

# Inexact inverse iteration for the generalised nonsymmetric eigenproblem

Melina Freitag

Department of Mathematical Sciences  
University of Bath

Numerical Analysis Seminar, Bath  
23rd February 2007



## 1 Introduction

## 2 Convergence Theory

- Convergence rate
- Comparison to Jacobi-Davidson method

## 3 The Inner Iteration

- Convergence of GMRES
- Analysis of right-hand side
- Examples

## 4 Comparison to Jacobi-Davidson

# Outline

## 1 Introduction

## 2 Convergence Theory

- Convergence rate
- Comparison to Jacobi-Davidson method

## 3 The Inner Iteration

- Convergence of GMRES
- Analysis of right-hand side
- Examples

## 4 Comparison to Jacobi-Davidson

# Problem and Inverse Iteration

- Find an eigenvalue and eigenvector of:

$$Ax = \lambda Mx, \quad \lambda \in \mathbb{C}, x \in \mathbb{C}^n$$

# Problem and Inverse Iteration

- Find an eigenvalue and eigenvector of:

$$Ax = \lambda Mx, \quad \lambda \in \mathbb{C}, x \in \mathbb{C}^n$$

- $(\lambda_1, x_1)$  is a **simple eigenpair** with corresponding left eigenvector  $u_1^H$

$$u_1^H M x_1 \neq 0$$

- $A$  and  $M$  are large, sparse, **nonsymmetric**, and  $M$  possibly **singular**

# Problem and Inverse Iteration

- Find an eigenvalue and eigenvector of:

$$Ax = \lambda Mx, \quad \lambda \in \mathbb{C}, x \in \mathbb{C}^n$$

- $(\lambda_1, x_1)$  is a **simple eigenpair** with corresponding left eigenvector  $u_1^H$

$$u_1^H M x_1 \neq 0$$

- $A$  and  $M$  are large, sparse, **nonsymmetric**, and  $M$  possibly **singular**
- Inverse iteration with preconditioned iterative solves

# Inverse Iteration

Choose  $x^{(0)}$

**for**  $i = 1, \dots$  **do**

    Choose  $\sigma^{(i)}$  and  $\tau^{(i)}$

    Solve

$$\|(A - \sigma^{(i)} M)y^{(i)} - Mx^{(i)}\| \leq \tau^{(i)},$$

    Update  $x^{(i+1)} = y^{(i)} / \phi(y^{(i)})$ ,

    Set  $\lambda^{(i+1)} = \rho(x^{(i+1)})$

    Evaluate  $r^{(i+1)} = (A - \lambda^{(i+1)} M)x^{(i+1)}$ ,

    Test for convergence.

**end for**

# Outline

## 1 Introduction

## 2 Convergence Theory

- Convergence rate
- Comparison to Jacobi-Davidson method

## 3 The Inner Iteration

- Convergence of GMRES
- Analysis of right-hand side
- Examples

## 4 Comparison to Jacobi-Davidson

# Schur decomposition and block factorisation I

## Theorem (Generalised Schur Decomposition)

*There exist unitary matrices  $Q$  and  $Z$  such that  $Q^H AZ = T$  and  $Q^H M Z = S$  are upper triangular. If for some  $j$ ,  $t_{jj}$  and  $s_{jj}$  are both zero, then  $\lambda(A, M) = \mathbb{C}$ . If  $s_{jj} \neq 0$  then  $\lambda(A, M) = \{t_{jj}/s_{jj}\}$ , otherwise, the  $j$ th eigenvalue is infinite.*

# Schur decomposition and block factorisation I

## Theorem (Generalised Schur Decomposition)

There exist unitary matrices  $Q$  and  $Z$  such that  $Q^H AZ = T$  and  $Q^H MZ = S$  are upper triangular. If for some  $j$ ,  $t_{jj}$  and  $s_{jj}$  are both zero, then  $\lambda(A, M) = \mathbb{C}$ . If  $s_{jj} \neq 0$  then  $\lambda(A, M) = \{t_{jj}/s_{jj}\}$ , otherwise, the  $j$ th eigenvalue is infinite.

## Partitioning the eigenproblem

$$Q^H AZ = \begin{bmatrix} t_{11} & t_{12}^H \\ 0 & T_{22} \end{bmatrix} \quad \text{and} \quad Q^H MZ = \begin{bmatrix} s_{11} & s_{12}^H \\ 0 & S_{22} \end{bmatrix},$$

if  $\lambda_1$ , the desired eigenvalue, is finite, then  $s_{11} \neq 0$  and  $\lambda_1 = t_{11}/s_{11}$ .

# Schur decomposition and block factorisation II

## A linear transformation

If  $\lambda_1 = \frac{t_{11}}{s_{11}} \notin \lambda(T_{22}, S_{22})$  then

$$G = \begin{bmatrix} 1 & g_{12}^H \\ \mathbf{0} & I_{n-1} \end{bmatrix} \quad \text{and} \quad H = \begin{bmatrix} 1 & h_{12}^H \\ 0 & I_{n-1} \end{bmatrix}$$

$G^{-1}TH = \text{diag}(t_{11}, T_{22})$  and  $G^{-1}SH = \text{diag}(s_{11}, S_{22})$ .

## Schur decomposition and block factorisation II

### A linear transformation

If  $\lambda_1 = \frac{t_{11}}{s_{11}} \notin \lambda(T_{22}, S_{22})$  then

$$G = \begin{bmatrix} 1 & g_{12}^H \\ \mathbf{0} & I_{n-1} \end{bmatrix} \quad \text{and} \quad H = \begin{bmatrix} 1 & h_{12}^H \\ 0 & I_{n-1} \end{bmatrix}$$

$G^{-1}TH = \text{diag}(t_{11}, T_{22})$  and  $G^{-1}SH = \text{diag}(s_{11}, S_{22})$ .

