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Problem and Inverse Iteration

Find an eigenvalue and eigenvector of:

Ax = λMx, λ ∈ C, x ∈ C
n
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Problem and Inverse Iteration

Find an eigenvalue and eigenvector of:

Ax = λMx, λ ∈ C, x ∈ C
n

(λ1, x1) is a simple eigenpair with corresponding left eigenvector uH
1

uH
1 Mx1 6= 0

A and M are large, sparse, nonsymmetric, and M possibly singular
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Problem and Inverse Iteration

Find an eigenvalue and eigenvector of:

Ax = λMx, λ ∈ C, x ∈ C
n

(λ1, x1) is a simple eigenpair with corresponding left eigenvector uH
1

uH
1 Mx1 6= 0

A and M are large, sparse, nonsymmetric, and M possibly singular

Inverse iteration with preconditioned iterative solves
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Inverse Iteration

Choose x(0)

for i = 1, . . . do

Choose σ(i) and τ (i)

Solve
‖(A − σ(i)M)y(i) − Mx(i)‖ ≤ τ (i),

Update x(i+1) = y(i)/φ(y(i)),
Set λ(i+1) = ρ(x(i+1))
Evaluate r(i+1) = (A − λ(i+1)M)x(i+1),
Test for convergence.

end for
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Schur decomposition and block factorisation I

Theorem (Generalised Schur Decomposition)

There exist unitary matrices Q and Z such that QHAZ = T and

QHMZ = S are upper triangular. If for some j, tjj and sjj are both zero,

then λ(A,M) = C. If sjj 6= 0 then λ(A, M) = {tjj/sjj}, otherwise, the jth
eigenvalue is infinite.
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Schur decomposition and block factorisation I

Theorem (Generalised Schur Decomposition)

There exist unitary matrices Q and Z such that QHAZ = T and

QHMZ = S are upper triangular. If for some j, tjj and sjj are both zero,

then λ(A,M) = C. If sjj 6= 0 then λ(A, M) = {tjj/sjj}, otherwise, the jth
eigenvalue is infinite.

Partitioning the eigenproblem

QHAZ =

»
t11 tH

12

0 T22

–

and QHMZ =

»
s11 sH

12

0 S22

–

,

if λ1, the desired eigenvalue, is finite, then s11 6= 0 and λ1 = t11/s11.

Melina Freitag University of Bath

Inexact inverse iteration for the generalised nonsymmetric eigenproblem



Outline Introduction Convergence Theory The Inner Iteration Comparison to Jacobi-Davidson

Schur decomposition and block factorisation II

A linear transformation

If λ1 =
t11
s11

6∈ λ(T22, S22) then

G =

»
1 gH

12

0 In−1

–

and H =

»
1 hH

12

0 In−1

–

G−1TH = diag(t11, T22) and G−1SH = diag(s11, S22).
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Schur decomposition and block factorisation II

A linear transformation

If λ1 =
t11
s11

6∈ λ(T22, S22) then

G =

»
1 gH

12

0 In−1

–

and H =

»
1 hH

12

0 In−1

–

G−1TH = diag(t11, T22) and G−1SH = diag(s11, S22).

Lemma

Define U = QG and X = ZH. Then both U and X are nonsingular and we

can block-factorise A − λM as

U−1(A − λM)X =

»
t11 0H

0 T22

–

− λ

»
s11 0H

0 S22

–

.
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A new convergence measure

Splitting

x(i) = α(i)(x1q
(i) + X2p

(i)),

where α(i) := ‖U−1Mx(i)‖.
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A new convergence measure

Splitting

x(i) = α(i)(x1q
(i) + X2p

(i)),

where α(i) := ‖U−1Mx(i)‖.

