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What is Data Assimilation?

Loose definition
Estimation and prediction (analysis) of an unknown, true state by combining
observations and system dynamics (model output).
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What is Data Assimilation?

Loose definition
Estimation and prediction (analysis) of an unknown, true state by combining
observations and system dynamics (model output).

Some examples

◮ Navigation

◮ Geosciences

◮ Medical imaging

◮ Numerical weather prediction
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Data Assimilation in NWP
Estimate the state of the atmosphere xi

Observations y

◮ Satellites

◮ Ships and buoys

◮ Surface stations

◮ Aeroplanes
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Data Assimilation in NWP
Estimate the state of the atmosphere xi

A priori information xB

◮ background state (usual previous
forecast)

Models

◮ a model how the atmosphere
evolves in time (imperfect)

xi+1 = M(xi)

◮ a function linking model space and
observation space (imperfect)

yi = H(xi)

Observations y

◮ Satellites

◮ Ships and buoys

◮ Surface stations

◮ Aeroplanes

Assimilation algorithms

◮ used to find an (approximate)
state of the atmosphere xi at
times i (usually i = 0)

◮ using this state a forecast for
future states of the atmosphere
can be obtained

◮ xA: Analysis (estimation of the
true state after the DA)
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Data Assimilation in NWP

Underdeterminacy

◮ Size of the state vector x: 432 × 320 × 50 × 7 = O(107)

◮ Number of observations (size of y): O(105 − 106)
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Schematics of DA

Figure: Background state xB
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Schematics of DA

Figure: Observations y
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Schematics of DA

Figure: Analysis xA (consistent with observations and model dynamics)
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Optimal least-squares estimater

Cost function - 3D-VAR
Solution of the variational optimisation problem xA = arg minJ(x) where

J(x) = (x − xB)T B−1(x − xB) + (y − H(x))T R−1(y − H(x))

= JB(x) + JO(x)
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Optimal least-squares estimater

Cost function - 3D-VAR
Solution of the variational optimisation problem xA = arg minJ(x) where

J(x) = (x − xB)T B−1(x − xB) + (y − H(x))T R−1(y − H(x))

= JB(x) + JO(x)

Interpolation equations - Optimal Interpolation

xA = xB + K(y − H(xB)), where

K = BHT (HBHT + R)−1 K . . . gain matrix
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Four-dimensional variational assimilation (4D-VAR)

Minimise the cost function

J(x0) = (x0 − xB
0 )T B−1(x0 − xB

0 ) +
n

X

i=0

(yi − Hi(xi))
T R

−1

i (yi − Hi(xi))

subject to model dynamics xi = M0→ix0
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Four-dimensional variational assimilation (4D-VAR)

Minimise the cost function

J(x0) = (x0 − xB
0 )T B−1(x0 − xB

0 ) +
n

X

i=0

(yi − Hi(xi))
T R

−1

i (yi − Hi(xi))

subject to model dynamics xi = M0→ix0

Figure: Copyright:ECMWF
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4D-Var analysis

Model dynamics

Strong constraint: model states xi are subject to

xi = M0→ix0

nonlinear constraint optimisation problem (hard!)
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4D-Var analysis

Model dynamics

Strong constraint: model states xi are subject to

xi = M0→ix0

nonlinear constraint optimisation problem (hard!)

Simplifications

◮ Causality (forecast expressed as product of intermediate forecast steps)

xi = Mi,i−1Mi−1,i−2 . . . M1,0x0

◮ Tangent linear hypothesis (H and M can be linearised)

yi − Hi(xi) = yi − Hi(M0→ix0) = yi − Hi(M0→ix
B
0 ) − HiM0→i(x0 − xB

0 )

M is the tangent linear model.

