

Transcritical flow modelling with the Box Scheme

MELINA FREITAG
SUPERVISOR: BILL MORTON

FORSCHUNGSSEMINAR: NUMERIK PARTIELLER DIFFERENTIALGLEICHUNGEN

TU CHEMNITZ

13.01.2004

Introduction

- The Saint Venant Equations
- The Preissmann Box Scheme
- Transcritical Flow
- Model Problems and Steady State Solutions
- Accuracy, Stability and time-step Constraint
- Extension of the Box Scheme to Transcritical Flow
- Conclusions

The Saint Venant Equations I - Assumptions

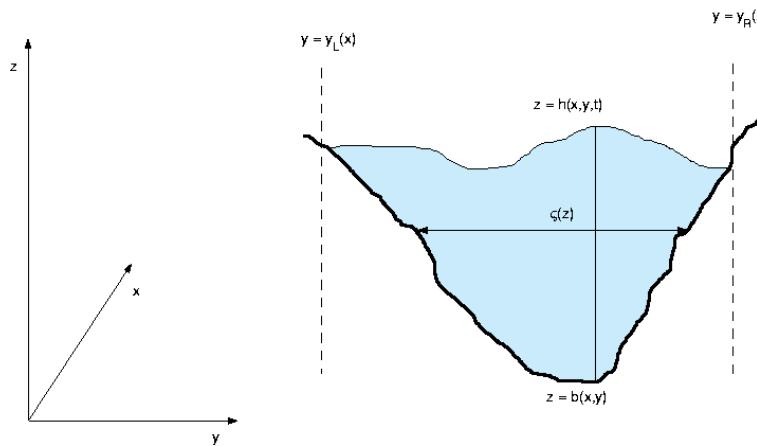


Figure 1: Channel cross section

- flow is essentially 1-D, incompressible ideal fluid, constant density
- all forces due to gravity and friction, channel bed does not change
- volumetric inflow due to rain, evaporation in negligible

The Saint Venant Equations II

- Mass Conservation

$$\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} = 0$$

- Momentum Conservation

$$\frac{\partial Q}{\partial t} + \frac{\partial}{\partial x} \left(\frac{\beta Q^2}{A} + gI_1 \right) = gI_2 + gA(S_0 - S_f)$$

$A(x, t)$... wetted cross-sectional area,

$Q(x, t)$... discharge,

$S_0(x)$... bed slope,

$S_f(x, A, Q)$... frictional slope,

β ... momentum coefficient (≈ 1),

$I_1(x, t)$... cross-sectional moment integral,

$I_2(x, t)$... pressure force acting on the channel bed

Channel with Trapezoidal Cross-Section

System may be written in conservative vector form

$$\mathbf{u}_t + \mathbf{f}_x = \mathbf{s},$$

where

$$\mathbf{u} = [A, Q]^T,$$

$$\mathbf{f} = \left[Q, Q^2 \frac{A}{2} + g \left(\frac{D^2 B}{2} + \frac{D^3 S_T}{3} \right) \right]^T,$$

$$\mathbf{s} = \left[0, gA(S_0 - S_f) + gD^2 \left(\frac{1}{2} \frac{\partial B}{\partial x} + \frac{D}{3} \frac{\partial S_T}{\partial x} \right) \right]^T.$$

Hyperbolic System

Jacobian of \mathbf{f} is given by

$$\mathcal{A}(\mathbf{u}) = \frac{\partial \mathbf{f}}{\partial \mathbf{u}} = \begin{bmatrix} 0 & 1 \\ c^2 - v^2 & 2v \end{bmatrix},$$

where $v = Q/A$ average velocity and $c = \sqrt{gA/T}$ wave celerity.

- eigenvalues: $a_1 = v - c, a_2 = v + c,$
- eigenvectors: $v_1 = [1, v - c]^T, v_2 = [1, v + c]^T$

2 real distinct eigenvalues and linearly independent eigenvectors, if $c \neq 0$, system is *strictly hyperbolic*

The Preissmann Box Scheme

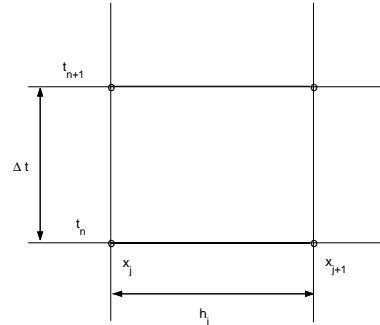


Figure 2: The Box Scheme Stencil

$$\begin{aligned}
 \frac{\partial \mathbf{u}}{\partial t} &\approx \frac{\mathbf{u}_{j+1}^{n+1} - \mathbf{u}_j^{n+1} + \mathbf{u}_j^{n+1} - \mathbf{u}_j^n}{2\Delta t}, \\
 \frac{\partial \mathbf{f}}{\partial x} &\approx \frac{\theta(\mathbf{f}_{j+1}^{n+1} - \mathbf{f}_j^{n+1}) + (1 - \theta)(\mathbf{f}_{j+1}^n - \mathbf{f}_j^n)}{h_j}, \\
 \mathbf{s} &\approx \frac{1}{2}\theta(\mathbf{s}_{j+1}^{n+1} + \mathbf{s}_j^{n+1}) + \frac{1}{2}(1 - \theta)(\mathbf{s}_{j+1}^n + \mathbf{s}_j^n),
 \end{aligned}$$

