

Data Assimilation applied to the Three-Body Problem

Melina Freitag

Department of Mathematical Sciences
University of Bath

27th March 2008

1 Introduction

2 Variational Data Assimilation

3 Three-Body Problem

4 Model error

Outline

1 Introduction

2 Variational Data Assimilation

3 Three-Body Problem

4 Model error

Data Assimilation in NWP

Estimate the **state of the atmosphere \mathbf{x}_i** .

Observations \mathbf{y}

- Satellites
- Ships and buoys
- Surface stations
- Aeroplanes

Data Assimilation in NWP

Estimate the **state of the atmosphere \mathbf{x}_i** .

A priori information \mathbf{x}^B

- background state (usual previous forecast)

Observations \mathbf{y}

- Satellites
- Ships and buoys
- Surface stations
- Aeroplanes

Data Assimilation in NWP

Estimate the **state of the atmosphere \mathbf{x}_i** .

A priori information \mathbf{x}^B

- background state (usual previous forecast)

Models

- a model how the atmosphere evolves in time (imperfect)

$$\mathbf{x}_{i+1} = M(\mathbf{x}_i)$$

Observations \mathbf{y}

- Satellites
- Ships and buoys
- Surface stations
- Aeroplanes

Data Assimilation in NWP

Estimate the **state of the atmosphere \mathbf{x}_i** .

A priori information \mathbf{x}^B

- background state (usual previous forecast)

Models

- a model how the atmosphere evolves in time (imperfect)

$$\mathbf{x}_{i+1} = M(\mathbf{x}_i)$$

- a function linking model space and observation space (imperfect)

$$\mathbf{y}_i = H(\mathbf{x}_i)$$

Observations \mathbf{y}

- Satellites
- Ships and buoys
- Surface stations
- Aeroplanes

Data Assimilation in NWP

Estimate the **state of the atmosphere \mathbf{x}_i** .

A priori information \mathbf{x}^B

- background state (usual previous forecast)

Models

- a model how the atmosphere evolves in time (imperfect)

$$\mathbf{x}_{i+1} = M(\mathbf{x}_i)$$

- a function linking model space and observation space (imperfect)

$$\mathbf{y}_i = H(\mathbf{x}_i)$$

Observations \mathbf{y}

- Satellites
- Ships and buoys
- Surface stations
- Aeroplanes

Assimilation algorithms

- used to find an (approximate) state of the atmosphere \mathbf{x}_i at times i (usually $i = 0$)
- using this state a forecast for future states of the atmosphere can be obtained
- \mathbf{x}^A : Analysis (estimation of the true state after the DA)

