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Problem and Inverse Iteration

¢ Find an eigenvalue and eigenvector of:

Ax =AMz, AeC,zeC"
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Problem and Inverse Iteration

¢ Find an eigenvalue and eigenvector of:
Ax =AMz, AeC,zeC"
@ (A1, x1) is a simple eigenpair with corresponding left eigenvector ull

w' Mz #£0

o A and M are large, sparse, nonsymmetric, and M possibly singular
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Introduction

Problem and Inverse Iteration

¢ Find an eigenvalue and eigenvector of:

Az =AMz, AeC,zeC"
@ (A1, x1) is a simple eigenpair with corresponding left eigenvector ull
w' Mz #£0
o A and M are large, sparse, nonsymmetric, and M possibly singular

@ Inverse iteration with preconditioned iterative solves
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Introduction

Inverse Iteration

Choose (9
fori=1,... do
Choose o and 7®
Solve
(A — U(i)M)y(i) _ Mx(i)” < 7.(i)7

Update 2T = y® /g (y),
Set AU+D) e p(x(“'l) ‘ .
Evaluate 7t = (4 — AC+D p1) (4D
Test for convergence.

end for
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Convergence Theory

Schur decomposition and block factorisation I

Theorem (Generalised Schur Decomposition)

There exist unitary matrices Q and Z such that QT AZ =T and

QTMZ = S are upper triangular. If for some j, t;; and sj; are both zero,
then A(A, M) = C. If sj; # 0 then A\(A, M) = {t;;/s;;}, otherwise, the jth
eigenvalue is infinite.
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srgence Theory

Schur decomposition and block factorisation I

Theorem (Generalised Schur Decomposition)

There exist unitary matrices Q and Z such that QT AZ =T and

QTMZ = S are upper triangular. If for some j, t;; and sj; are both zero,
then A(A, M) = C. If sj; # 0 then A\(A, M) = {t;;/s;;}, otherwise, the jth
eigenvalue is infinite.

Partitioning the eigenproblem

QHAZ= tin tih and QHMZ= 511 Sth
0 T 0 S |’

if A1, the desired eigenvalue, is finite, then s11 # 0 and A\ = t11/s11.
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Convergence Theory

Schur decomposition and block factorisation II

A linear transformation

If M = zi & N(T22, S22) then
11

B I _[1 h
G—[ j and H = 0 I,

G 'TH = diag(t11,T22) and G lsH = diag(s11, S22)-
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Schur decomposition and block factorisation II

A linear transformation

If M = ii & )\(Tzz, 5'22) then
11

_[1 b _[1 n
G_[O j and H = 0 I,

G 'TH = diag(t11,T22) and G lsH = diag(s11, S22)-

Lemma

Define U = QG and X = ZH. Then both U and X are nonsingular and we
can block-factorise A — AM as

1 [t of s 0F
& (A_)\M)X_[ 0 T22:|_)\|: 0 522:|.
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Convergence Theory

A new convergence measure

Splitting

2D = 0D (214 + Xap®),
where a¥ := U~ Mz®||.




rergence Theory

A new convergence measure

Splitting
2D = 0D (214 + Xap®),
where o := U~ Mz®||.

A generalised tangent

_ o=t

1 a®)

Define i
_ 11522

TP . — .
ls11¢(]

. _ q . g 1
= [Is11¢%e1 + Tn—1822p?|| = ((511¢™)* + || S22p”||*) 2

\J/p, UNIVERSITY OF

University of Bath

on for the generalised no



Convergence Theory
@00

Convergence rate

Convergence rate

Theorem (One step bound)
With 8 € (0,1) and 79 < Bla'Vs11¢D|/||u1|| small enough, we have

: ) (4) (%) (2)
o _ 1S oSl (le?Sunl+ 141)
5127 D] = (T2 — 00522) L[ (1= B)la@s11q7]

1(T22 = 019 822) 71| 7H =t sep(0®, (T2, S22)).
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Convergence rate

Convergence rate
Theorem (One step bound)
With 8 € (0,1) and 79 < Bla'Vs11¢D|/||u1|| small enough, we have

: ) (4) (%) (2)
oy _ ISmp® 0 = oO)si) (I09 Szl + 1))
= Tsud@ ] = (T — 0082) 2T (1= Pla@sig0]

1(T22 = 019 822) 71| 7H =t sep(0®, (T2, S22)).

