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Introduction

What is Data Assimilation?

Loose definition

Estimation and prediction (analysis) of an unknown, true state by combining
observations and system dynamics (model output).

Data assimilation
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Estimation and prediction (analysis) of an unknown, true state by combining
observations and system dynamics (model output).

Navigation
Geosciences
Medical imaging

Numerical weather prediction
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Introduction

Data Assimilation in NWP

Estimate the state of the atmosphere x;
Observations y

» Satellites
» Ships and buoys
» Surface stations

» Aeroplanes
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Estimate the state of the atmosphere x;

XB’

background state (usual previous
forecast)

a model how the atmosphere
evolves in time (imperfect)

Xi+1 = ]W(xl)

a function linking model space and
observation space (imperfect)

yi = H(x;)
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Satellites
Ships and buoys
Surface stations

Aeroplanes

Assimilation algorithms

> used to find an (approximate)
state of the atmosphere x; at
times ¢ (usually ¢ = 0)

> using this state a forecast for
future states of the atmosphere
can be obtained

» x“: Analysis (estimation of the
true state after the DA)

Data assimilation
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Size of the state vector x: 432 x 320 x 50 x 7 = O(107)
Number of observations (size of y): O(105 — 109)
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Schematics of DA

State x
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Figure: Background state x?
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Figure: Observations y
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Schematics of DA

State x

time
Figure: Analysis x* (consistent with observations and model dynamics)
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3D-VAR
Solution of the variational optimisation problem x# = arg minJ(x) where
Jx) = (x-x")"B7Hx—x")+(y-Hx)"R (y - H(x))
= Jp(x)+Jo(x)
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3D-VAR

Solution of the variational optimisation problem x# = arg minJ(x) where

Jx) = (x-x")TBx-x")+(y-Hx)"R(y - Hx))
= Jp(x)+Jo(x)

Optimal Interpolation

x4 =xP 4 K(y — H(xP)), where
K =BHT(HBHT +R)"! K...gain matrix

Melina Freitag Data assimilation
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4D-VAR

J(x0) = (x0 — xB)TB~ (x0 — x) + 3 (vs — Hi(x)) Ry (3 — Hi(x:))
=0

subject to model dynamics

Melina, Data assimilation
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Four-dimensional variational assimilation (4D-VAR)

Minimise the cost function

J(x0) = (xo — x§)"B (x0 —x§) + D> _(vi — Hi(x:))"R; (yi — Hi(x:))
=0

subject to model dynamics x; = Mg_.;xq

assimilation window

Melina Freitag Data assimilation
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Strong constraint: model states x; are subject to
x; = Mo—iXo

nonlinear constraint optimisation problem (hard!)
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Work in progres

Strong constraint: model states x; are subject to
x; = Mo—iXo

nonlinear constraint optimisation problem (hard!)

Causality (forecast expressed as product of intermediate forecast steps)
xX; = M; i 1M;_1;—2...Mi,0%X0
Tangent linear hypothesis (H and M can be linearised)
yi — Hi(xi) = yi — Hi(Mo—ix0) = yi — Hi(Mo—ix5 ) — HiMo_(x0 — x3,)

M is the tangent linear model.

unconstrained quadratic optimisation problem (easier).

Melina, Data assimilation
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Example - Three-Body Problem

Motion of three bodies in a plane, two position (q) and two momentum (p)
coordinates for each body a =1,2,3
e

Data assimilation
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Motion of three bodies in a plane, two position (q) and two momentum (p)

coordinates for each body a =1,2,3
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iational Data Assimilation

Example - Three-Body problem

> solver: partitioned Runge-Kutta scheme with time step A = 0.001
> observations are taken as noise from the truth trajectory

» background is given from a previous forecast
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Example - Three-Body problem

> solver: partitioned Runge-Kutta scheme with time step A = 0.001
> observations are taken as noise from the truth trajectory

» background is given from a previous forecast

» assimilation window is taken 300 time steps

> minimisation of cost function J using a Gauss-Newton method (neglecting all
second derivatives)
VJ(x0) =0

VVJ(X%)AX% = —VJ(X%), X%Jrl = xg + Axg
» subsequent forecast is take 3000 time steps