◮ unconstrained quadratic optimisation problem (easier).
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Example - Three-Body Problem
Motion of three bodies in a plane, two position (q) and two momentum (p)
coordinates for each body α = 1, 2, 3
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Example - Three-Body Problem
Motion of three bodies in a plane, two position (q) and two momentum (p)
coordinates for each body α = 1, 2, 3

Equations of motion

H(q, p) =
1

2

X

α

|pα|2

mα
−

X X

α<β

mαmβ

|qα − qβ |

dqα

dt
=

∂H

∂pα

dpα

dt
= −

∂H

∂qα
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Example - Three-Body problem

◮ solver: partitioned Runge-Kutta scheme with time step h = 0.001

◮ observations are taken as noise from the truth trajectory

◮ background is given from a previous forecast
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Example - Three-Body problem

◮ solver: partitioned Runge-Kutta scheme with time step h = 0.001

◮ observations are taken as noise from the truth trajectory

◮ background is given from a previous forecast

◮ assimilation window is taken 300 time steps

◮ minimisation of cost function J using a Gauss-Newton method (neglecting all
second derivatives)

∇J(x0) = 0

∇∇J(xj
0
)∆x

j
0

= −∇J(xj
0
), x

j+1

0
= x

j
0

+ ∆x
j
0

◮ subsequent forecast is take 3000 time steps

◮ R is diagonal with variances between 10−3 and 10−5
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Changing the masses of the bodies

DA needs Model error!

ms = 1.0 → ms = 1.1

mp = 0.1 → mp = 0.11

mm = 0.01 → mm = 0.011
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Changing the masses of the bodies
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Root mean square error over whole assimilation window
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Changing numerical method

◮ Truth trajectory: 4th order Runge-Kutta method with local truncation error
O(∆t5)

◮ Model trajectory: Explicit Euler method with local truncation error O(∆t2)
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Changing numerical method
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Root mean square error over whole assimilation window
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Less observations - observations in sun only
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Less observations - observations in moon only
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Less observations - observations in planet and moon only
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Observations in all timescales necessary!

Melina Freitag Data assimilation



Outline
Introduction

Variational Data Assimilation
Tikhonov regularisation

Link between 4D-Var and Tikhonov regularisation
Work in progress

N-dimensional (chaotic) Lorenz system (Lorenz95)

The system is given by

dxi

dt
= −xi−2xi−1 + xi−1xi+1 − xi + F, i = 1, . . . , N,

cyclic boundary conditions x0 = xN , x−1 = xN+1, xN+1 = x1.

◮ F = 8, N = 40 (13 positive Lyapunov exponents). Model error introduced by
parameter change Fmod = 10.

◮ solver: Runge-Kutta method with time step h = 0.001
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N-dimensional (chaotic) Lorenz system (Lorenz95)

The system is given by

dxi

dt
= −xi−2xi−1 + xi−1xi+1 − xi + F, i = 1, . . . , N,

cyclic boundary conditions x0 = xN , x−1 = xN+1, xN+1 = x1.

◮ F = 8, N = 40 (13 positive Lyapunov exponents). Model error introduced by
parameter change Fmod = 10.

◮ solver: Runge-Kutta method with time step h = 0.001

◮ observations are taken as noise from the truth trajectory

◮ assimilation window: 1000 time steps

◮ subsequent forecast: 5000 time steps
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Lorenz95 dynamics
The system is given by

dxi

dt
= −xi−2xi−1 + xi−1xi+1 − xi + F, i = 1, . . . , N,

cyclic boundary conditions x0 = xN , x−1 = xN+1, xN+1 = x1. F = 8, N = 40
(13 positive Lyapunov exponents).
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Root means square error before assimilation
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Root means square error after assimilation
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4D-Var and the Kalman Filter

◮ Sequential data assimilation, background is provided by the forecast that
starts from the previous analysis

◮ covariance matrices BF , BA

◮ forecast/model error xTruth
i+1

= Mi+1,ix
Truth
i + ηi where ηi ∼ N (0, Qi),

assumed to be uncorrelated to analysis error of previous forecast
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4D-Var and the Kalman Filter

◮ Sequential data assimilation, background is provided by the forecast that
starts from the previous analysis