Implementation and Solution Procedure I

Differential form

$$\mathbf{u}_t + \mathbf{f}(\mathbf{u})_x = \mathbf{s}(\mathbf{u}, x),$$

$$\begin{aligned} \frac{\mathbf{u}_{j+1}^{n+1} - \mathbf{u}_{j+1}^n}{2} + \frac{\mathbf{u}_j^{n+1} - \mathbf{u}_j^n}{2} + \lambda_j \theta (\mathbf{f}_{j+1}^{n+1} - \mathbf{f}_j^{n+1}) + \lambda_j (1 - \theta) (\mathbf{f}_{j+1}^n - \mathbf{f}_j^n) \\ - \Delta t \left(\frac{1}{2} \theta (\mathbf{s}_{j+1}^{n+1} + \mathbf{s}_j^{n+1}) + \frac{1}{2} (1 - \theta) (\mathbf{s}_{j+1}^n + \mathbf{s}_j^n) \right) = \mathbf{0}, \end{aligned} \quad (1)$$

for $j = 0, \dots, N - 1$, $\lambda_j = \Delta t / h_j$.

- $2N + 2$ unknowns Q_j, A_j , $2N$ equations \rightarrow boundary conditions
- subcritical flow: Q upstream, D downstream
- supercritical flow: Q, D upstream

Implementation and Solution Procedure II

- need nonlinear iteration technique to solve $\mathbf{R}_{j+\frac{1}{2}} = 0 \quad \forall j = 0, \dots, N - 1$
- Newton system

$$\begin{bmatrix} x & x & \dots & \dots & \dots & \dots & \dots \\ x & x & x & x & \dots & \dots & \dots \\ x & x & x & x & \dots & \dots & \dots \\ \dots & \dots & x & x & x & x & \dots \\ \dots & \dots & x & x & x & x & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \end{bmatrix} \Delta \mathbf{u}^{(k)} = -\mathbf{R}$$

Newton update $\mathbf{u}^{(k+1)} = \mathbf{u}^{(k)} + \Delta \mathbf{u}^{(k)}$.

- stopping criterion $\frac{\|\mathbf{u}^{(k+1)} - \mathbf{u}^{(k)}\|_1}{\|\mathbf{u}^{(k)}\|_1} < \text{tol}$,

Thomas Algorithm

- extend Thomas Algorithm for tridiagonal matrices to block-tridiagonal matrices
- Tridiagonal system $A_i \mathbf{W}_{i-1} + D_i \mathbf{W}_i + C_i \mathbf{W}_{i+1} = \mathbf{Z}_i, \quad i = 0, \dots, N$,
Solution given by backward recursion

$$\mathbf{W}_N = \mathbf{F}_N,$$

$$\mathbf{W}_j = E_j \mathbf{W}_{j+1} + \mathbf{F}_j, \quad j = N-1, \dots, 0,$$

where E_j and \mathbf{F}_j are given by the forward recursion

$$E_j = -(D_j + A_j E_{j-1})^{-1} C_j, \quad j = 0, \dots, N-1,$$

$$\mathbf{F}_j = (D_j + A_j E_{j-1})^{-1} (\mathbf{Z}_j - A_j \mathbf{F}_{j-1}), \quad j = 0, \dots, N,$$

- stable procedure, if inverses exist and $\|E_j\| \leq 1, \forall j$

Transcritical Flow

- subcritical and supercritical regions
- *Froude Number:* $F = \frac{|v|}{c}$
- subcritical $F < 1$, supercritical $F > 1$
- eigenvalues of the Jacobian \approx velocities at which disturbances propagate; opposite sign: subcritical flow, same sign: supercritical flow
- steep slopes or rapidly changing channel widths
- counting problem, stability problems
- typical situation: subcritical flow with an interior supercritical region