» R is diagonal with variances between 10~3 and 102

Melina Freitag Data assimilation
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Changing the masses of the bodies
DA needs Model error!
ms=10 — mg=1.1

mp =01 — mp=0.11
mm =0.01 — my;, =0.011
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Changing the masses of the bodies
DA needs Model error!
ms=10 — mg=1.1

mp =01 — mp=0.11
mm =0.01 — my;, =0.011
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Changing the masses of the bodies
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Changing the masses of the bodies
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Changing the masses of the bodies
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Changing the masses of the bodies
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Changing the masses of the bodies
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Root mean square error over whole assimilation window
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Variational Data Assimilation

Changing numerical method

» Truth trajectory: 4th order Runge-Kutta method with local truncation error
o(At?)

» Model trajectory: Explicit Euler method with local truncation error O(At?)

Melina Freitag Data assimilation
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Root mean square error over whole assimilation window
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Less observations - observations in sun only
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Less observations - observations in moon only
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Less observations - observations in planet and moon only
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Variational Data Assimilation

N-dimensional (chaotic) Lorenz system (Lorenz95)

The system is given by

d$i
dt

=-—2j 2%;i—1 +Ti—1Tip1—z; +F, i=1,...,N,

cyclic boundary conditions xp = N, -1 = TN+1, TN+1 = Z1-

» F =8, N =40 (13 positive Lyapunov exponents). Model error introduced by
parameter change F,,,q = 10.

» solver: Runge-Kutta method with time step h = 0.001

Melina Freitag Data assimilation



Variational Date similation

N-dimensional (chaotic) Lorenz system (Lorenz95)

The system is given by

d$i

o = rimatiol +ziiripr—z+F, i=1,...,N,

cyclic boundary conditions xp = N, -1 = TN+1, TN+1 = Z1-
» F =8, N =40 (13 positive Lyapunov exponents). Model error introduced by
parameter change F,,,q = 10.

» solver: Runge-Kutta method with time step h = 0.001
> observations are taken as noise from the truth trajectory
» assimilation window: 1000 time steps

» subsequent forecast: 5000 time steps

Melina Freitag Data assimilation
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Lorenz95 dynamics
The system is given by
dz;
dt
cyclic boundary conditions o = N, -1 = N+1, TN+1 = 1. =8, N =40
(13 positive Lyapunov exponents).

=—Zi—2%i—1 +Ti—1Tiy1—z; + F, i=1,...,N,
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g Data assimilation




Lorenz95 dynamics
The system is given by

dz;

dt
cyclic boundary conditions o = N, -1 = TN41, TN4+1 =T1. =8, N =40
(13 positive Lyapunov exponents).

=—Ti_2Ti—1 +Ti—1Ti+1 — T+ F, 1=1,..., N,

X30

‘M‘ “\ 'g‘w“\"";\’ "‘M’
M \" ﬂ IM‘
jihi ‘( ; ‘ l‘\ i ,‘"\‘.ﬁll"‘ ‘ W’Jl’ﬂ.




Root means square error before assimilation
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Root means square error after assimilation
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iational Data Assimilation

4D-Var

and the Kalman Filter

Sequential data assimilation, background is provided by the forecast that
starts from the previous analysis

covariance matrices BF, BA

Truth _ M'i+1,'ix?r‘1t}] + i where i~ N(O QZ)7

forecast/model error x;
assumed to be uncorrelated to analysis error of previous forecast

Data assimilation
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4D-Var and the Kalman Filter

Sequential data assimilation, background is provided by the forecast that
starts from the previous analysis

» covariance matrices B¥, B4

th = Mg, ™+ m; where 1; ~ N(0, Qi),

> forecast/model error x;
assumed to be uncorrelated to analysis error of previous forecast

State and error covariance forecast
State forecast xiﬂ_l = Mi+1_yix§4

Error covariance forecast Bf‘ll = Mi+1,iB§4MZT+1,i + Qi

Data assimilation
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Sequential data assimilation, background is provided by the forecast that
starts from the previous analysis

covariance matrices BF, BA
forecast/model error x;ri‘l”'h = M1, % U0 4+, where n; ~ N(0, Q;),
assumed to be uncorrelated to analysis error of previous forecast

State forecast xﬁ_l = Mi+1,iX§4
Error covariance forecast Biljrl = Mi+1,iB?M?+1,i + Qi
Kalman gain K; = BfHZT(HzBfH? +R;)!
State analysis x@ = xI +K;(y; — Hixl)
Error covariance of analysis Bf#f = (I - K;H;)BY

Data assimilation




iational Data Assimilation

The Kalman Filter Algorithm

Extended Kalman Filter

Extension of the Kalman Filter Algorithm to nonlinear observation operators H
and nonlinear model dynamics M, where both H and M are linearised.