A generalised tangent

1 =
‖U−1Mx(i)‖

α(i)
= ‖s11q

(i)e1 + Īn−1S22p
(i)‖ = ((s11q

(i))2 + ‖S22p
(i)‖2)

1
2

Define

T (i) :=
‖S22p

(i)‖

|s11q(i)|
.
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Convergence rate

Convergence rate

Theorem (One step bound)

With β ∈ (0, 1) and τ (i) ≤ β|α(i)s11q
(i)|/‖u1‖ small enough, we have

T (i+1) =
‖S22p

(i+1)‖

|s11q(i+1)|
≤

|λ1 − σ(i)|‖S22‖

‖(T22 − σ(i)S22)−1‖−1

“

‖α(i)S22p
(i)‖ + ‖d(i)‖

”

(1 − β)|α(i)s11q(i)|
.

‖(T22 − σ(i)S22)
−1‖−1 =: sep(σ(i), (T22, S22)).
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Convergence rate

Convergence rate

Theorem (One step bound)

With β ∈ (0, 1) and τ (i) ≤ β|α(i)s11q
(i)|/‖u1‖ small enough, we have

T (i+1) =
‖S22p

(i+1)‖

|s11q(i+1)|
≤

|λ1 − σ(i)|‖S22‖

‖(T22 − σ(i)S22)−1‖−1

“

‖α(i)S22p
(i)‖ + ‖d(i)‖

”

(1 − β)|α(i)s11q(i)|
.

‖(T22 − σ(i)S22)
−1‖−1 =: sep(σ(i), (T22, S22)).

Lemma (Convergence rate)

We have

Fixed shift: decreasing tolerance τ (i) = C1‖r
(i)‖ ⇒ linear convergence
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Convergence rate

Convergence rate

Theorem (One step bound)

With β ∈ (0, 1) and τ (i) ≤ β|α(i)s11q
(i)|/‖u1‖ small enough, we have

T (i+1) =
‖S22p

(i+1)‖

|s11q(i+1)|
≤

|λ1 − σ(i)|‖S22‖

‖(T22 − σ(i)S22)−1‖−1

“

‖α(i)S22p
(i)‖ + ‖d(i)‖

”

(1 − β)|α(i)s11q(i)|
.

‖(T22 − σ(i)S22)
−1‖−1 =: sep(σ(i), (T22, S22)).

Lemma (Convergence rate)

We have

Fixed shift: decreasing tolerance τ (i) = C1‖r
(i)‖ ⇒ linear convergence

Rayleigh quotient shift: decreasing tolerance τ (i) = C1‖r
(i)‖ ⇒

quadratic convergence
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Convergence rate

Nuclear Reactor problem

−div(K1∇u1) + (Σa,1 + Σs)u1 =
1

µ1
(Σf,1u1 + Σf,2u2)

−div(K2∇u2) + Σa,2u1 − Σsu2 = 0,

where u1 and u2 are defined on [0, 1] × [0, 1] density distributions of fast
and thermic neutrons respectively. K1 and K2 are diffusion coefficients and
Σa,1, Σa,2, Σs, Σf,1 and Σf,2 measure interaction probabilities taking
piecewise constant values; µ1 measures criticality of the reactor

Ax = λMx,

A, M nonsymmetric, M singular.
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Convergence rate

Convergence rates

Table: Convergence history fixed shift σ = 0.9 and variable shift

Decreasing tolerance τ (i) Fixed tolIerance τ (0)

Outer it Fixed shift σ = 0.9 Generalised RQ shift Generalised RQ shift

1 1.2982e+00 1.2982e+00 1.2982e+00
2 1.9999e-02 1.3774e-01 2.6776e-01
3 4.3867e-03 2.7952e-03 9.5850e-02
4 1.3979e-03 2.2022e-07 3.9744e-02
5 5.7163e-04 3.9086e-14 1.4304e-02
6 2.9952e-04 3.6824e-15 6.4409e-03
7 1.6427e-04 2.2448e-03
8 9.1590e-05 8.1950e-04
9 5.1170e-05 2.5762e-04
10 2.8924e-05 9.7647e-05
11 1.6374e-05 3.4961e-05
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Comparison to Jacobi-Davidson method

Jacobi-Davidson method

(1) Given an approximate eigenpair (x, θ), look for correction s such that

A(x + s) = λM(x + s).