Model Problem 1

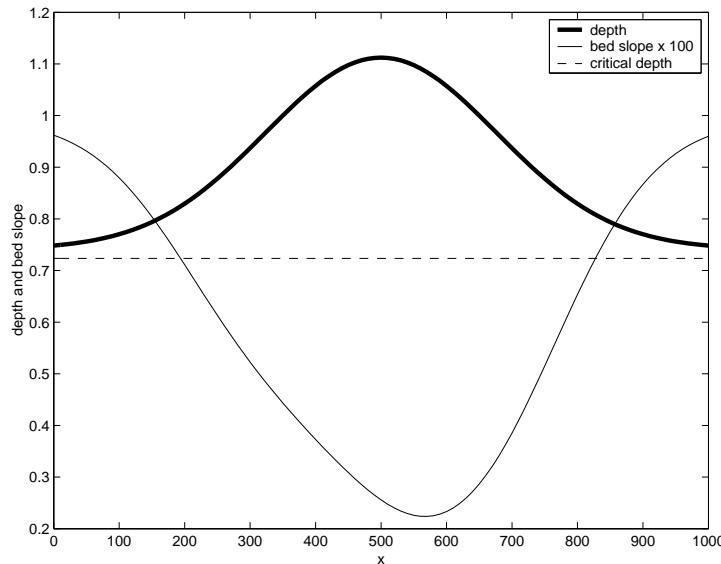


Figure 3: Depth and bed slope

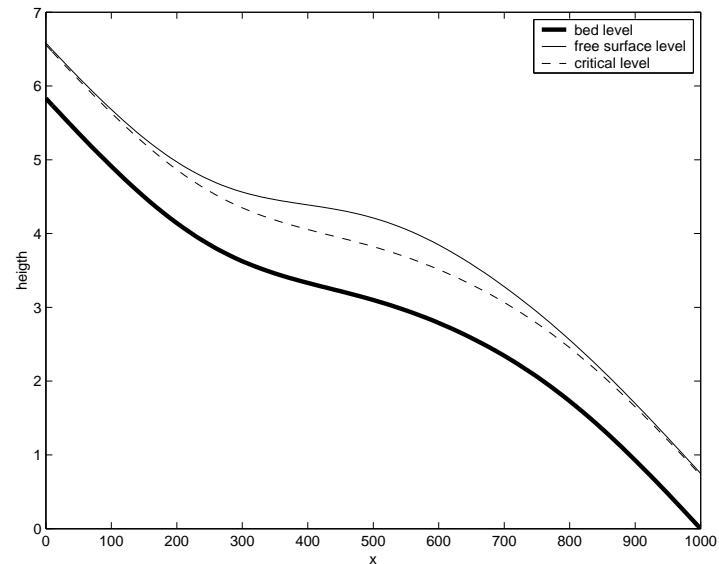


Figure 4: Bed level and surface level

- channel length 1km, width 10m
- upstream boundary condition $Q = 20m^3/s$ at inflow,
- downstream boundary condition $h = 0.75m$ at outflow

Model Problem 1 - Results

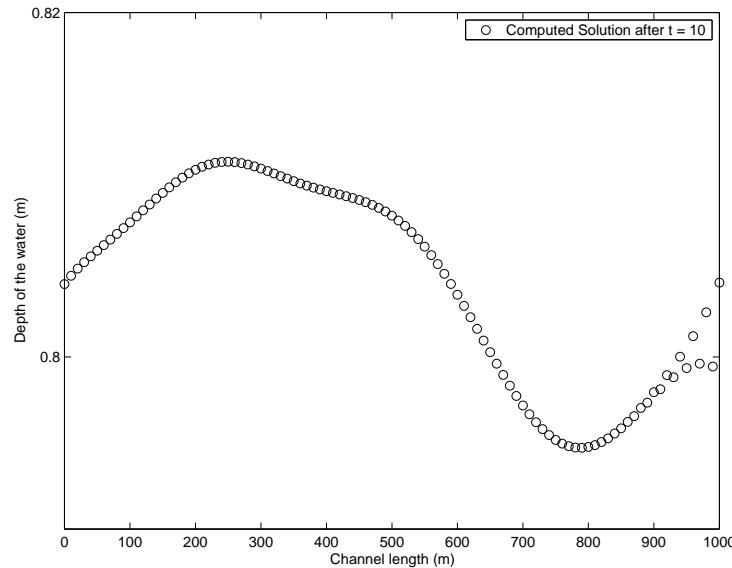


Figure 5: Near-critical problem after one time-step, $t = 10$

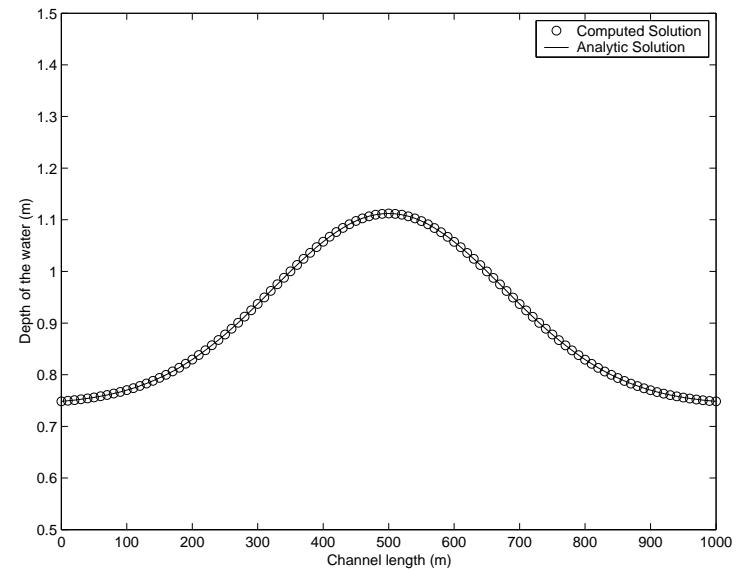


Figure 6: Near-critical problem at steady state

- $\Delta x = 10$, $\Delta t = 10$, $\theta = \frac{2}{3}$
- 3 – 5 iterations per time step (tolerance 10^{-10}), Froude Number: $F = 0.95$

Model Problem 2



Figure 7: Problem with changing channel width

- channel length $10km$,
- upstream boundary condition $Q = 20m^3/s$ at inflow,
- downstream boundary condition $h = 1.3m$ at outflow, $S_0(x) = 0.002$