◮ covariance matrices BF , BA

◮ forecast/model error xTruth
i+1

= Mi+1,ix
Truth
i + ηi where ηi ∼ N (0, Qi),

assumed to be uncorrelated to analysis error of previous forecast

State and error covariance forecast

State forecast xF
i+1 = Mi+1,ix

A
i

Error covariance forecast BF
i+1 = Mi+1,iB

A
i MT

i+1,i + Qi
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4D-Var and the Kalman Filter

◮ Sequential data assimilation, background is provided by the forecast that
starts from the previous analysis

◮ covariance matrices BF , BA

◮ forecast/model error xTruth
i+1

= Mi+1,ix
Truth
i + ηi where ηi ∼ N (0, Qi),

assumed to be uncorrelated to analysis error of previous forecast

State and error covariance forecast

State forecast xF
i+1 = Mi+1,ix

A
i

Error covariance forecast BF
i+1 = Mi+1,iB

A
i MT

i+1,i + Qi

State and error covariance analysis

Kalman gain Ki = BF
i HT

i (HiB
F
i HT

i + Ri)
−1

State analysis xA
i = xF

i + Ki(yi − Hix
F
i )

Error covariance of analysis BA
i = (I − KiHi)B

F
i
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The Kalman Filter Algorithm

Extended Kalman Filter
Extension of the Kalman Filter Algorithm to nonlinear observation operators H
and nonlinear model dynamics M , where both H and M are linearised.
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The Kalman Filter Algorithm

Extended Kalman Filter
Extension of the Kalman Filter Algorithm to nonlinear observation operators H
and nonlinear model dynamics M , where both H and M are linearised.

Equivalence 4D-Var Kalman Filter

Assume

◮ Qi = 0, ∀i (no model error)

◮ both 4D-Var and the Kalman filter use the same initial input data

◮ H and M are linear,

then 4D-Var and the Kalman Filter produce the same state estimate xA at the
end of the assimilation window.

Melina Freitag Data assimilation



Outline
Introduction

Variational Data Assimilation
Tikhonov regularisation

Link between 4D-Var and Tikhonov regularisation
Work in progress

RMS error over whole assimilation window - using 4D-Var
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RMS error over whole assimilation window - using Kalman Filter
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Example - Three-Body Problem

◮ solver: partitioned Runge-Kutta scheme with time step h = 0.001

◮ observations are taken as noise from the truth trajectory

◮ background is given from a perturbed initial condition

◮ assimilation window is taken 300 time steps

◮ minimisation of cost function J using a Gauss-Newton method (neglecting all
second derivatives)

◮ application of 4D-Var
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Example - Three-Body Problem

◮ solver: partitioned Runge-Kutta scheme with time step h = 0.001

◮ observations are taken as noise from the truth trajectory

◮ background is given from a perturbed initial condition

◮ assimilation window is taken 300 time steps

◮ minimisation of cost function J using a Gauss-Newton method (neglecting all
second derivatives)

◮ application of 4D-Var

◮ Compare using B = I with using a flow-dependent matrix B which was
generated by a Kalman Filter before the assimilation starts (see G. Inverarity
(2007))
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Example - Three-Body Problem

2.4 2.5 2.6 2.7 2.8 2.9 3

x 10
4

0

0.02

0.04

0.06

0.08

0.1

0.12

Time step

R
M

S
 e

rr
or

 

 

before assimilation

after assimilation

Figure: 4D-Var with B = I

Melina Freitag Data assimilation



Outline
Introduction

Variational Data Assimilation
Tikhonov regularisation

Link between 4D-Var and Tikhonov regularisation
Work in progress

Example - Three-Body Problem
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Figure: 4D-Var with B = I
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Figure: 4D-Var with B = PA
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Ill-posed problems

Given an operator A we wish to solve

Ax = b

it is well-posed if

◮ solution exits
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Ill-posed problems

Given an operator A we wish to solve

Ax = b

it is well-posed if

◮ solution exits

◮ solution is unique
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Ill-posed problems