Rewrite
(A − λM)s = (λ − θ)Mx − r,

Multiplying by I −
MxxHMH

xHMHMx
, using r ⊥ Mx and s ⊥ MHMx:

Correction equation

(I −
MxxHMH

xHMHMx
)(A − λM)(I −

xxHMHM

xHMHMx
)s = −r, where s ⊥ MHMx.

(2) The given subspace that contains x is then expanded by s.
(3) Simplified version: no subspace expansion but update as normalised
version of x + s
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Inexact inverse iteration for the generalised nonsymmetric eigenproblem



Outline Introduction Convergence Theory The Inner Iteration Comparison to Jacobi-Davidson

Comparison to Jacobi-Davidson method

Exact solves

Lemma (Equivalence to Inverse iteration)

Suppose the correction equation has unique solution ŝ. Then the simplified

Jacobi-Davidson solution xJD = x + ŝ satisfies

(A − σM)x̃ = Mx, where

x̃ =
1

γ
xJD with γ =

xHMHMx

xHMHM(A − σM)−1Mx
.
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Comparison to Jacobi-Davidson method

Inexact solves

Inexact Inverse Iteration

(A − σ(i)M)y(i) = Mx(i) − d
(i)
I , where ‖d

(i)
I ‖ ≤ τ

(i)
I ‖Mx(i)‖

with τ
(i)
I < 1
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Comparison to Jacobi-Davidson method

Inexact solves

Inexact Inverse Iteration

(A − σ(i)M)y(i) = Mx(i) − d
(i)
I , where ‖d

(i)
I ‖ ≤ τ

(i)
I ‖Mx(i)‖

with τ
(i)
I < 1

Inexact Jacobi-Davidson

 

I −
Mx(i)x(i)H

MH

‖Mx(i)‖2

!

(A−σ(i)M)

 

I −
x(i)x(i)H

MHM

‖Mx(i)‖2

!

s(i) = −r(i)+d
(i)
JD

s(i) ⊥ MHMx(i), where ‖d
(i)
JD‖ ≤ τ

(i)
JD‖r(i)‖, and τ

(i)
JD < 1.
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Comparison to Jacobi-Davidson method

Inexact solves

Lemma (Connection between IJD and III)

If τ
(i)
JD is chosen such that

τ
(i)
JD =

τ
(i)
I

1 + τ
(i)
I

‖Mx(i)‖

‖M(A − σ(i)M)−1‖‖r(i)‖
, then

‖d
(i)
JD‖

|γ(i)|
≤ τ

(i)
I ‖Mx(i)‖.

holds, and simplified inexact JD converges at least as fast as inexact II.
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Comparison to Jacobi-Davidson method

Inexact solves

Lemma (Connection between IJD and III)

If τ
(i)
JD is chosen such that

τ
(i)
JD =

τ
(i)
I

1 + τ
(i)
I

‖Mx(i)‖

‖M(A − σ(i)M)−1‖‖r(i)‖
, then

‖d
(i)
JD‖

|γ(i)|
≤ τ

(i)
I ‖Mx(i)‖.

holds, and simplified inexact JD converges at least as fast as inexact II.

For σ(i) := ρ(x(i)) we have

C
τ

(i)
I

1 + τ
(i)
I

≤ τ
(i)
JD ≤

τ
(i)
I

1 + τ
(i)
I

,

where C is independent of i.
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Convergence of GMRES

The inner system

GMRES convergence

(A − σ(i)M)y(i) = Mx(i), or Bz = b

GMRES convergence bound is given by

‖b − Bzk‖ ≤ min
pk−1∈Πk−1

‖pk(B)b‖.
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Convergence of GMRES

The inner system

GMRES convergence

(A − σ(i)M)y(i) = Mx(i), or Bz = b

GMRES convergence bound is given by

‖b − Bzk‖ ≤ min
pk−1∈Πk−1

‖pk(B)b‖.