Model Problem 2 - Results I

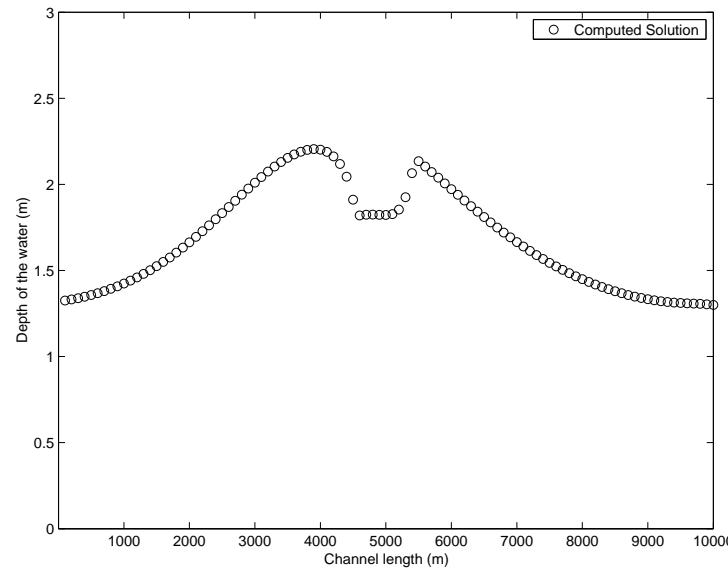
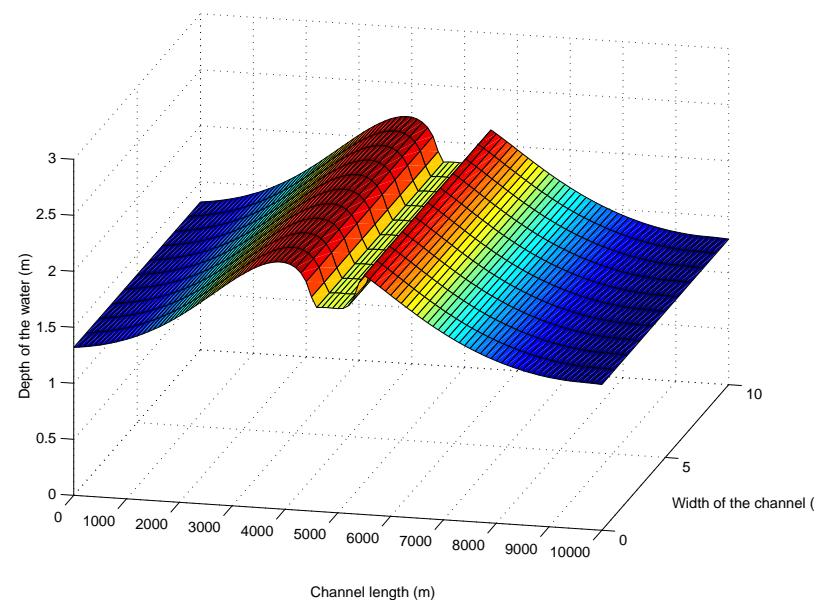


Figure 8: Subcritical Problem

- $\Delta x = 100$, $\Delta t = 100$, $\theta = \frac{2}{3}$
- more than 5 iterations per time step (tolerance 10^{-10}), Froude Number: $F = 0.52$

Model Problem 2 - Results II

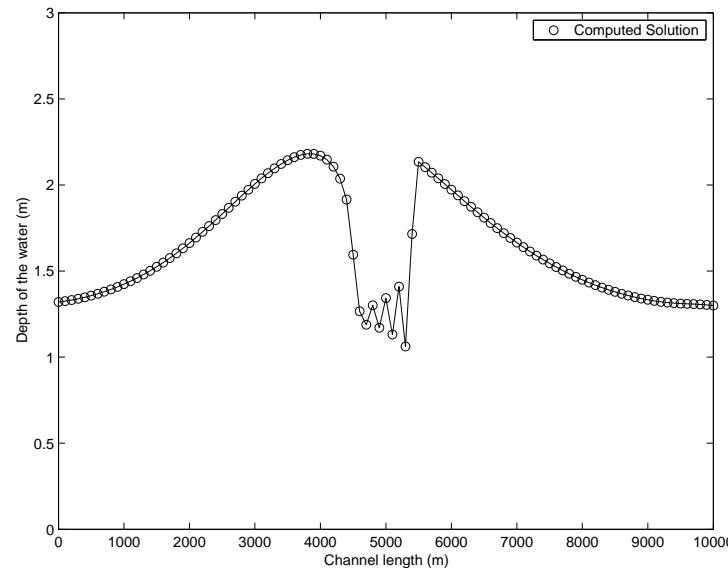
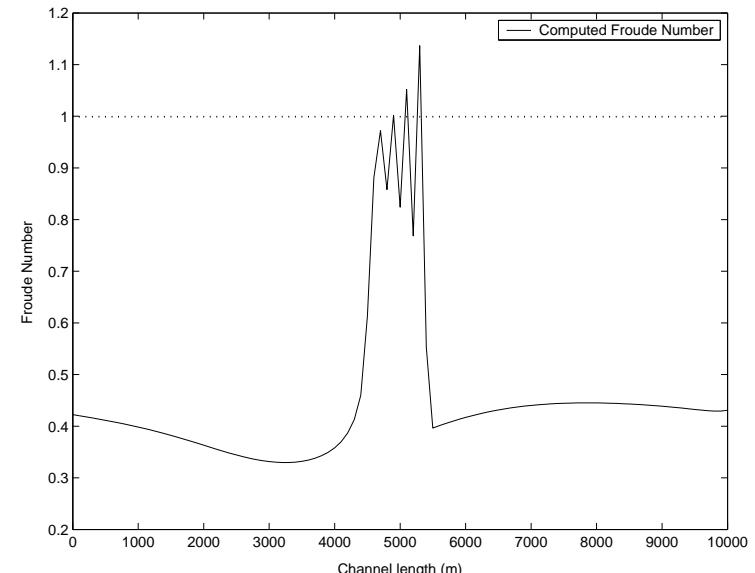