### Lemma

Define  $U = QG$  and  $X = ZH$ . Then both  $U$  and  $X$  are nonsingular and we can block-factorise  $A - \lambda M$  as

$$U^{-1}(A - \lambda M)X = \begin{bmatrix} t_{11} & 0^H \\ 0 & T_{22} \end{bmatrix} - \lambda \begin{bmatrix} s_{11} & 0^H \\ 0 & S_{22} \end{bmatrix}.$$

# A new convergence measure

## Splitting

$$x^{(i)} = \alpha^{(i)} (\textcolor{blue}{x}_1 q^{(i)} + \textcolor{blue}{X}_2 p^{(i)}),$$

where  $\alpha^{(i)} := \|U^{-1} M x^{(i)}\|$ .

# A new convergence measure

## Splitting

$$x^{(i)} = \alpha^{(i)}(\mathbf{x}_1 q^{(i)} + \mathbf{X}_2 p^{(i)}),$$

where  $\alpha^{(i)} := \|U^{-1} M x^{(i)}\|$ .

## A generalised tangent

$$1 = \frac{\|U^{-1} M x^{(i)}\|}{\alpha^{(i)}} = \|s_{11} q^{(i)} e_1 + \bar{I}_{n-1} S_{22} p^{(i)}\| = ((s_{11} q^{(i)})^2 + \|S_{22} p^{(i)}\|^2)^{\frac{1}{2}}$$

Define

$$T^{(i)} := \frac{\|S_{22} p^{(i)}\|}{|s_{11} q^{(i)}|}.$$

## Convergence rate

## Convergence rate

## Theorem (One step bound)

With  $\beta \in (0, 1)$  and  $\tau^{(i)} \leq \beta |\alpha^{(i)} s_{11} q^{(i)}| / \|u_1\|$  small enough, we have

$$T^{(i+1)} = \frac{\|S_{22}p^{(i+1)}\|}{|s_{11}q^{(i+1)}|} \leq \frac{|\lambda_1 - \sigma^{(i)}| \|S_{22}\|}{\|(T_{22} - \sigma^{(i)}S_{22})^{-1}\|^{-1}} \frac{\left( \|\alpha^{(i)} S_{22}p^{(i)}\| + \|d^{(i)}\| \right)}{(1 - \beta)|\alpha^{(i)} s_{11}q^{(i)}|}.$$

$$\|(T_{22} - \sigma^{(i)}S_{22})^{-1}\|^{-1} =: \text{sep}(\sigma^{(i)}, (T_{22}, S_{22})).$$

## Convergence rate

## Convergence rate

## Theorem (One step bound)

With  $\beta \in (0, 1)$  and  $\tau^{(i)} \leq \beta |\alpha^{(i)} s_{11} q^{(i)}| / \|u_1\|$  small enough, we have

$$T^{(i+1)} = \frac{\|S_{22}p^{(i+1)}\|}{|s_{11}q^{(i+1)}|} \leq \frac{|\lambda_1 - \sigma^{(i)}| \|S_{22}\|}{\|(T_{22} - \sigma^{(i)}S_{22})^{-1}\|^{-1}} \frac{\left( \|\alpha^{(i)} S_{22}p^{(i)}\| + \|d^{(i)}\| \right)}{(1 - \beta)|\alpha^{(i)} s_{11} q^{(i)}|}.$$

$$\|(T_{22} - \sigma^{(i)}S_{22})^{-1}\|^{-1} =: \text{sep}(\sigma^{(i)}, (T_{22}, S_{22})).$$

## Lemma (Convergence rate)

We have

- Fixed shift: decreasing tolerance  $\tau^{(i)} = C_1 \|r^{(i)}\| \Rightarrow$  linear convergence

## Convergence rate

## Convergence rate

## Theorem (One step bound)

With  $\beta \in (0, 1)$  and  $\tau^{(i)} \leq \beta |\alpha^{(i)} s_{11} q^{(i)}| / \|u_1\|$  small enough, we have

$$T^{(i+1)} = \frac{\|S_{22}p^{(i+1)}\|}{|s_{11}q^{(i+1)}|} \leq \frac{|\lambda_1 - \sigma^{(i)}| \|S_{22}\|}{\|(T_{22} - \sigma^{(i)}S_{22})^{-1}\|^{-1}} \frac{\left( \|\alpha^{(i)} S_{22}p^{(i)}\| + \|d^{(i)}\| \right)}{(1 - \beta)|\alpha^{(i)} s_{11} q^{(i)}|}.$$

$$\|(T_{22} - \sigma^{(i)}S_{22})^{-1}\|^{-1} =: \text{sep}(\sigma^{(i)}, (T_{22}, S_{22})).$$

## Lemma (Convergence rate)

We have

- Fixed shift: decreasing tolerance  $\tau^{(i)} = C_1 \|r^{(i)}\| \Rightarrow$  linear convergence
- Rayleigh quotient shift: decreasing tolerance  $\tau^{(i)} = C_1 \|r^{(i)}\| \Rightarrow$  quadratic convergence

## Convergence rate

## Nuclear Reactor problem

$$\begin{aligned} -\operatorname{div}(K_1 \nabla u_1) + (\Sigma_{a,1} + \Sigma_s)u_1 &= \frac{1}{\mu_1}(\Sigma_{f,1}u_1 + \Sigma_{f,2}u_2) \\ -\operatorname{div}(K_2 \nabla u_2) + \Sigma_{a,2}u_1 - \Sigma_s u_2 &= 0, \end{aligned}$$

where  $u_1$  and  $u_2$  are defined on  $[0, 1] \times [0, 1]$  density distributions of fast and thermic neutrons respectively.  $K_1$  and  $K_2$  are diffusion coefficients and  $\Sigma_{a,1}, \Sigma_{a,2}, \Sigma_s, \Sigma_{f,1}$  and  $\Sigma_{f,2}$  measure interaction probabilities taking piecewise constant values;  $\mu_1$  measures criticality of the reactor

$$Ax = \lambda Mx,$$

$A, M$  nonsymmetric,  $M$  singular.