A more detailed analysis

‖b − Bzk‖ ≤ c
‖C − µ1I‖

|µ1|
min

pk−1∈Πk−1

‖pk−1(C)‖‖Pb‖,

where C is a matrix that arises after block-diagonalisation of B

B =
ˆ

w1 W2

˜
»

µ1 0H

0 C

– »
vH
1

V H
2

–

,

and P = I − w1v
H
1 is an oblique projector that projects onto R(W2).
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Convergence of GMRES

Idea of the proof

Introduce special polynomial

p̂k(z) = pk−1(z)

„

1 −
z

µ1

«

‖b − Bzk‖ = min
pk∈Πk

‖pk(B)Pb + pk(B)(I − P)b‖

≤ min
p̂k∈Πk

‖p̂k(B)Pb + p̂k(B)(I − P)b‖

= min
pk−1∈Πk−1

‖pk−1(B)

„

I −
B

µ1

«

Pb + pk−1(B)

„

I −
B

µ1

«

(I − P)b‖.
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Convergence of GMRES

Idea of the proof

Introduce special polynomial

p̂k(z) = pk−1(z)

„

1 −
z

µ1

«

‖b − Bzk‖ = min
pk∈Πk

‖pk(B)Pb + pk(B)(I − P)b‖

≤ min
p̂k∈Πk

‖p̂k(B)Pb + p̂k(B)(I − P)b‖

= min
pk−1∈Πk−1

‖pk−1(B)

„

I −
B

µ1

«

Pb‖

≤ c min
pk−1∈Πk−1

‖pk−1(C)‖
‖µ1I − C‖

|µ1|
‖Pb.‖.
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Convergence of GMRES

Bounding min
pk−1∈Πk−1

‖pk−1(C)‖

Definition (ε-pseudospectrum Λε(C) of a matrix C)

Λε(C) := {z ∈ C : ‖(zI − C)−1‖2 ≥ ε−1}.

Theorem (Convergence of GMRES)

E: convex closed bounded set in the complex plane with 0 /∈ E and

Λε(C) ⊂ E. Ψ: conformal mapping that carries the exterior of E onto the

exterior of the unit circle {|w| > 1} and that takes ∞ to ∞. Then

min
pk−1∈Πk−1

‖pk−1(C)‖ ≤ S

„
1

|Ψ(0)|

«k−1

, where S =
3L(Γε)

2πε

and |Ψ(0)| > 1 and hence

‖b − Bzk‖ ≤ c

„
1

|Ψ(0)|

«k−1
‖µ1I − C‖

|µ1|
‖Pb‖.
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Convergence of GMRES

The number of inner iterations

Theorem (Number of inner iterations)

Let zk be the approximate solution of Bz = b obtained after k iterations of

GMRES with starting value z0 = 0. If the number of inner iterations

satisfies

k ≥ 1 +
1

log |Ψ(0)|
c

„

log
S‖µ1I − C‖

|µ1|
+ log

‖Pb‖

τ

«

,

then ‖b − Bzk‖ ≤ τ .
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Convergence of GMRES

The number of inner iterations

Theorem (Number of inner iterations)

Let zk be the approximate solution of Bz = b obtained after k iterations of

GMRES with starting value z0 = 0. If the number of inner iterations

satisfies

k(i) ≥ 1 +
1

log |Ψ(0)|

„

c + log
‖Pb(i)‖

τ (i)

«

,

then ‖b(i) − Bz
(i)
k ‖ ≤ τ (i).
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Convergence of GMRES

The number of inner iterations

Theorem (Number of inner iterations)

Let zk be the approximate solution of Bz = b obtained after k iterations of

GMRES with starting value z0 = 0. If the number of inner iterations

satisfies

k(i) ≥ 1 +
1

log |Ψ(0)|

„

c + log
‖Pb(i)‖

τ (i)

«

,

then ‖b(i) − Bz
(i)
k ‖ ≤ τ (i).