Figure 9: Near-critical problem at steady state, Froude Number

- $\Delta x = 100$, $\Delta t = 100$, $\theta = \frac{2}{3}$, Froude Number: $F = 1.05$

Model Problem 3

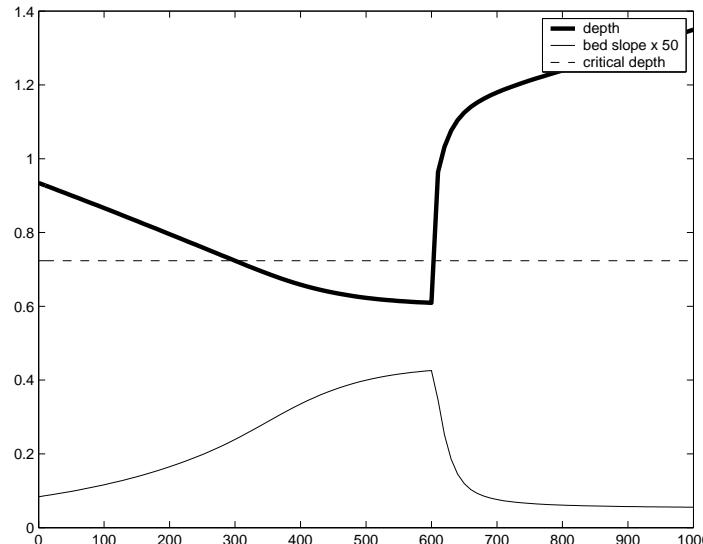


Figure 10: Depth and bed slope

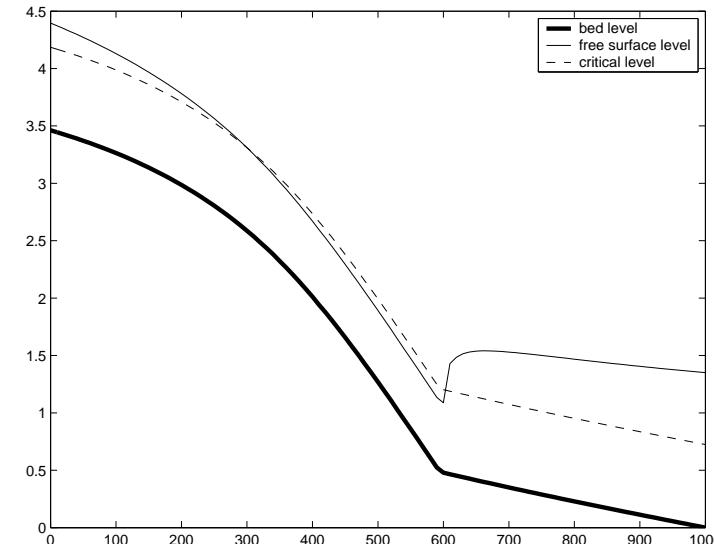


Figure 11: Bed level and surface level

- channel length 1km, width 10m
- upstream boundary condition $Q = 20m^3/s$ at inflow,
- downstream boundary condition $h = 1.35m$ at outflow