Given an operator A we wish to solve

Ax = b

it is well-posed if

◮ solution exits

◮ solution is unique

◮ is stable (A−1 continuous)
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Ill-posed problems

Given an operator A we wish to solve

Ax = b

it is well-posed if

◮ solution exits

◮ solution is unique

◮ is stable (A−1 continuous)

Equation is ill-posed if it is not well-posed.
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Linear, finite dimensional case

Finite dimensions

◮ A : R
n → R

n, then Ax = b is well-posed if A−1 exists.
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Linear, finite dimensional case

Finite dimensions

◮ A : R
n → R

n, then Ax = b is well-posed if A−1 exists.

◮ Existence imposed by considering least squares solutions

xLS = arg min‖Ax − b‖2
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Linear, finite dimensional case

Finite dimensions

◮ A : R
n → R

n, then Ax = b is well-posed if A−1 exists.

◮ Existence imposed by considering least squares solutions

xLS = arg min‖Ax − b‖2

◮ Uniqueness imposed by taking minimum norm least squares solution

xMNLS = arg min‖xLS‖
2 = A†b.
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Linear, finite dimensional case

Finite dimensions

◮ A : R
n → R

n, then Ax = b is well-posed if A−1 exists.

◮ Existence imposed by considering least squares solutions

xLS = arg min‖Ax − b‖2

◮ Uniqueness imposed by taking minimum norm least squares solution

xMNLS = arg min‖xLS‖
2 = A†b.

but ..
In the finite dimensional case one can replace A−1 by its pseudo-inverse A†, but

◮ discrete problem of underlying ill-posed problem becomes ill-conditioned

◮ singular values of A decay to zero
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A way out of this - Tikhonov regularisation

Solution to the minimisation problem

xα = arg min
˘

‖Ax − b‖2 + α‖x‖2
¯

= (AT A + αI)−1AT b

where α is called the regularisation parameter.
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Bayesian Interpretation

Assuming X, B are random variables then

π(x|b) = π(b|x)π(x)/π(b),

Maximum a posteriori estimater is maximum of a posteriori pdf, hence minimise
w.r.t. x

− log(π(x|b)) = − log(π(b|x)) − log(π(x))
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Bayesian Interpretation

Assuming X, B are random variables then

π(x|b) = π(b|x)π(x)/π(b),

Maximum a posteriori estimater is maximum of a posteriori pdf, hence minimise
w.r.t. x

− log(π(x|b)) = − log(π(b|x)) − log(π(x))

Example

If X and η = B − AX are normally distributed then

π(x) = C1 exp(−
‖x‖2

2σx
) and π(x|b) = C2 exp(−

‖Ax − b‖2

2σ2
η

)

and Tikhonov cost functional is

J(x) = ‖Ax − b‖2 + α‖x‖2

Melina Freitag Data assimilation
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Tikhonov regularisation using Singular Value Decomposition

Using the SVD of A = UΣVT the regularised solution in Tikhonov regularisation
is given by

xα = (AT A + αI)−1AT b
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Tikhonov regularisation using Singular Value Decomposition

Using the SVD of A = UΣVT the regularised solution in Tikhonov regularisation
is given by

xα = (AT A + αI)−1AT b

= (VΣT UT UΣVT + αVVT )−1VΣT UT b
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Tikhonov regularisation using Singular Value Decomposition

Using the SVD of A = UΣVT the regularised solution in Tikhonov regularisation
is given by

xα = (AT A + αI)−1AT b

= (VΣT UT UΣVT + αVVT )−1VΣT UT b

= Vdiag

„

s2
i

s2
i + α

1

si

«

UT b
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Tikhonov regularisation using Singular Value Decomposition

Using the SVD of A = UΣVT the regularised solution in Tikhonov regularisation
is given by

xα = (AT A + αI)−1AT b

= (VΣT UT UΣVT + αVVT )−1VΣT UT b

= Vdiag

„

s2
i

s2
i + α

1

si

«

UT b

xα =
n

X

i=1

s2
i

s2
i + α

uT
i b

si
vi
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Relation between 4D-Var and Tikhonov regularisation