Lemma (Convergence rate)
We have

o Fized shift: decreasing tolerance TV = Ci||rD|| = linear convergence
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Convergence rate

Convergence rate
Theorem (One step bound)
With 8 € (0,1) and 79 < Bla'Vs11¢D|/||u1|| small enough, we have

: ) (4) (%) (2)
oy _ ISmp® 0 = oO)si) (I09 Szl + 1))
5127 D] = (T2 — 00522) L[ (1= B)la@s11q7]

1(T22 = 019 822) 71| 7H =t sep(0®, (T2, S22)).

Lemma (Convergence rate)
We have
o Fized shift: decreasing tolerance TV = Ci||rD|| = linear convergence

o Rayleigh quotient shift: decreasing tolerance 7 = C1||r®¥|| =
quadratic convergence

VERSITY OF
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Convergence rate

Nuclear Reactor problem

—div(K1Vui) 4+ (Xa,1 4+ Zs)ur (Zpau1 + Dy ouz)

i
1
—diV(KzVUz) + Yo ur — Xsuz = 0,

where u; and ug are defined on [0,1] x [0, 1] density distributions of fast
and thermic neutrons respectively. K; and K are diffusion coefficients and
a1, 2a,2, 5s, 2,1 and Xy o measure interaction probabilities taking
piecewise constant values; 1 measures criticality of the reactor

Ax =AMz,

A, M nonsymmetric, M singular.
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Convergence rate

Convergence rates

Table: Convergence history fized shift o = 0.9 and variable shift

Decreasing tolerance (%) Fized tollerance (0

Outer it | Fized shift c = 0.9 | Generalised RQ shift | Generalised RQ) shift
1 1.2982e+00 1.2982e+-00 1.2982e+00
2 1.9999e-02 1.3774e-01 2.6776e-01
3 4.3867¢-03 2.7952e-03 9.5850e-02
4 1.3979e-03 2.2022e-07 3.9744e-02
5 5.7163e-04 3.9086¢-14 1.4304e-02
6 2.9952e-04 3.6824e-15 6.4409¢-03
7 1.6427e-04 2.2448e-03
8 9.1590e-05 8.1950e-04
9 5.1170e-05 2.5762e-04
10 2.8924e-05 9.7647e-05
11 1.6374e-05 3.4961e-05
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Comparison to Jacobi-Davidson method

Jacobi-Davidson method

(1) Given an approximate eigenpair (z,8), look for correction s such that
Az + s) = AM(z + s5).

Rewrite
(A= XM)s=AN—60)Mz —r,
Mza® MP

m, uSinng_ Mz and SJ_MHM.’BZ

Multiplying by I —
Correction equation

Mzz® M zx® MHE M

—tans ) (A= AT — —5—m—)s = -1, wh 1 M7 Ma.
xHMHMx)( AM)( xHMHMx)S r, where s T

(-
(2) The given subspace that contains z is then expanded by s.

(3) Simplified version: no subspace expansion but update as normalised
version of x + s P

University of Bath




Convergence Theory

0@00

Comparison to Jacobi-Davidson method

Exact solves

Lemma (Equivalence to Inverse iteration)

Suppose the correction equation has unique solution §. Then the simplified
Jacobi-Davidson solution xjp = = + § satisfies

(A—oM)z = Mz, where

T M* Mz
sHMHEM(A —oM)1Mz"

1
T=—xyp with ~v=
Y

A UNIVERSITY OF
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Comparison to Jacobi-Davidson method

Inexact solves

Inexact Inverse Iteration
(A= oWMpy® = MaW —d?, where |di| <717 M2|

with T}i) <1
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Convergence Theory

[e]e] le)

Comparison to Jacobi-Davidson method

Inexact solves

Inexact Inverse Iteration
(A= oMy = Mz® — ", where |[d}| < ;"M

with T}i) <1

Inexact Jacobi-Davidson

Mz ® ™ prH (@) sV MEMY o _ o,

sO L MIMz®, where |dYL) < 72r@ ), and 7% < 1.