Model Problem 3 - Results

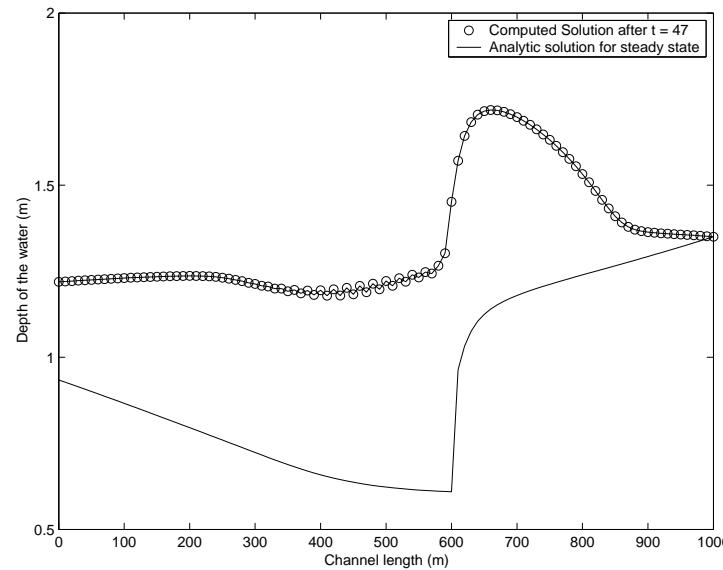


Figure 12: Transcritical problem at time $t = 47$

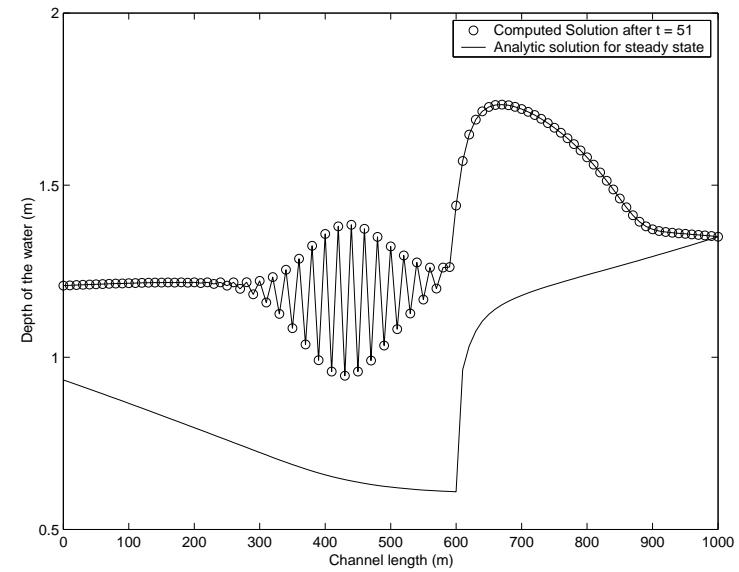


Figure 13: Transcritical problem at time $t = 51$

- $\Delta x = 10$, $\Delta t = 1$, $\theta = \frac{2}{3}$
- oscillations, scheme breaks down

Accuracy and Stability

- truncation error: $\mathcal{O}(\Delta x^2, \Delta t)$, for $\theta = \frac{1}{2}$: $\mathcal{O}(\Delta x^2, \Delta t^2)$
- Stability via Fourier analysis: unconditional stability for $\theta \geq \frac{1}{2}$, but
- for $\theta = \frac{1}{2}$ or $\nu = a_{1/2} \frac{\Delta t}{\Delta x} = 0$ scheme is non-dissipative \rightarrow critical case
- convergence of the Box Scheme
- restriction on time-step due to convergence theory of Newton's Method (*Newton-Kantorovich*)

More Stability Analysis ...

- *Stability of Boundary Conditions:* solution at time t^{n+1} may be written as a recurrence relation

$$\mathbf{w}_N = (-1)^N \left(\prod_{j=0}^{N-1} G_j \right) \mathbf{w}_0 + \Delta t \mathbf{T}_N,$$

with amplification matrix G_j

$$G_j = \begin{bmatrix} \frac{1-2\lambda_j\theta(v_j-c_j)}{1+2\lambda_j\theta(v_j-c_j)} & 0 \\ 0 & \frac{1-2\lambda_j\theta(v_j+c_j)}{1+2\lambda_j\theta(v_j+c_j)} \end{bmatrix}.$$

- if one of the eigenvalues of the Jacobian \mathcal{A} passes through zero, i.e. $v_j \approx c_j$, perturbations not damped

Invalidity of the Box Scheme for Transcritical Flow

- as critical limit is approached, one of the eigenvalues become small and spurious Fourier modes are allowed to propagate uninhibited
- counting problem: Box Scheme needs exactly two boundary conditions, but for transcritical problems there may be too few or too many boundary conditions
- critical problem results in locally underdetermined/overdetermined systems:

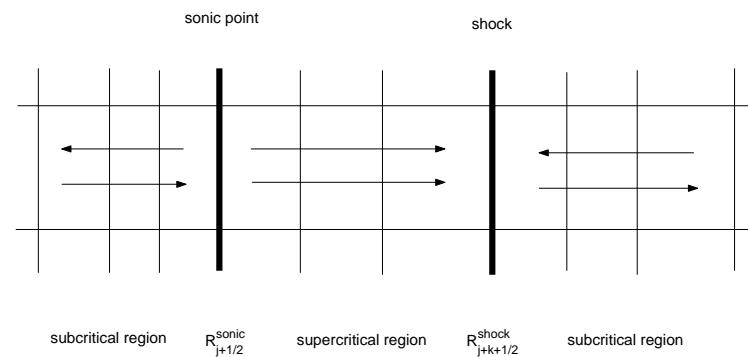


Figure 14: Cell residuals and transcritical flow

Cell and Nodal Residuals I

- introduce mapping between cell residuals and nodal unknowns

$$\mathbf{N}_j = D_{j-\frac{1}{2}}^+ \mathbf{R}_{j-\frac{1}{2}} + D_{j+\frac{1}{2}}^- \mathbf{R}_{j+\frac{1}{2}} + \mathbf{B}_j = 0,$$

\mathbf{B}_j accounts for boundary conditions.

- distribution matrices for subcritical case:

$$D_{j+\frac{1}{2}}^- = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad D_{j-\frac{1}{2}}^+ = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix},$$

for subcritical case:

$$D_{j+\frac{1}{2}}^- = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad D_{j-\frac{1}{2}}^+ = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Cell and Nodal Residuals II

- more sophisticated alternative as a generalization of those used in upwinding schemes; characteristic decomposition $\mathcal{A} = V\Lambda V^{-1}$

$$D_{j+\frac{1}{2}}^- = \tilde{V}_{j+\frac{1}{2}} \text{diag} \left\{ \frac{1}{2} - \frac{1}{2} \text{sign}(\tilde{a}_{j+\frac{1}{2}}^{(k)}) : k = 1, 2 \right\} \tilde{V}_{j+\frac{1}{2}}^{-1},$$

$$D_{j-\frac{1}{2}}^+ = \tilde{V}_{j-\frac{1}{2}} \text{diag} \left\{ \frac{1}{2} + \frac{1}{2} \text{sign}(\tilde{a}_{j-\frac{1}{2}}^{(k)}) : k = 1, 2 \right\} \tilde{V}_{j-\frac{1}{2}}^{-1},$$

where $\tilde{\mathcal{A}}_{j\pm\frac{1}{2}}$ an average value of \mathcal{A} for the cell (Roe average matrix) and $\tilde{a}_{j\pm\frac{1}{2}}^{(k)}$, $k = 1, 2$, its eigenvalues.