4D-Var minimises

J(x0) = (x0 − xB
0 )T B−1(x0 − xB

0 ) +
n

X

i=0

(yi − Hi(xi))
T R

−1

i (yi − Hi(xi))

subject to model dynamics xi = M0→ix0
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Relation between 4D-Var and Tikhonov regularisation

4D-Var minimises

J(x0) = (x0 − xB
0 )T B−1(x0 − xB

0 ) +
n

X

i=0

(yi − Hi(xi))
T R

−1

i (yi − Hi(xi))

subject to model dynamics xi = M0→ix0

or

J(x0) = (x0 − xB
0 )T B−1(x0 − xB

0 ) + (ŷ − Ĥ(x0))
T R̂−1(ŷ − Ĥ(x0))

where
Ĥ = [HT

0 , (H1M(t1, t0))T , . . . (HnM(tn, t0))T ]T

ŷ = [yT
0 , . . . ,yT

n ]

and R̂ is block diagonal with Ri on diagonal.
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Relation between 4D-Var and Tikhonov regularisation

Solution to the optimisation problem

Linearise about x0 then the solution to the optimisation problem

J(x0) = (x0 − xB
0 )T B−1(x0 − xB

0 ) + (ŷ − Ĥ(x0))
T R̂−1(ŷ − Ĥ(x0))

is given by

x0 = xB
0 + (B−1 + ĤT R̂−1Ĥ)−1ĤT R̂−1d̂, d̂ = Ĥ(xB

0 − ŷ)

Melina Freitag Data assimilation
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Relation between 4D-Var and Tikhonov regularisation

Solution to the optimisation problem

Linearise about x0 then the solution to the optimisation problem

J(x0) = (x0 − xB
0 )T B−1(x0 − xB

0 ) + (ŷ − Ĥ(x0))
T R̂−1(ŷ − Ĥ(x0))

is given by

x0 = xB
0 + (B−1 + ĤT R̂−1Ĥ)−1ĤT R̂−1d̂, d̂ = Ĥ(xB

0 − ŷ)

Singular value decomposition

Assume B = σ2
BI and R̂ = σ2

OI and define the SVD of the observability matrix Ĥ

Ĥ = UΣVT

Then the optimal analysis can be written as

x0 = xB
0 +

X

j

s2
j

µ2 + s2
j

uT
j d̂

sj
vj , where µ2 =

σ2
O

σ2
B

.
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Relation between 4D-Var and Tikhonov regularisation

If B and R̂ are not multiples of the identity

J(x0) = (x0 − xB
0 )T B−1(x0 − xB

0 ) + (ŷ − Ĥ(x0))
T R̂−1(ŷ − Ĥ(x0))
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Relation between 4D-Var and Tikhonov regularisation

If B and R̂ are not multiples of the identity

J(x0) = (x0 − xB
0 )T B−1(x0 − xB

0 ) + (ŷ − Ĥ(x0))
T R̂−1(ŷ − Ĥ(x0))

Variable transformations
B = σ2

BFB and R̂ = σ2
OFR and
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Relation between 4D-Var and Tikhonov regularisation

If B and R̂ are not multiples of the identity

J(x0) = (x0 − xB
0 )T B−1(x0 − xB

0 ) + (ŷ − Ĥ(x0))
T R̂−1(ŷ − Ĥ(x0))

Variable transformations
B = σ2

BFB and R̂ = σ2
OFR and define new variable z := F

−1/2

B (x0 − xB
0

)

Melina Freitag Data assimilation



Outline
Introduction

Variational Data Assimilation
Tikhonov regularisation

Link between 4D-Var and Tikhonov regularisation
Work in progress

Relation between 4D-Var and Tikhonov regularisation

If B and R̂ are not multiples of the identity

J(x0) = (x0 − xB
0 )T B−1(x0 − xB

0 ) + (ŷ − Ĥ(x0))
T R̂−1(ŷ − Ĥ(x0))