Melina F' Data assimilation
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Extension of the Kalman Filter Algorithm to nonlinear observation operators H
and nonlinear model dynamics M, where both H and M are linearised.

Assume
Q; =0, Vi (no model error)
both 4D-Var and the Kalman filter use the same initial input data
H and M are linear,

then 4D-Var and the Kalman Filter produce the same state estimate x“ at the
end of the assimilation window.

Data assimilation
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RMS error over whole assimilation window - using Kalman Filter
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Variational Data Assimilation

Example - Three-Body Problem

» solver: partitioned Runge-Kutta scheme with time step A = 0.001
> observations are taken as noise from the truth trajectory

» background is given from a perturbed initial condition

» assimilation window is taken 300 time steps

> minimisation of cost function J using a Gauss-Newton method (neglecting all
second derivatives)

» application of 4D-Var

Melina Freitag Data assimilation



Variational Data Assimilation

Example - Three-Body Problem

» solver: partitioned Runge-Kutta scheme with time step A = 0.001
> observations are taken as noise from the truth trajectory

» background is given from a perturbed initial condition

» assimilation window is taken 300 time steps

> minimisation of cost function J using a Gauss-Newton method (neglecting all
second derivatives)

» application of 4D-Var

» Compare using B = I with using a flow-dependent matrix B which was
generated by a Kalman Filter before the assimilation starts (see G. Inverarity
(2007))

Melina Freitag Data assimilation
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Figure: 4D-Var with B =1

Data assimilation



RMS error

ational Data Assimilat

o
S
8

0.04

s
| o
o
>3
H

0

25 26 27 28 29 3 2.4 25 26 27 28 29
Time step < 10° Time step 10"
. . . . A
Figure: 4D-Var with B =1 Figure: 4D-Var with B = P

Data assimilation



Outling

Outline

Tikhonov regularisation
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Tll-posed problems

Given an operator A we wish to solve
Ax=Db

it is well-posed if

> solution exits
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Given an operator A we wish to solve
Ax=Db
it is well-posed if
> solution exits

> solution is unique
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Tikhonov

Tll-posed problems

Given an operator A we wish to solve
Ax=Db

it is well-posed if
> solution exits
> solution is unique
> is stable (A~ continuous)

Equation is ill-posed if it is not well-posed.
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Link between 4D-Var and Tikhono

A :R" — R™, then Ax = b is well-posed if A~1 exists.
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Link between 4D-Var and Tikhonov re vtion

Work

A :R" — R™, then Ax = b is well-posed if A~1 exists.

Existence imposed by considering least squares solutions

Xr,5 = arg min||Ax — b||?
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Existence imposed by considering least squares solutions

Xr,5 = arg min||Ax — b||?
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xpMNLs = arg min||xps|? = A'b.
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Tikhonov ularisation
Link between 4D-Var and Tikhonov re vtion

Work

A :R" — R™, then Ax = b is well-posed if A~1 exists.

Existence imposed by considering least squares solutions

Xr,5 = arg min||Ax — b||?

Uniqueness imposed by taking minimum norm least squares solution

xpMNLs = arg min||xps|? = A'b.

In the finite dimensional case one can replace A~! by its pseudo-inverse AT, but
discrete problem of underlying ill-posed problem becomes ill-conditioned

singular values of A decay to zero

Data assimilation
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A way out of this - Tikhonov regularisation

Solution to the minimisation problem

Xo arg min {|[Ax — b||? + a|jx|*}
(ATA + o) *ATDb

where « is called the regularisation parameter.