University of Bath
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Comparison to Jacobi-Davidson method

Inexact solves

Lemma (Connection between IJD and IIT)
If ’7'5% is chosen such that

O | Mz

Ty = - : — . then
TP 7 IM(A — c@OM) 1| @]

49 ) )
[ Jp“ < TI(1)||M$(1)||.
Y@
holds, and simplified inexact JD converges at least as fast as inexact II.
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[e]o]e] )

Comparison to Jacobi-Davidson method

Inexact solves

Lemma (Connection between IJD and IIT)
If T}% is chosen such that

O | Mz

Ty = - : — . then
TP 7 IM(A — c@OM) 1| @]

49 ) )
[ Jp|| < TI(Z)”Mm(Z)“-
Y@
holds, and simplified inexact JD converges at least as fast as inexact II.

For 0 := p(z?) we have

VERSITY OF

Melina Freitag University of Bath

Inexac



Outline

© The Inner Tteration
@ Convergence of GMRES
@ Analysis of right-hand side
@ Examples

The Inner Iteration



The Inner Iteration
®00000

Convergence of GMRES

The inner system
GMRES convergence
(A— M)y =Mz, or Bz=b
GMRES convergence bound is given by

b — Bz < min |lpx(B)D]|.
Pr—1€0E 1

UNIVERSITY OF
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®00000

Convergence of GMRES

The inner system
GMRES convergence
(A— M)y =Mz, or Bz=b
GMRES convergence bound is given by

[b— Bzl < min |lpx(B)]|.
Pr—1€0E 1

A more detailed analysis

C—ml ~
1€ —mll iy s P,

|lb — Bzl < ¢
|lL1| Pr—1€l,_1

where C' is a matrix that arises after block-diagonalisation of B

H H
oo [ ][]

VERSITY OF

and P = I — wiv{! is an oblique projector that projects onto R(Wa).
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Convergence of GMRES

Idea of the proof

Introduce special polynomial

Pr(z) = pe-1(2) (1 - i)

w1
|b— Bzl = min ||px(B)Pb+ pe(B)(I — P)b|
pr €Il
< min ||px(B)Pb+ pr(B)(I — P)b||
P €Il
= min || (B) (I— E) Pb+ (B) (I - E) (I - P
- Pr—1€ME 1 o=t M1 Pr=t M1 .

W/p, UNIVERSITY OF

University of Bath
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The Inner Iteration
00@000

Convergence of GMRES

Idea of the proof

Introduce special polynomial

B1(2) = P (2) (1 _ i)

7

b — Bz min ||px(B)Pb + pi(B)(I — P)b||

PR €l

< min ||px(B)Pb+ pr(B)(I — P)b||
Pr €l
B
= i — B I - Pb
Pk—Ilrggk—l Ipe—1(B) ( U1> |
. I1-C
< ¢ min ||Pk—1(C)||M||Pb-||'

Pr—1€Tk_1 [pon |

W/p, UNIVERSITY OF

University of Bath
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[e]e]e] lo]e}

Convergence of GMRES

Bounding min ||pr—1(C)]|

Pr—1€ll_1
Definition (e-pseudospectrum A.(C) of a matrix C)
Ac(C):={z€C:|(zI-C) 2> '}.

Theorem (Convergence of GMRES)

E: convex closed bounded set in the complex plane with 0 ¢ E and
A.(C) C E. ¥: conformal mapping that carries the exterior of E onto the
exterior of the unit circle {|{w| > 1} and that takes oo to co. Then

1\ 3L(T.)
i 1O <S8 | = h S =
pk,rlnelll'llkA ||pk 1( )|| S <|\IJ(0)|> , where D
and |¥(0)| > 1 and hence
1 LR e
Ib— Bzl < c <|\P(0)|> I 1|H1| I P

Melina Freitag University of Bath
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The Inner Iteration
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Convergence of GMRES

The number of inner iterations

Theorem (Number of inner iterations)

Let zi be the approrimate solution of Bz = b obtained after k iterations of
GMRES with starting value zo = 0. If the number of inner iterations
satisfies

1 Sl = C ||7>b||>
k>1+ c <10 + lo ,
log [Z(0)] “\ "%~ ] &7

then ||b — Bzg|| < 7.

