − xxH)P̃ †s̃ = −r

(with s = P̃ †s̃). The preconditioner

P̃ := (I − xxH)P (I − xxH).

is restricted (to the subspace orthogonal to x).
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The tuned preconditioner

Advantage of Jacobi-Davidson

(I − xxH)(A− ρ(x)I)(I − xxH)P̃ †s̃ = −r

(with s = P̃ †s̃). The preconditioner

P̃ := (I − xxH)P (I − xxH).

is restricted (to the subspace orthogonal to x).

The new (tuned) preconditioner for inexact Rayleigh quotient iteration

Use
P = IxxH + P (I − xxH)

which satisfies
Px = x as well as P

−1x = x
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The tuned preconditioner

Implementation

P = xxH + P (I − xxH)

P = P + (I − P )xxH
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The tuned preconditioner

Implementation

P = xxH + P (I − xxH)

P = P + (I − P )xxH

minor modification and minor extra computational cost

P
−1 = P−1 −

(P−1x− x)xHP−1

xHP−1x
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Preconditioned Solves for inexact Rayleigh Quotient iteration and
inexact Jacobi-Davidson

Tuned preconditioner in RQI ≡ preconditioned JD

Px = x

RQ iteration with preconditioner P: (A− ρ(x)I)P−1
y = x

Inner solves in RQ iteration build Krylov space

span{x, (A− ρ(x)I)P−1x, ((A− ρ(x)I)P−1)2x, . . .}
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Preconditioned Solves for inexact Rayleigh Quotient iteration and
inexact Jacobi-Davidson

Tuned preconditioner in RQI ≡ preconditioned JD

Px = x

RQ iteration with preconditioner P: (A− ρ(x)I)P−1
y = x

Inner solves in RQ iteration build Krylov space

span{x, (A− ρ(x)I)P−1x, ((A− ρ(x)I)P−1)2x, . . .}

JD with preconditioner P : (I − xxH)(A− ρ(x)I)(I − xxH)P̃ †s̃ = −r

Inner solves in JD method build Krylov space

span{r, Π1(A− ρ(x)I)ΠP
2 P−1r, (Π1(A− ρ(x)I)ΠP

2 P−1)2r, . . .}

where Π1 = (I − xxH) and ΠP
2 = I −

P−1xxH

xHP−1x
.
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Consider subspaces

A← A− ρ(x)I

Lemma

The subspaces

Kk = span{x, AP
−1x, (AP

−1)2x, . . . , (AP
−1)kx}

and

Lk = span{x, r, Π1AΠP
2 P−1r, (Π1AΠP

2 P−1)2r, . . . , (Π1AΠP
2 P−1)k−1r}

are equivalent.

Proof.

Extension of result by Stathopoulos and Saad (1998).
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Equivalence for inexact solves

Theorem

Let both

(A− ρ(x)I)P−1ỹ = x, y = P
−1ỹ

and

(I − xxH)(A− ρ(x)I)(I − xxH)P̃ †s̃ = −r, s = P̃ †s̃

be solved with the same Galerkin-Krylov method. Then

yRQ

k+1 = γ(x + sJD
k ).

Proof.

Extension of result by Simoncini and Eldén (2002).
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Example

sherman5.mtx; Rayleigh quotient shift; preconditioned FOM as inner solver
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simplified Jacobi−Davidson without preconditoner
Rayleigh Quotient iteration without preconditioner

Figure: Convergence history of the
eigenvalue residuals; no
preconditioner.
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simplified Jacobi−Davidson with standard preconditoner

Rayleigh Quotient iteration with tuned preconditioner

Rayleigh Quotient iteration with standard preconditioner

Figure: standard preconditioner for
JD, tuned preconditioner for RQ
Iteration P2 = P.
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Equivalence between preconditioned JD and preconditioned RQI

Technique applies to any preconditioner for linear systems.
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Fixed shifts

Matrix sherman5.mtx Fixed shift; preconditioned FOM as inner solver
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simplified Jacobi−Davidson with standard preconditoner
Inexact inverse iteration with standard preconditioner
Inexact inverse iteration with tuned preconditioner

Figure: Inexact inverse iteration and Jacobi-Davidson method - standard and
tuned preconditioner
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Petrov-Galerkin method (GMRES)

‖rF OM
k ‖ =

‖rGMRES
k ‖

q

1− (‖rGMRES
k ‖/‖rGMRES

k−1 ‖)2
.