Variable transformations
B = σ2

BFB and R̂ = σ2
OFR and define new variable z := F

−1/2

B (x0 − xB
0

)

Ĵ(z) = µ2‖z‖2
2 + ‖F

−1/2

R d̂ − F
−1/2

R ĤF
−1/2

B z‖2
2

µ2 can be interpreted as a regularisation parameter.
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Relation between 4D-Var and Tikhonov regularisation

If B and R̂ are not multiples of the identity

J(x0) = (x0 − xB
0 )T B−1(x0 − xB

0 ) + (ŷ − Ĥ(x0))
T R̂−1(ŷ − Ĥ(x0))

Variable transformations
B = σ2

BFB and R̂ = σ2
OFR and define new variable z := F

−1/2

B (x0 − xB
0

)

Ĵ(z) = µ2‖z‖2
2 + ‖F

−1/2

R d̂ − F
−1/2

R ĤF
−1/2

B z‖2
2

µ2 can be interpreted as a regularisation parameter.
This is Tikhonov regularisation!
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Example

Burger’s equation

ut + u
∂u

∂x
= ν

∂2u

∂x2

Optimal solution (4D-Var)

u0 = uB
0 +

X

j

s2
j

µ2 + s2
j

uT
j d̂

sj
vj , where µ2 =

σ2
O

σ2
B

.
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Singular value analysis - observations everywhere

Optimal solution (4D-Var)

u0 = uB
0 +

X

j

s2
j

µ2 + s2
j

uT
j d̂

sj
vj , where µ2 =

σ2
O

σ2
B

.
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Singular value analysis - observations every 10 points

Optimal solution (4D-Var)

u0 = uB
0 +

X

j

s2
j

µ2 + s2
j

uT
j d̂

sj
vj , where µ2 =

σ2
O

σ2
B

.
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L1 regularisation (with N. Nichols, University of Reading)
In image processing, L1-norm regularisation provides edge preserving image
deblurring!

Figure: Blurred picture
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L1 regularisation
In image processing, L1-norm regularisation provides edge preserving image
deblurring!

Figure: Tikhonov regularisation min
˘

‖Ax − b‖2 + α‖x‖2
¯
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L1 regularisation
In image processing, L1-norm regularisation provides edge preserving image
deblurring!

Figure: L1-norm regularisation min
˘

‖Ax − b‖2 + α‖x‖1

¯
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L1 regularisation

In image processing, L1-norm regularisation provides edge preserving image
deblurring!

◮ L1 regularisation might be also beneficial in Data Assimilation

◮ 4D Var smears out sharp fronts
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L1 regularisation

In image processing, L1-norm regularisation provides edge preserving image
deblurring!

◮ L1 regularisation might be also beneficial in Data Assimilation

◮ 4D Var smears out sharp fronts

◮ L1 regularisation has the potential to overcome this problem

Melina Freitag Data assimilation
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Model error identification

Blind Deconvolution
Instead of the (linear) model

b = Ax + e

use
b = (A + E)x + e

where both e and E are unknown.
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Model error identification

Blind Deconvolution
Instead of the (linear) model

b = Ax + e

use
b = (A + E)x + e

where both e and E are unknown. Instead of solving

min
˘

‖Ax − b‖2 + α‖x‖2
¯

solve
min

˘

‖(A + E)x − b‖2 + ‖E‖2
F + α‖x‖2

¯

over all choices of e and E (regularised total least squares).
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Model error identification

Blind Deconvolution
Instead of the (linear) model

b = Ax + e

use
b = (A + E)x + e

where both e and E are unknown. Instead of solving

min
˘

‖Ax − b‖2 + α‖x‖2
¯

solve
min

˘

‖(A + E)x − b‖2 + ‖E‖2
F + α‖x‖2

¯

over all choices of e and E (regularised total least squares).

Identify and analyse model error and analyse influence of this model error onto
the DA scheme
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