UNIVERSITY OF
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The Inner Iteration
O0000e

Convergence of GMRES

The number of inner iterations

Theorem (Number of inner iterations)

Let zy, be the approzimate solution of Bz = b obtained after k iterations of
GMRES with starting value zo = 0. If the number of inner iterations

satisfies
i 1 |76
E9>14 —— log ———
> 1+ gy (o4 s ).

then |b® — B2 < 7@,

UNIVERSITY OF

Melina Freit University of Bath




The Inner Iter
O0000e

Convergence of GMRES

The number of inner iterations

Theorem (Number of inner iterations)

Let zy, be the approzimate solution of Bz = b obtained after k iterations of
GMRES with starting value zo = 0. If the number of inner iterations

satisfies
; 1 [P
B >4 —— log —
= g [w(0)] (”"g @)

then |6 — Bz{"|| < 7.

If |Pb™|| is of the same order as 7(*) the iteration numbers bounded
independent of 7.

UNIVERSITY OF

University of Bath




The Inner Iteration

[ Jele}

Analysis of right-hand side

The right hand side is crucial in inner eigenvalue solvers

@ The standard eigenproblem

(A= oD T)yD = 2O

UNIVERSITY OF
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The Inner Iteration

[ Jele}

Analysis of right-hand side

The right hand side is crucial in inner eigenvalue solvers

@ The generalised eigenproblem

(A= M)y = Mz trouble

UNIVERSITY OF

of Bath




The Inner Iteration

[ Jele}

Analysis of right-hand side

The right hand side is crucial in inner eigenvalue solvers

@ The preconditioned generalised eigenproblem

(A— U(i)M)P_lg}(i) =Mz, P75 =y@ trouble.

UNIVERSITY OF

of Bath
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The Inner Iteration

oeo

Analysis of right-hand side

Tuning strategies II

Tuning for the generalised eigenproblem
The generalised eigenproblem (A — o A7)y = M@
(A— o.(i)M)Ti—lg(i) = Mz® Ti—lg(i) — y(i).

where ']I‘ix(i) = Mz®,

UNIVERSITY OF

Melina Freitag of Bath
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The Inner Iteration

oeo

Analysis of right-hand side

Tuning strategies II

Tuning for the generalised eigenproblem

The generalised eigenproblem (A — o A7)y = M@
(A— O.(i)M)Ti—lg(i) = Mz® Ti—lg(i) — y(i).

where ']I‘ix(i) = Mz®,

Tuning preconditioner the generalised eigenproblem

The generalised eigenproblem A A
(A— U(l)M)P—lg(l) — M$(1)’ p—lg(l) — y(l):

(A— O‘(i)M)]P’i_lg(i) = Mz® ]pi—lg(i) _ y(i).

where P;z® = Az®.

\J/p, UNIVERSITY OF

University of Bath




The Inner Iteration

ooe

Analysis of right-hand side

Implementation

Lemma

Let x be the approzimate eigenvector u® = Az® — P2®  where P is a
standard preconditioner for A. Then

P, = P4 u@g®z®7

assures Pix(i) = Az®,

UNIVERSITY OF

Melina of Bath
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The Inner Iteration

ooe

Analysis of right-hand side

Implementation

Lemma

Let x be the approzimate eigenvector u® = Az® — P2®  where P is a
standard preconditioner for A. Then

P, = P4 u@g®z®7
assures Piw(i) = Az®,

Advantages

@ convergence rate of exact solve is retained
@ cheap inner solves

@ only one extra back solve for each inner iteration

A UNIVERSITY OF




The Inner Iteration

00000000

Examples

Problem formulation

Consider
Azx = Az,

where A is the finite difference discretisation on 32 x 32 grid of the
eigenvalue problem of the convection-diffusion operator