## Convergence rate

## Convergence rates

Table: Convergence history *fixed shift*  $\sigma = 0.9$  and *variable shift*

| Outer it | Decreasing tolerance $\tau^{(i)}$ |                      | Fixed tolerance $\tau^{(0)}$ |
|----------|-----------------------------------|----------------------|------------------------------|
|          | Fixed shift $\sigma = 0.9$        | Generalised RQ shift | Generalised RQ shift         |
| 1        | 1.2982e+00                        | 1.2982e+00           | 1.2982e+00                   |
| 2        | 1.9999e-02                        | 1.3774e-01           | 2.6776e-01                   |
| 3        | 4.3867e-03                        | 2.7952e-03           | 9.5850e-02                   |
| 4        | 1.3979e-03                        | 2.2022e-07           | 3.9744e-02                   |
| 5        | 5.7163e-04                        | 3.9086e-14           | 1.4304e-02                   |
| 6        | 2.9952e-04                        | 3.6824e-15           | 6.4409e-03                   |
| 7        | 1.6427e-04                        |                      | 2.2448e-03                   |
| 8        | 9.1590e-05                        |                      | 8.1950e-04                   |
| 9        | 5.1170e-05                        |                      | 2.5762e-04                   |
| 10       | 2.8924e-05                        |                      | 9.7647e-05                   |
| 11       | 1.6374e-05                        |                      | 3.4961e-05                   |

## Jacobi-Davidson method

(1) Given an approximate eigenpair  $(x, \theta)$ , look for correction  $s$  such that

$$A(x + s) = \lambda M(x + s).$$

Rewrite

$$(A - \lambda M)s = (\lambda - \theta)Mx - r,$$

Multiplying by  $I - \frac{Mxx^H M^H}{x^H M^H Mx}$ , using  $r \perp Mx$  and  $s \perp M^H Mx$ :

### Correction equation

$$(I - \frac{Mxx^H M^H}{x^H M^H Mx})(A - \lambda M)(I - \frac{xx^H M^H M}{x^H M^H Mx})s = -r, \quad \text{where } s \perp M^H Mx.$$

(2) The given subspace that contains  $x$  is then expanded by  $s$ .  
 (3) Simplified version: no subspace expansion but update as normalised version of  $x + s$

## Comparison to Jacobi-Davidson method

## Exact solves

## Lemma (Equivalence to Inverse iteration)

Suppose the correction equation has unique solution  $\hat{s}$ . Then the simplified Jacobi-Davidson solution  $x_{JD} = x + \hat{s}$  satisfies

$$(A - \sigma M)\tilde{x} = Mx, \quad \text{where}$$

$$\tilde{x} = \frac{1}{\gamma}x_{JD} \quad \text{with} \quad \gamma = \frac{x^H M^H M x}{x^H M^H M (A - \sigma M)^{-1} M x}.$$

## Inexact solves

### Inexact Inverse Iteration

$$(A - \sigma^{(i)} M)y^{(i)} = Mx^{(i)} - d_I^{(i)}, \quad \text{where} \quad \|d_I^{(i)}\| \leq \tau_I^{(i)} \|Mx^{(i)}\|$$

with  $\tau_I^{(i)} < 1$

## Comparison to Jacobi-Davidson method

## Inexact solves

## Inexact Inverse Iteration

$$(A - \sigma^{(i)} M) y^{(i)} = M x^{(i)} - d_I^{(i)}, \quad \text{where} \quad \|d_I^{(i)}\| \leq \tau_I^{(i)} \|M x^{(i)}\|$$

$$\text{with } \tau_I^{(i)} < 1$$

## Inexact Jacobi-Davidson

$$\left( I - \frac{M x^{(i)} x^{(i)H} M^H}{\|M x^{(i)}\|^2} \right) (A - \sigma^{(i)} M) \left( I - \frac{x^{(i)} x^{(i)H} M^H M}{\|M x^{(i)}\|^2} \right) s^{(i)} = -r^{(i)} + d_{JD}^{(i)}$$

$$s^{(i)} \perp M^H M x^{(i)}, \quad \text{where} \quad \|d_{JD}^{(i)}\| \leq \tau_{JD}^{(i)} \|r^{(i)}\|, \quad \text{and} \quad \tau_{JD}^{(i)} < 1.$$

## Comparison to Jacobi-Davidson method

## Inexact solves

## Lemma (Connection between IJD and III)

If  $\tau_{JD}^{(i)}$  is chosen such that

$$\tau_{JD}^{(i)} = \frac{\tau_I^{(i)}}{1 + \tau_I^{(i)}} \frac{\|Mx^{(i)}\|}{\|M(A - \sigma^{(i)}M)^{-1}\| \|r^{(i)}\|}, \quad \text{then}$$

$$\frac{\|d_{JD}^{(i)}\|}{|\gamma^{(i)}|} \leq \tau_I^{(i)} \|Mx^{(i)}\|.$$

holds, and simplified inexact JD converges at least as fast as inexact II.

## Comparison to Jacobi-Davidson method

## Inexact solves

## Lemma (Connection between IJD and III)

If  $\tau_{JD}^{(i)}$  is chosen such that

$$\tau_{JD}^{(i)} = \frac{\tau_I^{(i)}}{1 + \tau_I^{(i)}} \frac{\|Mx^{(i)}\|}{\|M(A - \sigma^{(i)}M)^{-1}\| \|r^{(i)}\|}, \quad \text{then}$$

$$\frac{\|d_{JD}^{(i)}\|}{|\gamma^{(i)}|} \leq \tau_I^{(i)} \|Mx^{(i)}\|.$$

holds, and simplified inexact JD converges at least as fast as inexact II.