Matrix sherman5.mtx Fixed shift; preconditioned GMRES as inner solver
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simplified Jacobi−Davidson with standard preconditoner
Inexact inverse iteration with standard preconditioner
Inexact inverse iteration with tuned preconditioner

Figure: Inexact inverse iteration and Jacobi-Davidson method - standard and
tuned preconditioner
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Petrov-Galerkin method (GMRES)

‖rF OM
k ‖ =

‖rGMRES
k ‖

q

1− (‖rGMRES
k ‖/‖rGMRES

k−1 ‖)2
.

Matrix sherman5.mtx Fixed shift; preconditioned GMRES as inner solver
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simplified Jacobi−Davidson with standard preconditoner
Inexact inverse iteration with standard preconditioner
Inexact inverse iteration with tuned preconditioner
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Figure: Inexact inverse iteration and Jacobi-Davidson method - standard and
tuned preconditioner
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Improvement Px = Ax

The tuned preconditoner Px = Ax

Instead of
P = xxH + P (I − xxH)

use
P = AxxH + P (I − xxH)

which satisfies Px = Ax
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Improvement Px = Ax

The tuned preconditoner Px = Ax

Instead of
P = xxH + P (I − xxH)

use
P = AxxH + P (I − xxH)

which satisfies Px = Ax

P = P + (A− P )xxH

minor modification and minor extra computational cost

P
−1 = P−1 −

(P−1Ax− x)xHP−1

xHP−1Ax
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Tuning with Px = Ax

Matrix sherman5.mtx Rayleigh quotient shift; preconditioned FOM as inner
solver
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simplified Jacobi−Davidson with standard preconditoner

Rayleigh Quotient iteration with standard preconditioner

Rayleigh Quotient iteration with tuned preconditioner

Figure: Rayleigh quotient iteration and Jacobi-Davidson method - standard and
tuned preconditioner
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Generalised eigenproblem Ax = λMx

Solving
(A− ρ(x)M)P−1ỹ = Mx, with y = P

−1ỹ,

and

(I −
MxxHMH

xHMHMx
)(A− ρ(x)M)(I − xuH)P̃ †s̃ = −r, with s = P̃ †s̃,

using the same Galerkin-Krylov method and Px = Mx are equivalent.
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Generalised eigenproblem Ax = λMx

Use Px = Mx Matrix sherman5.mtx with a pos. def. tridiagonal M
Rayleigh quotient shift; preconditioned FOM as inner solver
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Figure: Rayleigh quotient iteration and Jacobi-Davidson method - standard and
tuned preconditioner
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Another motivation for Px = Ax

More detailed GMRES theory for (A− σI)y = x

‖x− (A− σI)yk‖ ≤ κ̃(W )
|λ2 − λ1|

λ1
min

p∈Pk−1

max
j=2,...,n

|p(λj)|‖Qx‖ ≤ τ

where λj are eigenvalues of A− σI .

Number of inner iterations

k ≥ C1 + C2 log
‖Qx‖

τ
,

where Q projects onto the space not spanned by the eigenvector.
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Another motivation for Px = Ax

Good news!

k(i) ≥ C1 + C2 log
C3‖r

(i)‖

τ (i)
,

where τ (i) = C‖r(i)‖. Iteration number approximately constant!
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Another motivation for Px = Ax

Good news!

k(i) ≥ C1 + C2 log
C3‖r

(i)‖

τ (i)
,

where τ (i) = C‖r(i)‖. Iteration number approximately constant!