If ‖Pb(i)‖ is of the same order as τ (i) the iteration numbers bounded
independent of i.
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Analysis of right-hand side

The right hand side is crucial in inner eigenvalue solvers

The standard eigenproblem

(A − σ(i)I)y(i) = x(i)

Melina Freitag University of Bath

Inexact inverse iteration for the generalised nonsymmetric eigenproblem



Outline Introduction Convergence Theory The Inner Iteration Comparison to Jacobi-Davidson

Analysis of right-hand side

The right hand side is crucial in inner eigenvalue solvers

The generalised eigenproblem

(A − σ(i)M)y(i) = Mx(i) trouble
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Analysis of right-hand side

The right hand side is crucial in inner eigenvalue solvers

The preconditioned generalised eigenproblem

(A − σ(i)M)P−1ỹ(i) = Mx(i), P−1ỹ(i) = y(i) trouble.
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Analysis of right-hand side

Tuning strategies II

Tuning for the generalised eigenproblem

The generalised eigenproblem (A − σ(i)M)y(i) = Mx(i):

(A − σ(i)M)T−1
i ỹ(i) = Mx(i)

T
−1
i ỹ(i) = y(i).

where Tix
(i) = Mx(i).
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Analysis of right-hand side

Tuning strategies II

Tuning for the generalised eigenproblem

The generalised eigenproblem (A − σ(i)M)y(i) = Mx(i):

(A − σ(i)M)T−1
i ỹ(i) = Mx(i)

T
−1
i ỹ(i) = y(i).

where Tix
(i) = Mx(i).

Tuning preconditioner the generalised eigenproblem

The generalised eigenproblem
(A − σ(i)M)P−1ỹ(i) = Mx(i), P−1ỹ(i) = y(i):

(A − σ(i)M)P−1
i ỹ(i) = Mx(i)

P
−1
i ỹ(i) = y(i).

where Pix
(i) = Ax(i).
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Analysis of right-hand side

Implementation

Lemma

Let x
(i) be the approximate eigenvector u(i) = Ax(i) − Px(i), where P is a

standard preconditioner for A. Then

Pi = P + u(i)x(i)x(i)H

assures Pix
(i) = Ax(i).

Melina Freitag University of Bath
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Analysis of right-hand side

Implementation

Lemma

Let x
(i) be the approximate eigenvector u(i) = Ax(i) − Px(i), where P is a

standard preconditioner for A. Then

Pi = P + u(i)x(i)x(i)H

assures Pix
(i) = Ax(i).

Advantages

convergence rate of exact solve is retained

cheap inner solves

only one extra back solve for each inner iteration

Melina Freitag University of Bath
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Examples

Problem formulation

Consider
Ax = λx,

where A is the finite difference discretisation on 32 × 32 grid of the
eigenvalue problem of the convection-diffusion operator

− ∆u + 5ux + 5uy = λu on (0, 1)2, (1)

with homogeneous Dirichlet boundary conditions.
Consider the generalised eigenvalue problem

Ax = λMx,

derived by discretising (1) using a Galerkin-FEM on regular triangular
elements with piecewise linear functions. We use a 32 × 32
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Examples

Results (no preconditioner)
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Figure: Inner iterations vs outer
iterations for standard/generalised
eigenproblem with/without tuning
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number of inner iterations
with/without tuning
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Examples

Results
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Figure: Inner iterations vs outer
iterations for standard/generalised
eigenproblem with/without tuning
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Examples

More results (preconditioner)
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Figure: Inner iterations vs outer
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preconditioning
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number of inner iterations with
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Examples

More results
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Figure: Comparison of total number of inner iterations and CPU times for
different drop tolerances of the preconditioner

Melina Freitag University of Bath

Inexact inverse iteration for the generalised nonsymmetric eigenproblem



Outline Introduction Convergence Theory The Inner Iteration Comparison to Jacobi-Davidson

Examples

More examples

Matrix name/s size n Description
1 stiff.mtx/mass.mtx 961 Convection-Diffusion operator
2 dwa512.mtx/dwb512.mtx 512 Square Dielectric Waveguide
3 bcsstk08.mtx/bcsstm08.mtx 1074 BCS Structural Engineering Matrix
4 rdb1250l.mtx 1250 Reaction-Diffusion Brusselator Model L = 1.0
5 cdde1.mtx 961 Model 2D Convection-Diffusion operator

p1 = 1, p2 = 2, p3 = 30
6 olm2000.mtx 2000 Olmstead Model

Table: Set of test matrices from the collection Matrix Market

Matrix name/s droptol shift σ eigenvalue τ (0) final r(i)