For  $\sigma^{(i)} := \rho(x^{(i)})$  we have

$$C \frac{\tau_I^{(i)}}{1 + \tau_I^{(i)}} \leq \tau_{JD}^{(i)} \leq \frac{\tau_I^{(i)}}{1 + \tau_I^{(i)}},$$

where  $C$  is independent of  $i$ .

# Outline

## 1 Introduction

## 2 Convergence Theory

- Convergence rate
- Comparison to Jacobi-Davidson method

## 3 The Inner Iteration

- Convergence of GMRES
- Analysis of right-hand side
- Examples

## 4 Comparison to Jacobi-Davidson

## Convergence of GMRES

### The inner system

#### GMRES convergence

$$(A - \sigma^{(i)} M)y^{(i)} = Mx^{(i)}, \quad \text{or} \quad Bz = b$$

GMRES convergence bound is given by

$$\|b - Bz_k\| \leq \min_{p_{k-1} \in \Pi_{k-1}} \|p_k(B)b\|.$$

## Convergence of GMRES

## The inner system

## GMRES convergence

$$(A - \sigma^{(i)} M)y^{(i)} = Mx^{(i)}, \quad \text{or} \quad Bz = b$$

GMRES convergence bound is given by

$$\|b - Bz_k\| \leq \min_{p_{k-1} \in \Pi_{k-1}} \|p_k(B)b\|.$$

## A more detailed analysis

$$\|b - Bz_k\| \leq c \frac{\|C - \mu_1 I\|}{|\mu_1|} \min_{p_{k-1} \in \Pi_{k-1}} \|p_{k-1}(C)\| \|\mathcal{P}b\|,$$

where  $C$  is a matrix that arises after block-diagonalisation of  $B$

$$B = \begin{bmatrix} w_1 & W_2 \end{bmatrix} \begin{bmatrix} \mu_1 & 0^H \\ 0 & C \end{bmatrix} \begin{bmatrix} v_1^H \\ V_2^H \end{bmatrix},$$

and  $\mathcal{P} = I - w_1 v_1^H$  is an oblique projector that projects onto  $\mathcal{R}(W_2)$ .

## Convergence of GMRES

## Idea of the proof

Introduce special polynomial

$$\hat{p}_k(z) = p_{k-1}(z) \left(1 - \frac{z}{\mu_1}\right)$$

$$\begin{aligned} \|b - Bz_k\| &= \min_{p_k \in \Pi_k} \|p_k(B)\mathcal{P}b + p_k(B)(I - \mathcal{P})b\| \\ &\leq \min_{\hat{p}_k \in \Pi_k} \|\hat{p}_k(B)\mathcal{P}b + \hat{p}_k(B)(I - \mathcal{P})b\| \\ &= \min_{p_{k-1} \in \Pi_{k-1}} \|p_{k-1}(B) \left(I - \frac{B}{\mu_1}\right) \mathcal{P}b + \textcolor{red}{p_{k-1}(B)} \left(I - \frac{B}{\mu_1}\right) (I - \mathcal{P})b\|. \end{aligned}$$

## Convergence of GMRES

## Idea of the proof

Introduce special polynomial

$$\hat{p}_k(z) = p_{k-1}(z) \left( 1 - \frac{z}{\mu_1} \right)$$

$$\begin{aligned} \|b - Bz_k\| &= \min_{p_k \in \Pi_k} \|p_k(B)\mathcal{P}b + p_k(B)(I - \mathcal{P})b\| \\ &\leq \min_{\hat{p}_k \in \Pi_k} \|\hat{p}_k(B)\mathcal{P}b + \hat{p}_k(B)(I - \mathcal{P})b\| \\ &= \min_{p_{k-1} \in \Pi_{k-1}} \|p_{k-1}(B) \left( I - \frac{B}{\mu_1} \right) \mathcal{P}b\| \\ &\leq c \min_{p_{k-1} \in \Pi_{k-1}} \|p_{k-1}(C)\| \frac{\|\mu_1 I - C\|}{|\mu_1|} \|\mathcal{P}b\|. \end{aligned}$$

## Convergence of GMRES

Bounding  $\min_{p_{k-1} \in \Pi_{k-1}} \|p_{k-1}(C)\|$

Definition ( $\varepsilon$ -pseudospectrum  $\Lambda_\varepsilon(C)$  of a matrix  $C$ )

$$\Lambda_\varepsilon(C) := \{z \in \mathbb{C} : \|(zI - C)^{-1}\|_2 \geq \varepsilon^{-1}\}.$$

Theorem (Convergence of GMRES)

$E$ : convex closed bounded set in the complex plane with  $0 \notin E$  and  $\Lambda_\varepsilon(C) \subset E$ .  $\Psi$ : conformal mapping that carries the exterior of  $E$  onto the exterior of the unit circle  $\{|w| > 1\}$  and that takes  $\infty$  to  $\infty$ . Then

$$\min_{p_{k-1} \in \Pi_{k-1}} \|p_{k-1}(C)\| \leq S \left( \frac{1}{|\Psi(0)|} \right)^{k-1}, \quad \text{where} \quad S = \frac{3\mathcal{L}(\Gamma_\varepsilon)}{2\pi\varepsilon}$$

and  $|\Psi(0)| > 1$  and hence

$$\|b - Bz_k\| \leq c \left( \frac{1}{|\Psi(0)|} \right)^{k-1} \frac{\|\mu_1 I - C\|}{|\mu_1|} \|\mathcal{P}b\|.$$

## The number of inner iterations

## Theorem (Number of inner iterations)

Let  $z_k$  be the approximate solution of  $Bz = b$  obtained after  $k$  iterations of GMRES with starting value  $z_0 = 0$ . If the number of inner iterations satisfies

$$k \geq 1 + \frac{1}{\log |\Psi(0)|} c \left( \log \frac{S \|\mu_1 I - C\|}{|\mu_1|} + \log \frac{\|\mathcal{P}\mathbf{b}\|}{\tau} \right),$$

then  $\|b - Bz_k\| \leq \tau$ .