- problem, if

$$\text{rank}(D_{j+\frac{1}{2}}^- + D_{j-\frac{1}{2}}^+) = 2,$$

is not satisfied (sonic point)

Solutions

1. Internal boundary conditions:

- treats only the sonic point
- if $\text{rank}(D_{j+\frac{1}{2}}^- + D_{j-\frac{1}{2}}^+) \leq 1$, then by introducing an extra linearly independent equation

$$\mathbf{B}_j = (I - D_{j+\frac{1}{2}}^- - D_{j-\frac{1}{2}}^+) \Delta \mathbf{u}_j.$$

2. Splitting of the cell residual at the sonic point and combining of cell residuals at the shock (hydraulic jump)

- treats both sonic point and shock
- calculate the Froude Number and determine subcritical and supercritical regions (at each time step)
- find sonic point and split cell residual
- find shock cell and combine two cell residuals either side
- discrete conservation law still satisfied

Numerical Results - Model Problem 3

1. Internal boundary conditions

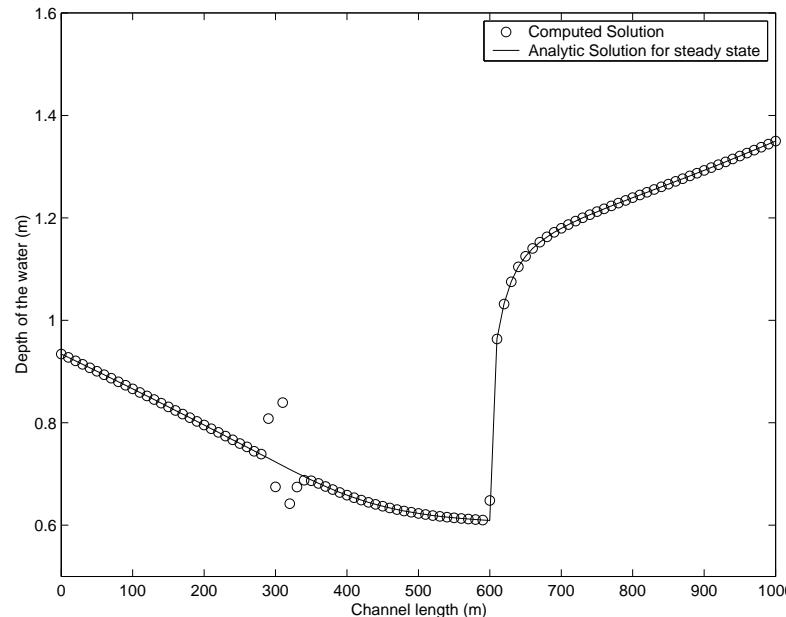


Figure 15: Transcritical problem with internal boundary conditions

slow convergence, sonic point not resolved

Numerical Results - Model Problem 3

2. Splitting and combining cell residuals

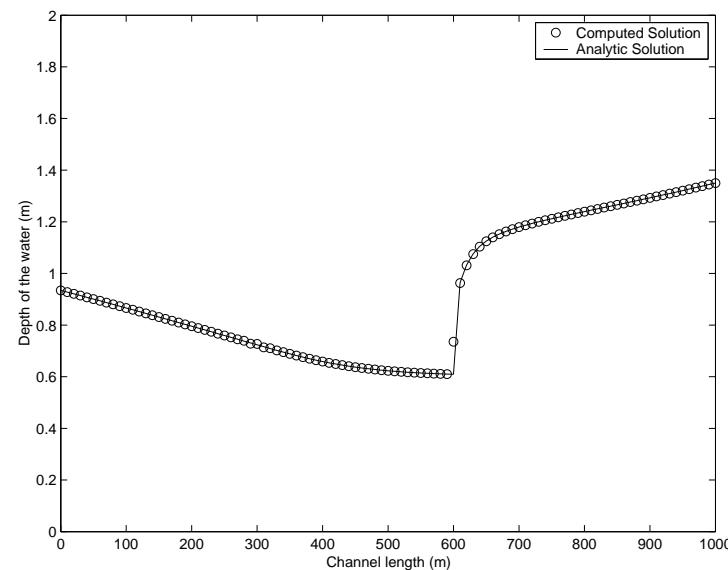


Figure 16: Transcritical problem at steady state