— Au+5uz 4+ 5uy = u on  (0,1)% (1)

with homogeneous Dirichlet boundary conditions.
Consider the generalised eigenvalue problem

Ax =AMz,

derived by discretising (1) using a Galerkin-FEM on regular triangular
elements with piecewise linear functions. We use a 32 x 32

UNIVERSITY OF

University of Bath
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O®000000

Examples

Results (no preconditioner)

- - I
o 10 =)
o
90 ) o
o -2 °
80| o = 0 N a
o o 5} o
B 70 . %104 o R
£ e . © £ )
: g o
g ot o’ 3w °
o K] [}
wf o © TS o
o °
30 o.
e 0 107 o
20| o
2 o
o 5 10 15 20 25 10 0 200 400 600 800 1000 1200 1400
outer iterations sum of inner iterations
Figure: Inner iterations vs outer Figure: Residual norms vs the total
iterations for standard/generalised number of inner iterations
eigenproblem with/without tuning with/without tuning
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Inner Iteration

[e]e] lele]elele)

Examples

Results

inner iterations.

1
AX =) x, 453 inner iterations o
0K Ax= A Mx, 1306 inner ierations =
goft| = AX =X Mx,right tuning, 425 inner iterations|
—#— AX =\ Mx, left tuning, 425 inner iterations
80 B B
70 e <
o o
E
2
3
g
3 ~a.
8 ~a
s
N
“a
N
o
200 400 00 1000 1200

10 15
outer iterations

Figure: Inner iterations vs outer
iterations for standard/generalised
eigenproblem with/without tuning

600 8
sum of inner iterations

Figure: Residual norms vs total
number of inner iterations
with/without tuning
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Inner Iteration

[e]e]e] le]elele)

Examples

More results (preconditioner)

© - left preconditioning,650 inner iterations
& right preconditioning, 569 inner iterations. o

sol| * wned left preconditioning, 199 inner terations
—#— tuned right preconditioning, 115 inner iterations| ©

inner iterations
o]

. & O left preconditioning
10 & right preconditioning
* - tuned left preconditioning

- —#— tuned right preconditioning|
107 o

*50

* 50

* o
* o

2 *
s *
B 49° *
ERY ¥
8 *
*
10° *
*
*
N R AR SE RS *
107 * o
* )
2 4 6 8 10 12 14 16 18 20 22 100 200 500 600
outer iterations

Figure: Inner iterations vs outer
iterations with standard and tuned
preconditioning

300 400
sum of inner iterations

Figure: Residual norms vs total
number of inner iterations with
standard and tuned preconditioning
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[e]e]e]e] Jelele)
Examples

More results

ST R e )

0 100 200 300 400 500 600 700 800 900 1000
number of iterations
right preconditioning

ST R e )
L

6
CPU time

Figure: Comparison of total number of inner iterations and CPU times for
different drop tolerances of the preconditioner
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Outline yduc enc : The Inner Iteration Compari

[e]e]e]e]e] lele)
Examples

More examples

Matrix name/s size n  Description
1  stiff.mtx/mass.mtx 961 Convection-Diffusion operator
2  dwab12.mtx/dwb512.mtx 512 Square Dielectric Waveguide
3 bcsstk08.mtx/bcsstm08.mtx 1074 BCS Structural Engineering Matrix
4 rdb12501.mtx 1250 Reaction-Diffusion Brusselator Model L = 1.0
5 cddel.mtx 961 Model 2D Convection-Diffusion operator

p1 =1, p2 =2, p3 =30
6  0lm2000.mtx 2000 Olmstead Model
Table: Set of test matrices from the collection Matrix Market

Matrix name/s droptol  shift ¢  eigenvalue 7 final
1 stiff.mtx/mass.mtx 1 85 91.6223 0.01 10e-11
2 dwab12.mtx/dwb512.mtx 0.001 0.001 1.3957e-3 0.001 10e-8
3 bcsstk08.mtx/besstm08.mtx  0.01 10 6.90070 0.01 10e-11
4 rdb12501.mtx 0.1 -0.325 -3.20983e-1 0.1 10e-11
5 cddel.mtx 0.1 0.001 -5.17244e-3 0.1 10e-15
6 01m2000.mtx 0.1 4.3 4.51010 0.1 10e-9