1 stiff.mtx/mass.mtx 1 85 91.6223 0.01 10e-11
2 dwa512.mtx/dwb512.mtx 0.001 0.001 1.3957e-3 0.001 10e-8
3 bcsstk08.mtx/bcsstm08.mtx 0.01 10 6.90070 0.01 10e-11
4 rdb1250l.mtx 0.1 -0.325 -3.20983e-1 0.1 10e-11
5 cdde1.mtx 0.1 0.001 -5.17244e-3 0.1 10e-15
6 olm2000.mtx 0.1 4.3 4.51010 0.1 10e-9

Table: Set of test matrices from the collection Matrix Market
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Examples

And even more results
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Figure: Total number of inner iterations for left preconditioning with and without
tuning (left plot) and for right preconditioning with and without tuning (right
plot).
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Examples

And even more results

0 20 40 60 80 100 120 140 160
1

2

3

4

5

6

CPU time

left preconditioning

0 20 40 60 80 100 120 140 160 180 200
1

2

3

4

5

6

CPU time

right preconditioning

Figure: Total CPU times for left preconditioning with and without tuning (left
plot) and for right preconditioning with and without tuning (right plot).
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Symmetric case

Symmetric JD A = AT

Consider Jacobi-Davidson correction equation

(I − xxH)
| {z }

π

(A − ρ(x)I)(I − xxH)s = −r, where s ⊥ x.

Inverse iteration inner solve

(A − ρ(x)I)y = x

then

span(x,Ax, A2x, . . . , Akx) = span(x, r, (πAπ)r, (πAπ)2r, . . . , (πAπ)k−1r)
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Symmetric case - right tuning with Px = x

Symmetric JD A = AT

Consider Jacobi-Davidson correction equation

(I − xxH)(A − ρ(x)I)(I − xxH)P†s̃ = −r, where s ⊥ x.

Inverse iteration inner solve

(A − ρ(x)I)P−1ỹ = x

then
span(x,AP

−1x, (AP
−1)2x, . . . , (AP

−1)kx)

equals

span(x, r, (πAπP
−1)r, (πAπP

−1)2r, . . . , (πAπP
−1)k−1r)
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Symmetric case - right tuning with Px = x

Symmetric JD A = AT

Consider Jacobi-Davidson correction equation

(I − xxH)(A − ρ(x)I)(I − xxH)P†s̃ = −r, where s ⊥ x.

Inverse iteration inner solve

(A − ρ(x)I)P−1ỹ = x

then
span(x,AP

−1x, (AP
−1)2x, . . . , (AP

−1)kx)

equals

span(x, r, (πAπP
−1)r, (πAπP

−1)2r, . . . , (πAπP
−1)k−1r)

Generalised eigenproblem

This result also holds for the generalised eigenproblem Ax = λMx.

Melina Freitag University of Bath

Inexact inverse iteration for the generalised nonsymmetric eigenproblem



Outline Introduction Convergence Theory The Inner Iteration Comparison to Jacobi-Davidson

Symmetric case - right tuning with Px = x

Symmetric JD A = AT

Consider Jacobi-Davidson correction equation

(I − xxH)(A − ρ(x)I)(I − xxH)P†s̃ = −r, where s ⊥ x.

Inverse iteration inner solve

(A − ρ(x)I)P−1ỹ = x

then the approximate solutions sk and yk obtained by applying a
Galerkin-Krylov method are such that

yk = γ(x + sk).
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Symmetric case - right tuning with Px = x

Symmetric JD A = AT

Consider Jacobi-Davidson correction equation

(I − xxH)(A − ρ(x)I)(I − xxH)P†s̃ = −r, where s ⊥ x.

Inverse iteration inner solve

(A − ρ(x)I)P−1ỹ = x

then the approximate solutions sk and yk obtained by applying a
Galerkin-Krylov method are such that

yk = γ(x + sk).

Generalised eigenproblem

Some weaker result holds for the generalised eigenproblem Ax = λMx.
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