## Convergence of GMRES

## The number of inner iterations

## Theorem (Number of inner iterations)

Let  $z_k$  be the approximate solution of  $Bz = b$  obtained after  $k$  iterations of GMRES with starting value  $z_0 = 0$ . If the number of inner iterations satisfies

$$k^{(i)} \geq 1 + \frac{1}{\log |\Psi(0)|} \left( c + \log \frac{\|\mathcal{P}b^{(i)}\|}{\tau^{(i)}} \right),$$

then  $\|b^{(i)} - Bz_k^{(i)}\| \leq \tau^{(i)}$ .

## Convergence of GMRES

## The number of inner iterations

## Theorem (Number of inner iterations)

Let  $z_k$  be the approximate solution of  $Bz = b$  obtained after  $k$  iterations of GMRES with starting value  $z_0 = 0$ . If the number of inner iterations satisfies

$$k^{(i)} \geq 1 + \frac{1}{\log |\Psi(0)|} \left( c + \log \frac{\|\mathcal{P}b^{(i)}\|}{\tau^{(i)}} \right),$$

then  $\|b^{(i)} - Bz_k^{(i)}\| \leq \tau^{(i)}$ .

If  $\|\mathcal{P}b^{(i)}\|$  is of the same order as  $\tau^{(i)}$  the iteration numbers bounded independent of  $i$ .

## Analysis of right-hand side

The right hand side is crucial in inner eigenvalue solvers

- The standard eigenproblem

$$(A - \sigma^{(i)} I) y^{(i)} = x^{(i)}$$

## Analysis of right-hand side

The right hand side is crucial in inner eigenvalue solvers

- The generalised eigenproblem

$$(A - \sigma^{(i)} M) y^{(i)} = M x^{(i)} \quad \text{trouble}$$

## Analysis of right-hand side

The right hand side is crucial in inner eigenvalue solvers

- The preconditioned generalised eigenproblem

$$(A - \sigma^{(i)} M) P^{-1} \tilde{y}^{(i)} = M \mathbf{x}^{(i)}, \quad P^{-1} \tilde{y}^{(i)} = y^{(i)} \quad \text{trouble.}$$

## Tuning strategies II

## Tuning for the generalised eigenproblem

The generalised eigenproblem  $(A - \sigma^{(i)} M)y^{(i)} = Mx^{(i)}$ :

$$(A - \sigma^{(i)} M)\mathbb{T}_i^{-1}\tilde{y}^{(i)} = Mx^{(i)} \quad \mathbb{T}_i^{-1}\tilde{y}^{(i)} = y^{(i)}.$$

where  $\mathbb{T}_i x^{(i)} = Mx^{(i)}$ .

## Analysis of right-hand side

## Tuning strategies II

## Tuning for the generalised eigenproblem

The generalised eigenproblem  $(A - \sigma^{(i)} M)y^{(i)} = Mx^{(i)}$ :

$$(A - \sigma^{(i)} M)\mathbb{T}_i^{-1}\tilde{y}^{(i)} = Mx^{(i)} \quad \mathbb{T}_i^{-1}\tilde{y}^{(i)} = y^{(i)}.$$

where  $\mathbb{T}_i x^{(i)} = Mx^{(i)}$ .

## Tuning preconditioner the generalised eigenproblem

The generalised eigenproblem

$$(A - \sigma^{(i)} M)P^{-1}\tilde{y}^{(i)} = Mx^{(i)}, \quad P^{-1}\tilde{y}^{(i)} = y^{(i)};$$

$$(A - \sigma^{(i)} M)\mathbb{P}_i^{-1}\tilde{y}^{(i)} = Mx^{(i)} \quad \mathbb{P}_i^{-1}\tilde{y}^{(i)} = y^{(i)}.$$

where  $\mathbb{P}_i x^{(i)} = Ax^{(i)}$ .

## Implementation

### Lemma

Let  $\mathbf{x}^{(i)}$  be the approximate eigenvector  $u^{(i)} = Ax^{(i)} - Px^{(i)}$ , where  $P$  is a standard preconditioner for  $A$ . Then

$$\mathbb{P}_i = P + u^{(i)}x^{(i)}{x^{(i)}}^H$$

assures  $\mathbb{P}_i x^{(i)} = Ax^{(i)}$ .

## Implementation

### Lemma

Let  $\mathbf{x}^{(i)}$  be the approximate eigenvector  $u^{(i)} = Ax^{(i)} - Px^{(i)}$ , where  $P$  is a standard preconditioner for  $A$ . Then

$$\mathbb{P}_i = P + u^{(i)}x^{(i)}x^{(i)H}$$

assures  $\mathbb{P}_i x^{(i)} = Ax^{(i)}$ .

### Advantages

- convergence rate of exact solve is retained
- cheap inner solves
- only one extra back solve for each inner iteration

## Problem formulation

Consider

$$Ax = \lambda x,$$

where  $\mathbf{A}$  is the finite difference discretisation on  $32 \times 32$  grid of the eigenvalue problem of the convection-diffusion operator

$$-\Delta u + 5u_x + 5u_y = \lambda u \quad \text{on } (0, 1)^2, \quad (1)$$

with homogeneous Dirichlet boundary conditions.