Melina F' Data assimilation
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Assuming X, B are random variables then
7(x|b) = m(b[x)m(x)/m(b),

Maximum a posteriori estimater is maximum of a posteriori pdf, hence minimise
w.r.t. x

—log(m(x|b)) = — log(w(b|x)) — log(w(x))

Data assimilation




Assuming X, B are random variables then
7(x|b) = m(b[x)m(x)/m(b),

Maximum a posteriori estimater is maximum of a posteriori pdf, hence minimise
w.r.t. x

—log(m(x|b)) = — log(w(b|x)) — log(w(x))

If X and n = B — AX are normally distributed then

11

[Ax — b||?
20

m(x) = C1 exp(— =
n

) and 7(x|b) = C2 exp(— )

and Tikhonov cost functional is

J(x) = | Ax — b||* + of|x||*

Melina Freitag Data assimilation
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Tikhonov regularisation using Singular Value Decomposition

Using the SVD of A =
is given by

UXVT the regularised solution in Tikhonov regularisation

Xa = (ATA+al)"'ATDb

Melina F'
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Tikhonov re

Tikhonov regularisation using Singular Value Decomposition

Using the SVD of A
is given by

UXVT the regularised solution in Tikhonov regularisation

(ATA + D) 'ATDb
(vETUuTus VT + avvT)-lvsTuTh

Xa

Melina Freitag Data assimilation



Tikhonov re

Tikhonov regularisation using Singular Value Decomposition

Using the SVD of A = UXV7 the regularised solution in Tikhonov regularisation
is given by

(ATA + D) 'ATDb

(vsTuTusvT + avvT)~tvsTuTp

. s? 1 T
Vdiag [ — — ) U'b
sy Fasg

Xa
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Tikhonov re

Tikhonov regularisation using Singular Value Decomposition

Using the SVD of A = UXV7 the regularised solution in Tikhonov regularisation
is given by

(ATA + D) 'ATDb

(vsTuTusvT + avvT)~tvsTuTp

. s? 1 T
Vdiag [ — — ) U'b
sy Fasg

Xa

n 2
85 ’u,LTb
Xa = g -5, Vi
sy o s

i=1
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Work

Outline

Link between 4D-Var and Tikhonov regularisation
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Link between 4D-Var and Tikhono
v

J(x0) = (x0 — x§) "B (x0 —x§) + D> _(vi — Hi(x:))"R; (yi — Hi(x:))
1=0

subject to model dynamics

Melina Data assimilation
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Link between 4D-Var and Tikhon:

J(x0) = (xo —x¢) "B~ (x0 —x§) + > (vs — Hs(x:))"R; ' (vi — Hi(x:))
1=0

subject to model dynamics

J(x0) = (x0 — x§)TB (x0 — x§) + (¥ — H(x0)) TR~} (3 — H(x0))

where .
H = [Hy , (H1M(t1,t0))", ... (HaM(tn, o))"

Y= »yn
and R is block diagonal with R; on diagonal.

Melina Freitag Data assimilation
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Link between 4D-Var and Tikhono

Linearise about xo then the solution to the optimisation problem
J(x0) = (x0 — x§) "B~ (x0 — x¢) + (¥ — H(x0)) "R (¥ — H(x0))
is given by

xo=xF + (B~ + ATRIE)'ATR-'4, d=HxE —3)

Data assimilation



Outling

Linearise about xo then the solution to the optimisation problem
is given by

J(x0) = (x0 — xF) B (x0 — xF) + (¥ — H(x0)) "R~ (¥ — H(x0))

xo =xB + (B! + ATR-1A)'ATR4,

Assume B = UQBI and R = UQOI and define the SVD of the observability matrix H

H=UzVv7?
Then the optimal analysis can be written as

xozxg—&—z :

2 2
8% o
ﬁ vj, where p%= —20
; W +sj Sj oR

Data assimilation

u’d
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Link between 4D-Var and Tikhono
v

J(x0) = (x0 — x§) B~ (x0 — x§) + (¥ — H(x0)) "R~ (3 — H(x0))
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Link between 4D-Var and Tikhono

Work

J(x0) = (x0 — x§) B~ (x0 — x§) + (¥ — H(x0)) "R~ (3 — H(x0))