Schematics of DA

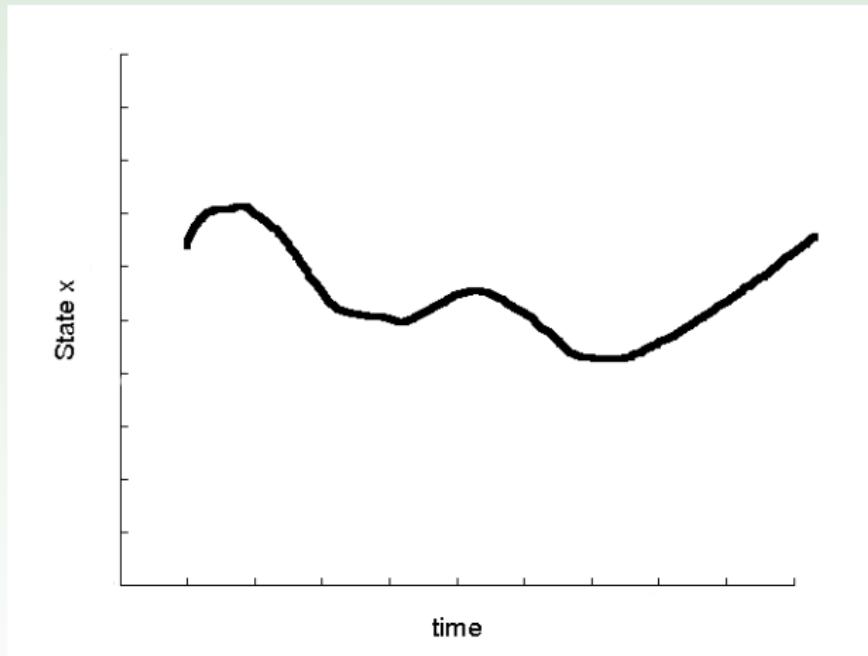


Figure: Background state x^B

Schematics of DA

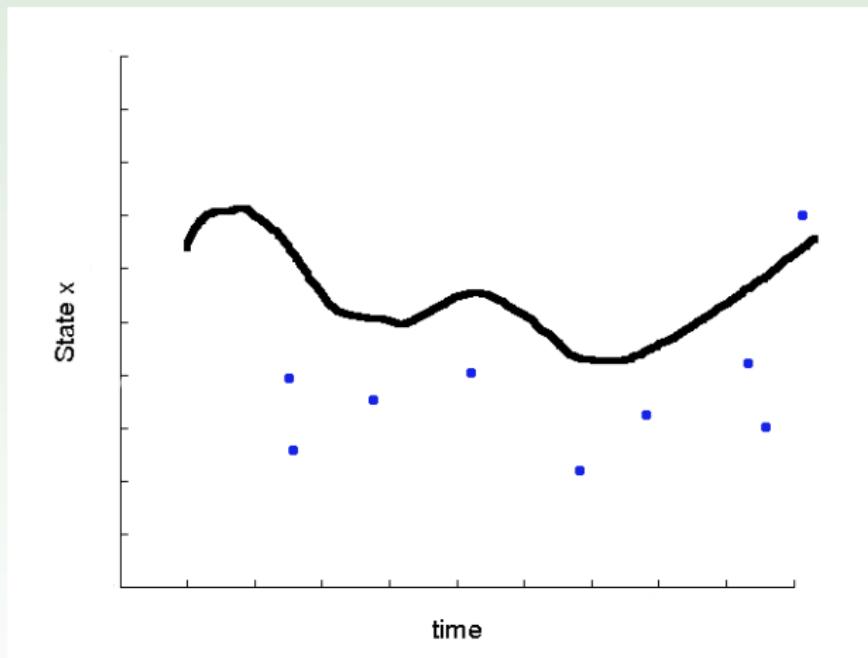


Figure: **Observations y**

Schematics of DA

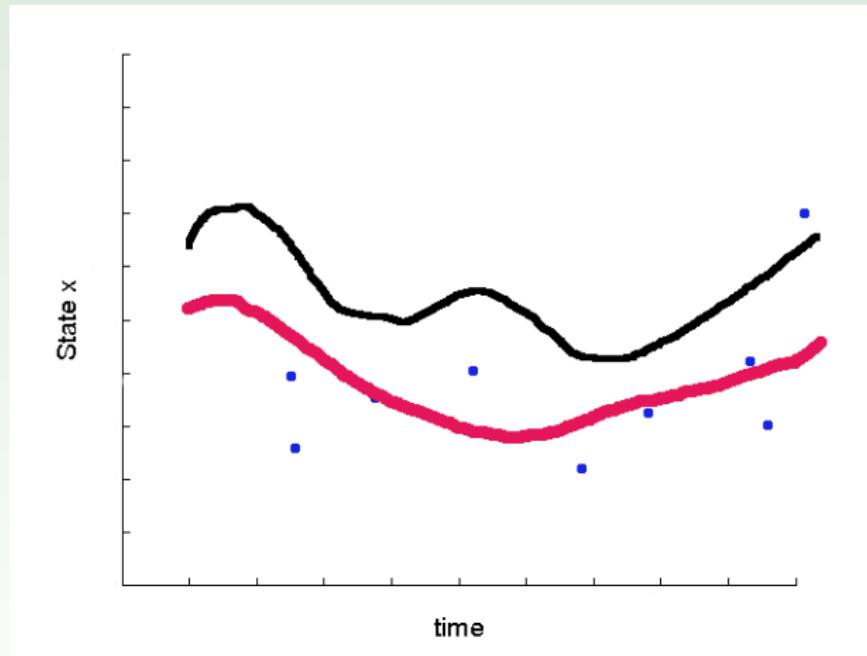


Figure: Analysis x^A (consistent with observations and model dynamics)

Underdeterminacy

- Size of the state vector \mathbf{x} : $432 \times 320 \times 50 \times 7 = \mathcal{O}(10^7)$
- Number of observations (size of \mathbf{y}): $\mathcal{O}(10^5 - 10^6)$

Outline

1 Introduction

2 Variational Data Assimilation

3 Three-Body Problem

4 Model error

Data Assimilation in NWP

Estimate the **state of the atmosphere \mathbf{x}_i** .

Apriori information \mathbf{x}^B

- background state (usual previous forecast) **has errors!**

Models

- a model how the atmosphere evolves in time (imperfect)

$$\mathbf{x}_{i+1} = M(\mathbf{x}_i) + \text{error}$$

- a function linking model space and observation space (imperfect)

$$\mathbf{y}_i = H(\mathbf{x}_i) + \text{error}$$

Observations \mathbf{y} has errors!

- Satellites
- Ships and buoys
- Surface stations
- Aeroplanes

Assimilation algorithms

- used to find an (approximate) state of the atmosphere \mathbf{x}_i at times i (usually $i = 0$)
- using this state a forecast for future states of the atmosphere can be obtained
- \mathbf{x}^A : Analysis (estimation of the true state after the DA)

Error variables

Modelling the errors

- background error $\varepsilon^B = \mathbf{x}^B - \mathbf{x}^{\text{Truth}}$ of average $\bar{\varepsilon}^B$ and covariance

$$\mathbf{B} = \overline{(\varepsilon^B - \bar{\varepsilon}^B)(\varepsilon^B - \bar{\varepsilon}^B)^T}$$