Consider the generalised eigenvalue problem

$$Ax = \lambda Mx,$$

derived by discretising (1) using a Galerkin-FEM on regular triangular elements with piecewise linear functions. We use a  $32 \times 32$

## Examples

## Results (no preconditioner)

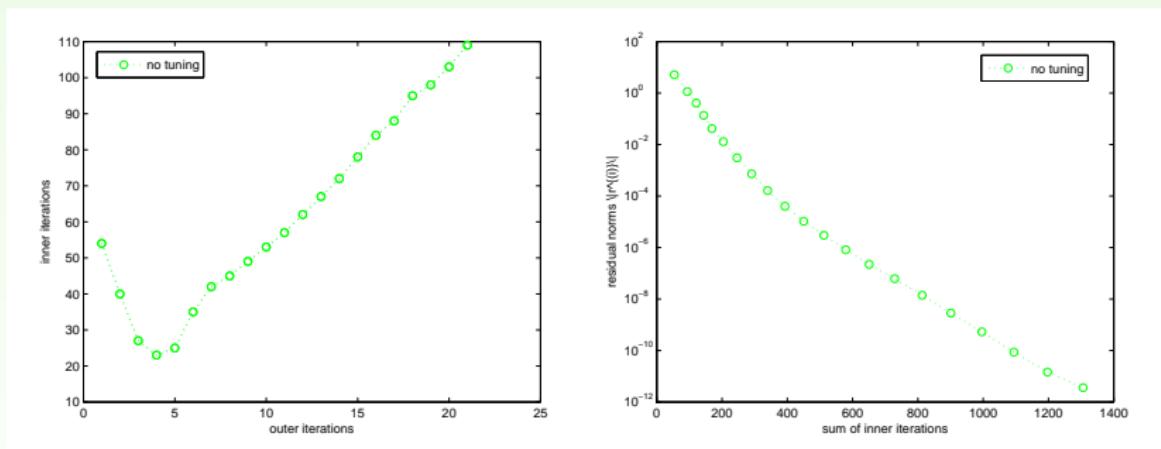


Figure: Inner iterations vs outer iterations for standard/generalised eigenproblem with/without tuning

Figure: Residual norms vs the total number of inner iterations with/without tuning

## Examples

## Results

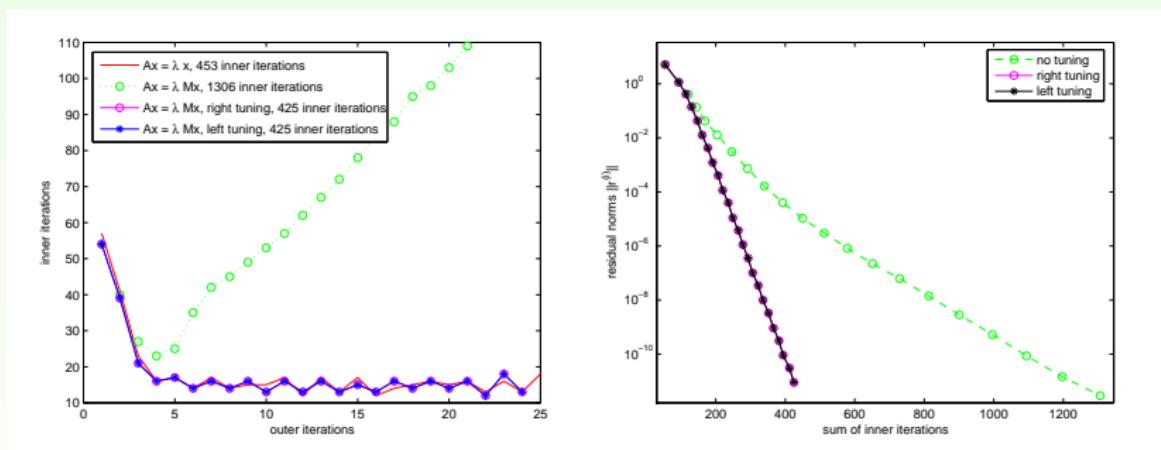


Figure: Inner iterations vs outer iterations for standard/generalised eigenproblem with/without tuning

Figure: Residual norms vs total number of inner iterations with/without tuning

## Examples

## More results (preconditioner)

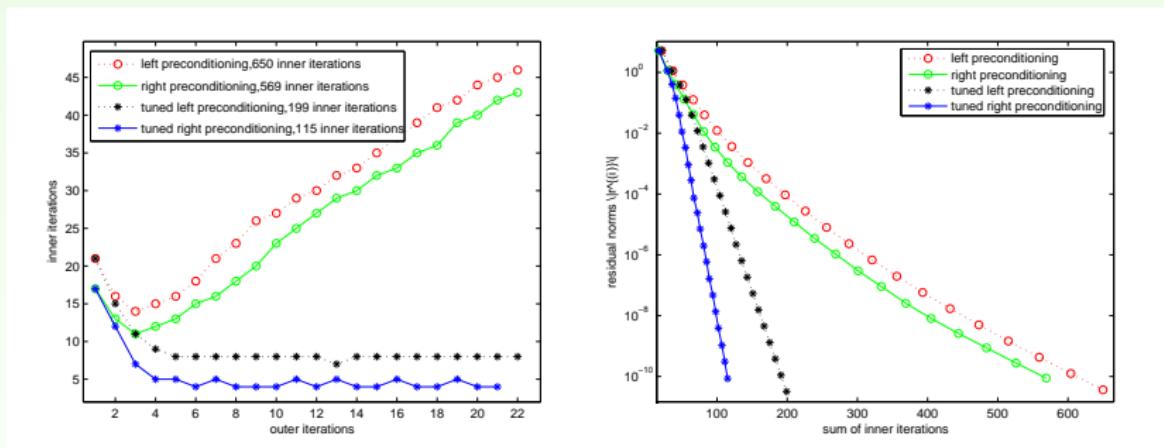


Figure: Inner iterations vs outer iterations with standard and tuned preconditioning

Figure: Residual norms vs total number of inner iterations with standard and tuned preconditioning