UNIVERSITY OF

Table: Set of test matrices from the collection Matrix Market
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The Inner Iteration

Examples

And even more results

left preconditioning
T T

E N W N OO

. . . .
500 1000 1500 2000 2500 3000 3500
number of iterations

right preconditioning
T T

o

F N W N O o

L L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000 4500

number of iterations

Figure: Total number of inner iterations for left preconditioning with and without
tuning (left plot) and for right preconditioning with and without tuning (righ
plot).
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The Inner Iteration

0000000 e
Examples

And even more results

left preconditioning
T T

[ T R )

. . . . .
80 100 120 140 160
CPU time

right preconditioning

T T T

o
N
o
a
S
-3
S

BN W Ao

. . . . . . I I |
0 20 40 60 80 100 120 140 160 180 200
CPU time

Figure: Total CPU times for left preconditioning with and without tuning (left
plot) and for right preconditioning with and without tuning (right plot). :

UNIVERSITY OF

of Bath




omparison to Jacobi-Dav

Outline
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Comparison to Jacobi-Davidson

Symmetric case

Symmetric JD A = AT

Consider Jacobi-Davidson correction equation

(I —zz™)(A = p(a))(I — zz™)s = —r, where s
———

Inverse iteration inner solve
(A-p@)Dy==
then

span(z, Az, A%z, ..., A*z) = span(z, r, (TAT)r, (T An)?r, . ..

Melina Freitag
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Comparison to Jacobi-Davidson

Symmetric case - right tuning with Pz = x

Symmetric JD A = AT
Consider Jacobi-Davidson correction equation
(I —zz™) (A= p(&)])(I — zz™)PT5 = —r, where s L z.
Inverse iteration inner solve
(A= p@) )P G = o
then
span(z, AP 'z, (AP ")’z, ..., (AP ") z)

equals

span(z, r, (TATP™ ), (wAxP~")?r, ..., (rAxP~ 1) 1)

UNIVERSITY OF

Melina Freit University of Bath
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Outline Introduction

Comparison to Jacobi-Davidson

Symmetric case - right tuning with Pz = x

Symmetric JD A = AT
Consider Jacobi-Davidson correction equation
(I —zz™) (A= p(&)])(I — zz™)PT5 = —r, where s L z.
Inverse iteration inner solve
(A= p@)IP =2

then
span(z, AP 'z, (AP ")’z, ..., (AP ") z)

equals

span(z, r, (TATP™ ), (wAxP~")?r, ..., (rAxP~ 1) 1)

Generalised eigenproblem .
This result also holds for the generalised eigenproblem Az = AMz. m

Melina Freita,
Ir

University of Bath




Comparison to Jacobi-Davidson

Symmetric case - right tuning with Pz = x

Symmetric JD A = AT

Consider Jacobi-Davidson correction equation
(I —zz™) (A = p(&)])(I — zz™)PT5 = —r, where s L z.
Inverse iteration inner solve
(A= p@) PG =2z

then the approximate solutions s and yi obtained by applying a
Galerkin-Krylov method are such that

yr = (T + s8).

UNIVERSITY OF

Melina Freit University of Bath
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Outline Introduction

Symmetric case - right tuning with Pz = x

Symmetric JD A = AT

Consider Jacobi-Davidson correction equation

(I —zz™) (A = p(&)])(I — zz™)PT5 = —r, where s L z.

Inverse iteration inner solve
(A= p@) )P G = o

then the approximate solutions si and y; obtained by applying a
Galerkin-Krylov method are such that

yr = (T + s8).

Generalised eigenproblem

Comparison to Jacobi-Davidson

Some weaker result holds for the generalised eigenproblem Az = AMz. vERSITY OF

Melina Freita,
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Comparison to Jacobi-Davidson
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