B = U%FB and R = G'QOFR and

Melina, Data assimilation
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Link between 4D-Var and Tikhono
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J(x0) = (x0 — x§) B~ (x0 — x§) + (¥ — H(x0)) "R~ (3 — H(x0))

B = 0%Fp and R = 04 Fp and define new variable z := F;l/Q(xo —x5)
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J(x0) = (x0 — x§) B~ (x0 — x§) + (¥ — H(x0)) "R~ (3 — H(x0))

B = 0%Fp and R = 04 Fp and define new variable z := F;l/Q(xo —x5)

J(@) = ||z

9 —1/2 4 —1/2.4 —1/2
3+ IFL?a - F,PHF L 53

u? can be interpreted as a regularisation parameter.

Data assimilation
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Link between 4D-Var and Tikhonov regular on

J(x0) = (x0 — x§) B~ (x0 — x§) + (¥ — H(x0)) "R~ (3 — H(x0))

B = 0%Fp and R = 04 Fp and define new variable z := F;l/Q(xo —x5)

J(@) = ||z

9 —1/2 4 —1/2.4 —1/2
3+ IFL?a - F,PHF L 53

u? can be interpreted as a regularisation parameter.
This is Tikhonov regularisation!

Data assimilation




Link between 4D-Var and Tikhonov

Example

Burger’s equation

n u 0%u
ut+u— =v——s
¢ Ox Ox?
Optimal solution (4D-Var)
2 T4

s7  usd o2

B J J 2 o

up =ugy + — vj, where p*= —-.

; w2+ s? S5 o



Link between 4D-Var and Tikhonov regularisation

Singular value analysis - observations everywhere

Optimal solution (4D-Var)

s? u}.Td 5 0
up =uy + E vj, where p°= .

p2+s2 s; o2

j J B

2 s ‘

1 I

,1 : L
- ("\ ‘H N“M;

| L

:ZQ 20 40 60 80 100 D“/\J V\N\/\AQ/OVV/\\/\/\AE;\/V(\J U‘GO‘ W JO ' 100
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Link between 4D-Var and Tikhonov

Singular value analysis - observations every 10 points

Optimal solution (4D-Var)

T4 2
s u:d o
ug = u(])B + E 3 j_ 5 ! vj, where u?= (2)
- s s o
G J B
x 107

fiter factor uT s,
8
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Work in progress

L1 regularisation (with N. Nichols, University of Reading)

In image processing, Li-norm regularisation provides edge preserving image
deblurring!

Image
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Figure: Blurred picture
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In image processing, Li-norm regularisation provides edge preserving image
deblurring!

Regularized solution

ol o o ]
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Tikhonov regularisation min {||Ax — b||? + aHxH2}
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In image processing, Li-norm regularisation provides edge preserving image

deblurring!
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Ll-norm regularisation min {||Ax — b|? + allx|l1}
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L1 regularisation

In image processing, Li-norm regularisation provides edge preserving image
deblurring!
» L1 regularisation might be also beneficial in Data Assimilation

» 4D Var smears out sharp fronts

Data assimilation
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L1 regularisation

In image processing, Li-norm regularisation provides edge preserving image
deblurring!

» L1 regularisation might be also beneficial in Data Assimilation

» 4D Var smears out sharp fronts

» L1 regularisation has the potential to overcome this problem

Melina F' Data assimilation
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Instead of the (linear) model
b=Ax+e

use
b=(A+E)x+e

where both e and E are unknown.

Data assimilation
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Instead of the (linear) model
b=Ax+e

use
b=(A+E)x+e

where both e and E are unknown. Instead of solving
min {HAx — b||2 + oszH2}

solve

min {||(A + E)x - b|* + |E|% + ax|*}

over all choices of e and E (regularised total least squares).
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Instead of the (linear) model
b=Ax+e

use
b=(A+E)x+e

where both e and E are unknown. Instead of solving
min {HAx — b||2 + oszH2}

solve

min {||(A + E)x - b|* + |E|% + ax|*}

over all choices of e and E (regularised total least squares).

Identify and analyse model error and analyse influence of this model error onto
the DA scheme

Melina Freitag Data assimilation
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