## Examples

## More results

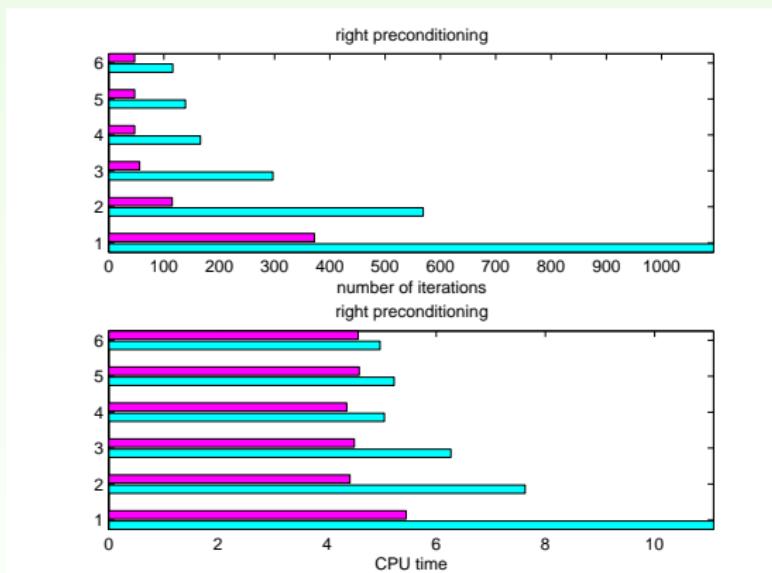


Figure: Comparison of total number of inner iterations and CPU times for different drop tolerances of the preconditioner

## Examples

## More examples

|   | Matrix name/s                          | size $n$ | Description                                                            |
|---|----------------------------------------|----------|------------------------------------------------------------------------|
| 1 | <code>stiff.mtx/mass.mtx</code>        | 961      | Convection-Diffusion operator                                          |
| 2 | <code>dwa512.mtx/dwb512.mtx</code>     | 512      | Square Dielectric Waveguide                                            |
| 3 | <code>bcsstk08.mtx/bcsstm08.mtx</code> | 1074     | BCS Structural Engineering Matrix                                      |
| 4 | <code>rdb12501.mtx</code>              | 1250     | Reaction-Diffusion Brusselator Model $L = 1.0$                         |
| 5 | <code>cdde1.mtx</code>                 | 961      | Model 2D Convection-Diffusion operator<br>$p_1 = 1, p_2 = 2, p_3 = 30$ |
| 6 | <code>olm2000.mtx</code>               | 2000     | Olmstead Model                                                         |

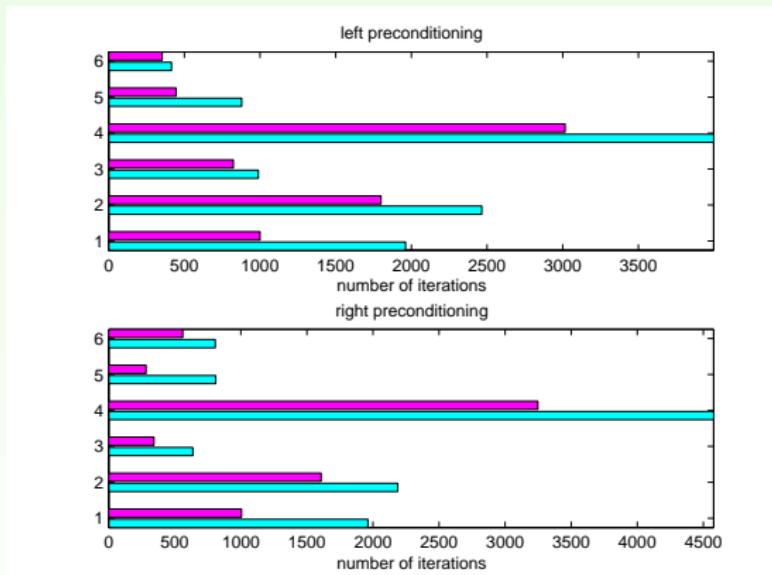
Table: Set of test matrices from the collection Matrix Market

|   | Matrix name/s                          | droptol | shift $\sigma$ | eigenvalue  | $\tau^{(0)}$ | final $r^{(i)}$ |
|---|----------------------------------------|---------|----------------|-------------|--------------|-----------------|
| 1 | <code>stiff.mtx/mass.mtx</code>        | 1       | 85             | 91.6223     | 0.01         | 10e-11          |
| 2 | <code>dwa512.mtx/dwb512.mtx</code>     | 0.001   | 0.001          | 1.3957e-3   | 0.001        | 10e-8           |
| 3 | <code>bcsstk08.mtx/bcsstm08.mtx</code> | 0.01    | 10             | 6.90070     | 0.01         | 10e-11          |
| 4 | <code>rdb12501.mtx</code>              | 0.1     | -0.325         | -3.20983e-1 | 0.1          | 10e-11          |
| 5 | <code>cdde1.mtx</code>                 | 0.1     | 0.001          | -5.17244e-3 | 0.1          | 10e-15          |
| 6 | <code>olm2000.mtx</code>               | 0.1     | 4.3            | 4.51010     | 0.1          | 10e-9           |

Table: Set of test matrices from the collection Matrix Market

## Examples

And even more results



**Figure:** Total number of inner iterations for left preconditioning with and without tuning (left plot) and for right preconditioning with and without tuning (right plot).