Bad news :-(

For a standard preconditioner P

(A− σI)P−1ỹ(i) = x(i) P−1ỹ(i) = y(i)

k(i) ≥ C′
1 + C′

2 log
‖Q̃x(i)‖

τ (i)
= C′

1 + C′
2 log

C

τ (i)
,

where τ (i) = C‖r(i)‖. Iteration number increases!
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Another motivation for Px = Ax

How to overcome this problem

Use tuned preconditioner:

Pix
(i) = Ax(i), Pi := P + (A− P )x(i)x(i)H

Why does that work?

Assume we have found eigenvector x1

Ax1 = Px1 = λ1x1 ⇒ (A− σI)P−1x1 =
λ1 − σ

λ1
x1

and convergence of Krylov method applied to (A− σI)P−1ỹ = x1 in one
iteration. For general x(i)

k(i) ≥ C′
1 + C′

2 log
C3‖r

(i)‖

τ (i)
, where τ (i) = C‖r(i)‖.
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Convection-Diffusion operator

Finite difference discretisation on a 32× 32 grid of the convection-diffusion
operator

−∆u + 5ux + 5uy = λu on (0, 1)2,

with homogeneous Dirichlet boundary conditions (961× 961 matrix).

smallest eigenvalue: λ1 ≈ 32.18560954,

Preconditioned GMRES with tolerance τ (i) = 0.01‖r(i)‖,

standard and tuned preconditioner (incomplete LU).
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Convection-Diffusion operator
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Figure: Inner iterations vs outer
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Figure: Eigenvalue residual norms vs
total number of inner iterations
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Convection-Diffusion operator
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Figure: Inner iterations vs outer
iterations
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Figure: Eigenvalue residual norms vs
total number of inner iterations
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Extensions

Possible Extensions (ongoing work)

1 subspace iteration

2 Shift-invert Arnoldi iteration using a tuned preconditioner

PiQ
(i) = AQ(i); given by Pi = P + (A− P )Q(i)Q(i)H

is equivalent to the Jacobi-Davidson method with a standard
preconditioner
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Numerical Example

sherman5.mtx matrix from the Matrix Market library (3312 × 3312).

smallest eigenvalue: λ1 ≈ 4.69× 10−2,

Preconditioned GMRES as inner solver (fixed tolerance and relaxation
strategy),

standard and tuned preconditioner (incomplete LU).
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No tuning and standard preconditioner
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Figure: Inner iterations vs outer
iterations
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Tuning
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Figure: Inner iterations vs outer
iterations
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Figure: Eigenvalue residual norms vs
total number of inner iterations
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Conclusions

For eigencomputations it is advantageous to consider modified
preconditioners (works for any preconditioner)

Analysis provides further understanding of preconditioned
Jacobi-Davidson method

Numerical results on eigenvalue problems obtained from Mixed FEM
Navier-Stokes with DD preconditioner show the same gains.
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M. Robbé, M. Sadkane, and A. Spence, Inexact inverse subspace

iteration with preconditioning applied to non-Hermitian eigenvalue

problems, 2007.
To appear in SIAM J. Matrix Anal. Appl.

F. Xue and H. C. Elman, Convergence analysis of iterative solvers in

inexact Rayleigh quotient iteration, Preprint UMCP-CSD:CS-TR-4902,
University of Maryland, Department of Computer Science and
Institute for Advanced Computer Studies, 2008.

Melina Freitag University of Bath

RQI and JD method with tuned preconditioners for eigensolvers


	The problem
	Inexact Rayleigh Quotient iteration and the Jacobi-Davidson method
	The tuned preconditioner
	Preconditioned Rayleigh Quotient iteration and the Jacobi-Davidson method
	Extensions and improvements
	Conclusions