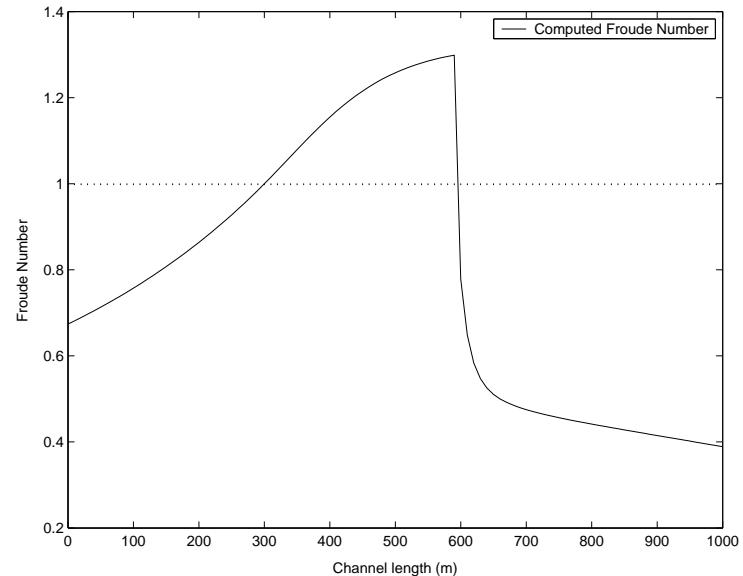


Figure 17: Approximation to Froude Number at steady state

$\Delta t = 1$, 3-5 iterations, Froude number 1.3

Local Post Processing and Shock Fitting - I

Box Scheme cannot resolve discontinuity properly → Shock Fitting

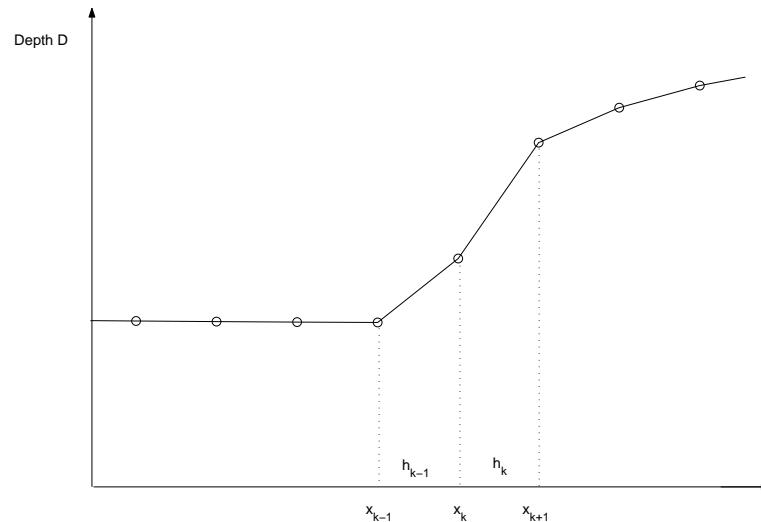


Figure 18: Diagram showing depth function at the shock before introducing a discontinuity

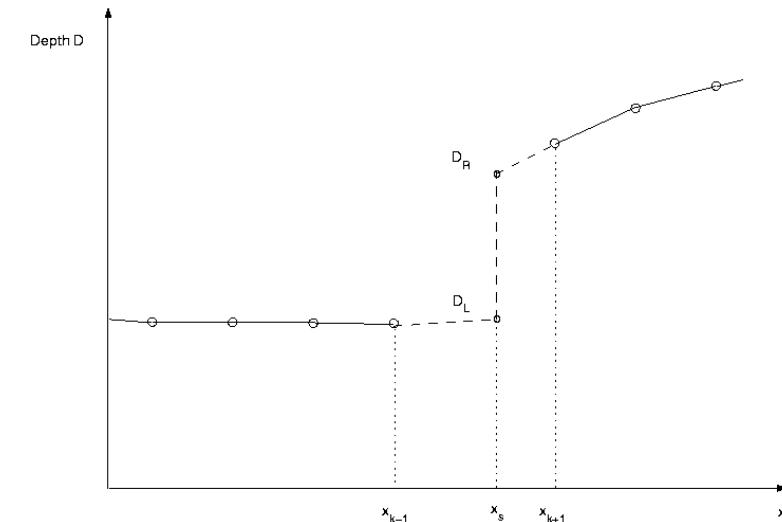


Figure 19: Diagram showing depth and shock location x_s after introducing a discontinuity

introduce shock position and values left and right of the hydraulic jump as unknowns

Local Post Processing and Shock Fitting - II

- apply discrete mass and momentum conservation laws locally
- use *Rankine Hugoniot jump condition*: for the shock speed

$$s = \frac{f(u_L) - f(u_R)}{u_L - u_R} = \frac{[f]}{[u]}.$$

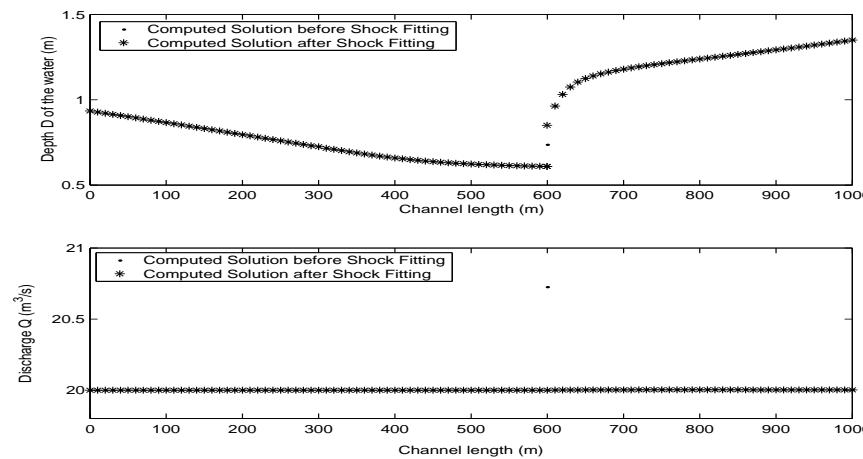


Figure 20: Depth D and discharge Q at steady state after shock fitting

Conclusion

- derivation of St Venant equations
- Box Scheme for test problems very adequate
- explanation for breakdown in the transcritical case
- *modified Box Scheme* for unsteady St Venant equations
- Shock fitting