## Examples

## And even more results

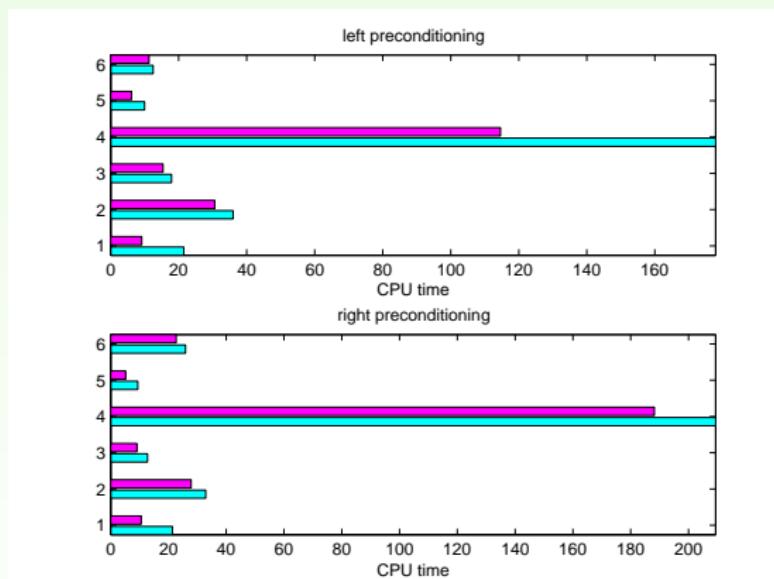


Figure: Total CPU times for left preconditioning with and without tuning (left plot) and for right preconditioning with and without tuning (right plot).

# Outline

## 1 Introduction

## 2 Convergence Theory

- Convergence rate
- Comparison to Jacobi-Davidson method

## 3 The Inner Iteration

- Convergence of GMRES
- Analysis of right-hand side
- Examples

## 4 Comparison to Jacobi-Davidson

## Symmetric case

Symmetric JD  $A = A^T$

Consider Jacobi-Davidson correction equation

$$\underbrace{(I - xx^H)}_{\pi}(A - \rho(x)I)(I - xx^H)\mathbf{s} = -r, \quad \text{where } s \perp x.$$

Inverse iteration inner solve

$$(A - \rho(x)I)y = x$$

then

$$\text{span}(x, Ax, A^2x, \dots, A^kx) = \text{span}(x, r, (\pi A \pi)r, (\pi A \pi)^2r, \dots, (\pi A \pi)^{k-1}r)$$

## Symmetric case - right tuning with $\mathbb{P}x = x$

### Symmetric JD $A = A^T$

Consider Jacobi-Davidson correction equation

$$(I - xx^H)(A - \rho(x)I)(I - xx^H)\mathbb{P}^\dagger \tilde{s} = -r, \quad \text{where } s \perp x.$$

Inverse iteration inner solve

$$(A - \rho(x)I)\mathbb{P}^{-1}\tilde{y} = x$$

then

$$\text{span}(x, A\mathbb{P}^{-1}x, (A\mathbb{P}^{-1})^2x, \dots, (A\mathbb{P}^{-1})^kx)$$

equals

$$\text{span}(x, r, (\pi A \pi \mathbb{P}^{-1})r, (\pi A \pi \mathbb{P}^{-1})^2r, \dots, (\pi A \pi \mathbb{P}^{-1})^{k-1}r)$$

## Symmetric case - right tuning with $\mathbb{P}x = x$

### Symmetric JD $A = A^T$

Consider Jacobi-Davidson correction equation

$$(I - xx^H)(A - \rho(x)I)(I - xx^H)\mathbb{P}^\dagger \tilde{s} = -r, \quad \text{where } s \perp x.$$

Inverse iteration inner solve

$$(A - \rho(x)I)\mathbb{P}^{-1}\tilde{y} = x$$

then

$$\text{span}(x, A\mathbb{P}^{-1}x, (A\mathbb{P}^{-1})^2x, \dots, (A\mathbb{P}^{-1})^kx)$$

equals

$$\text{span}(x, r, (\pi A \pi \mathbb{P}^{-1})r, (\pi A \pi \mathbb{P}^{-1})^2r, \dots, (\pi A \pi \mathbb{P}^{-1})^{k-1}r)$$

### Generalised eigenproblem

This result also holds for the generalised eigenproblem  $Ax = \lambda Mx$ .

## Symmetric case - right tuning with $\mathbb{P}x = x$

Symmetric JD  $A = A^T$

Consider Jacobi-Davidson correction equation

$$(I - xx^H)(A - \rho(x)I)(I - xx^H)\mathbb{P}^\dagger \tilde{s} = -r, \quad \text{where } s \perp x.$$

Inverse iteration inner solve

$$(A - \rho(x)I)\mathbb{P}^{-1}\tilde{y} = x$$

then the approximate solutions  $s_k$  and  $y_k$  obtained by applying a Galerkin-Krylov method are such that

$$y_k = \gamma(x + s_k).$$

## Symmetric case - right tuning with $\mathbb{P}x = x$

Symmetric JD  $A = A^T$

Consider Jacobi-Davidson correction equation

$$(I - xx^H)(A - \rho(x)I)(I - xx^H)\mathbb{P}^\dagger \tilde{s} = -r, \quad \text{where } s \perp x.$$

Inverse iteration inner solve

$$(A - \rho(x)I)\mathbb{P}^{-1}\tilde{y} = x$$

then the approximate solutions  $s_k$  and  $y_k$  obtained by applying a Galerkin-Krylov method are such that

$$y_k = \gamma(x + s_k).$$

## Generalised eigenproblem

Some weaker result holds for the generalised eigenproblem  $Ax = \lambda Mx$ .



M. A. FREITAG AND A. SPENCE, *Convergence rates for inexact inverse iteration with application to preconditioned iterative solves*, 2006.  
To appear in BIT.



\_\_\_\_\_, *Convergence theory for inexact inverse iteration applied to the generalised nonsymmetric eigenproblem*, 2006.  
Submitted to ETNA.



\_\_\_\_\_, *A tuned preconditioner for inexact inverse iteration applied to Hermitian eigenvalue problems*, 2006.  
Submitted to IMA J. Numer. Anal.