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Data Assimilation in NWP

Estimate the state of the atmosphere xi.

A priori information xB

background state (usual
previous forecast)

Models

a model how the atmosphere
evolves in time (imperfect)

xi+1 = M(xi)

a function linking model space
and observation space
(imperfect)

yi = H(xi)

Observations y

Satellites

Ships and buoys

Surface stations

Aeroplanes

Assimilation algorithms

used to find an (approximate)
state of the atmosphere xi at
times i (usually i = 0)

using this state a forecast for
future states of the atmosphere
can be obtained

xA: Analysis (estimation of the
true state after the DA)



Schematics of DA

Figure: Background state xB



Schematics of DA

Figure: Observations y



Schematics of DA

Figure: Analysis xA (consistent with observations and model dynamics)



Data Assimilation in NWP

Underdeterminacy

Size of the state vector x: 432 × 320 × 50 × 7 = O(107)

Number of observations (size of y): O(105 − 106)
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Data Assimilation in NWP

Estimate the state of the atmosphere xi.

Apriori information xB

background state (usual
previous forecast) has errors!

Models

a model how the atmosphere
evolves in time (imperfect)

xi+1 = M(xi) + error

a function linking model space
and observation space
(imperfect)

yi = H(xi) + error

Observations y has errors!

Satellites

Ships and buoys

Surface stations

Aeroplanes

Assimilation algorithms

used to find an (approximate)
state of the atmosphere xi at
times i (usually i = 0)

using this state a forecast for
future states of the atmosphere
can be obtained

xA: Analysis (estimation of the
true state after the DA)
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Error variables

Modelling the errors

background error εB = xB − xTruth of average εB and covariance

B = (εB − εB)(εB − εB)T

observation error εO = y − H(xTruth) of average εO and covariance

R = (εO − εO)(εO − εO)T

analysis error εA = xA − xTruth of average εA and covariance

A = (εA − εA)(εA − εA)T

measure of the analysis error that we want to minimise

tr(A) = ‖εA − εA‖2



Assumptions

Nontrivial errors: B, R are positive definite

Unbiased errors: xB − xTruth = y − H(xTruth) = 0

Uncorrelated errors: (xB − xTruth)(y − H(xTruth))T = 0



Optimal least-squares estimater (3D-Var)

Cost function
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Optimal least-squares estimater (3D-Var)

Cost function

Solution of the variational optimisation problem xA = arg minJ(x) where

J(x) = (x − x
B)T

B
−1(x− x

B) + (y − H(x))T
R

−1(y − H(x))

= JB(x) + JO(x)

Four-dimensional variational assimilation (4D-Var)

Minimisation of the cost function

J(x0) = (x0 − x
B)T

B
−1(x0 − x

B) +
n

X

i=0

(yi − Hi(xi))
T
R

−1
i (yi − Hi(xi))

subject to model dynamics xi = M0→ix0.



Minimisation of the 4D-Var cost function

Efficient implementation of J and ∇J :

forecast state xi = Mi,i−1Mi−1,i−2 . . . M1,0x0

normalised departures di = R−1
i (yi − Hi(xi))

cost function JOi = (yi − Hi(xi))
T di

∇J is calculated by

−
1

2
∇JO = −

1

2

n
X

i=0

∇JOi

=
n

X

i=0

M
T
1,0 . . .M

T
i,i−1H

T
i di

= H
T
0 d0 + M

T
1,0[H

T
1 d1 + M2,1[H

T
2 d2 + . . . + M

T
n,n−1H

T
ndn] . . .]

initialise adjoint variable x̃n = 0 and then x̃i−1 = MT
i,i−1(x̃i + HT

i di)
etc., . . . x̃0 = − 1

2
∇JO
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Example - Three-Body Problem

Motion of three bodies in a plane, two position (q) and two momentum (p)
coordinates for each body α = 1, 2, 3

Equations of motion (nondimensionalised)

H(q,p) =
1

2

X

α

|pα|
2

mα

−
X X

α<β

mαmβ

|qα − qβ|

dqα

dt
=

∂H

∂pα

dpα

dt
= −

∂H

∂qα



Example - Three-Body problem

solver: partitioned Runge-Kutta scheme with time step h = 0.001

observations are taken as noise from the truth trajectory

background is given from a perturbed initial condition



Example - Three-Body problem

solver: partitioned Runge-Kutta scheme with time step h = 0.001

observations are taken as noise from the truth trajectory

background is given from a perturbed initial condition

assimilation window is taken 300 time steps

minimisation of cost function J using a Gauss-Newton method
(neglecting all second derivatives)

∇J(x0) = 0

∇∇J(xj
0)∆x

j
0 = −∇J(xj

0), x
j+1
0 = x

j
0 + ∆x

j
0

subsequent forecast is take 5000 time steps

R is diagonal with variances between 10−3 and 10−5
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The Kalman Filter Algorithm

State and error covariance forecast

State forecast x
F
i+1 = Mi+1,ix

A
i

Error covariance forecast B
F
i+1 = Mi+1,iB

A
i M

T
i+1,i + Qi

State and error covariance analysis

Kalman gain Ki = B
F
i H

T
i (HiB

F
i H

T
i + Ri)

−1

State analysis x
A
i = x

F
i + Ki(yi − Hix

F
i )

Error covariance of analysis B
A
i = (I −KiHi)B

F
i
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Changing numerical method

Truth trajectory: 4th order Runge-Kutta method with local truncation
error O(∆t5)

Model trajectory: Explicit Euler method with local truncation error
O(∆t2)
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Estimation of the background error covariance matrix B
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Problem

Estimation of the background error covariance matrix B

Kalman Filter approach does not work

B = I appears to be the best result

Problem too easy?



Observations in different time scales B = I, large model error
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Observations in different time scales B = I, large model error
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Perfect observations in different time scales B = I, large model error
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Perfect observations in different time scales B = I, small model error
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Making the Three-Body Problem chaotic

Parameters (Chaotic shuffling of the moon)

ms = 0.5

mp = 0.5

mm = 0.0

Choose initial position and velocity of the moon such that problem becomes
chaotic.

H(q,p) =
1

2

X

α

|pα|
2

mα

−
X X

α<β

mαmβ

|qα − qβ|

dqα

dt
=

∂H

∂pα

dpα

dt
= −

∂H

∂qα



Making the Three-Body Problem chaotic

Solve using PRK

−1 0 1 2 3 4 5
−12

−10

−8

−6

−4

−2

0

2

Problem: singularities in the numerical scheme as bodies approach each
other:

H(q,p) =
1

2

X

α

|pα|
2

mα

−
X X

α<β

mαmβ

|qα − qβ |



Making the Three-Body Problem chaotic

Solve using PRK with adaptive time stepping
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Making the Three-Body Problem chaotic

Adaptive time stepping

Time step h =
hstart

r−2
12 + r−2

13 + r−2
23

Problem: Data Assimilation with adaptive time stepping?

Truth trajectory - Model trajectory

weighting
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existing errors



Plans

design a simple chaotic model of reduced order (Lorenz model)

include several time scales (to model the atmosphere)

identify and analyse model error and analyse influence of this model
error onto the DA scheme

analyse the influence of the error made by the numerical
approximation (part of the model error) on the error in the DA scheme

compare assimilation algorithms and optimisation strategies to reduce
existing errors

improve the forecast of small scale features (like convective storms)
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