Error variables

Modelling the errors

- background error $\varepsilon^B = \mathbf{x}^B - \mathbf{x}^{\text{Truth}}$ of average $\bar{\varepsilon}^B$ and covariance

$$\mathbf{B} = \overline{(\varepsilon^B - \bar{\varepsilon}^B)(\varepsilon^B - \bar{\varepsilon}^B)^T}$$

- observation error $\varepsilon^O = \mathbf{y} - H(\mathbf{x}^{\text{Truth}})$ of average $\bar{\varepsilon}^O$ and covariance

$$\mathbf{R} = \overline{(\varepsilon^O - \bar{\varepsilon}^O)(\varepsilon^O - \bar{\varepsilon}^O)^T}$$

Error variables

Modelling the errors

- background error $\varepsilon^B = \mathbf{x}^B - \mathbf{x}^{\text{Truth}}$ of average $\bar{\varepsilon}^B$ and covariance

$$\mathbf{B} = \overline{(\varepsilon^B - \bar{\varepsilon}^B)(\varepsilon^B - \bar{\varepsilon}^B)^T}$$

- observation error $\varepsilon^O = \mathbf{y} - H(\mathbf{x}^{\text{Truth}})$ of average $\bar{\varepsilon}^O$ and covariance

$$\mathbf{R} = \overline{(\varepsilon^O - \bar{\varepsilon}^O)(\varepsilon^O - \bar{\varepsilon}^O)^T}$$

- analysis error $\varepsilon^A = \mathbf{x}^A - \mathbf{x}^{\text{Truth}}$ of average $\bar{\varepsilon}^A$ and covariance

$$\mathbf{A} = \overline{(\varepsilon^A - \bar{\varepsilon}^A)(\varepsilon^A - \bar{\varepsilon}^A)^T}$$

- measure of the analysis error that we want to minimise

$$\text{tr}(\mathbf{A}) = \overline{\|\varepsilon^A - \bar{\varepsilon}^A\|^2}$$

Assumptions

- Nontrivial errors: \mathbf{B} , \mathbf{R} are positive definite
- Unbiased errors: $\overline{\mathbf{x}^B - \mathbf{x}^{\text{Truth}}} = \overline{\mathbf{y} - H(\mathbf{x}^{\text{Truth}})} = 0$
- Uncorrelated errors: $\overline{(\mathbf{x}^B - \mathbf{x}^{\text{Truth}})(\mathbf{y} - H(\mathbf{x}^{\text{Truth}}))^T} = 0$

Optimal least-squares estimator (3D-Var)

Cost function

Solution of the variational optimisation problem $\mathbf{x}^A = \arg \min J(\mathbf{x})$ where

$$\begin{aligned} J(\mathbf{x}) &= (\mathbf{x} - \mathbf{x}^B)^T \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}^B) + (\mathbf{y} - H(\mathbf{x}))^T \mathbf{R}^{-1} (\mathbf{y} - H(\mathbf{x})) \\ &= J_B(\mathbf{x}) + J_O(\mathbf{x}) \end{aligned}$$

Optimal least-squares estimator (3D-Var)

Cost function

Solution of the variational optimisation problem $\mathbf{x}^A = \arg \min J(\mathbf{x})$ where

$$\begin{aligned} J(\mathbf{x}) &= (\mathbf{x} - \mathbf{x}^B)^T \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}^B) + (\mathbf{y} - H(\mathbf{x}))^T \mathbf{R}^{-1} (\mathbf{y} - H(\mathbf{x})) \\ &= J_B(\mathbf{x}) + J_O(\mathbf{x}) \end{aligned}$$

Four-dimensional variational assimilation (4D-Var)

Minimisation of the cost function

$$J(\mathbf{x}_0) = (\mathbf{x}_0 - \mathbf{x}^B)^T \mathbf{B}^{-1} (\mathbf{x}_0 - \mathbf{x}^B) + \sum_{i=0}^n (\mathbf{y}_i - H_i(\mathbf{x}_i))^T \mathbf{R}_i^{-1} (\mathbf{y}_i - H_i(\mathbf{x}_i))$$

subject to model dynamics $\mathbf{x}_i = M_{0 \rightarrow i} \mathbf{x}_0$.

Minimisation of the 4D-Var cost function

Efficient implementation of J and ∇J :

- forecast state $\mathbf{x}_i = M_{i,i-1} M_{i-1,i-2} \dots M_{1,0} \mathbf{x}_0$
- normalised departures $\mathbf{d}_i = \mathbf{R}_i^{-1} (\mathbf{y}_i - H_i(\mathbf{x}_i))$
- cost function $J_{Oi} = (\mathbf{y}_i - H_i(\mathbf{x}_i))^T \mathbf{d}_i$
- ∇J is calculated by

$$\begin{aligned} -\frac{1}{2} \nabla J_O &= -\frac{1}{2} \sum_{i=0}^n \nabla J_{Oi} \\ &= \sum_{i=0}^n \mathbf{M}_{1,0}^T \dots \mathbf{M}_{i,i-1}^T \mathbf{H}_i^T \mathbf{d}_i \\ &= \mathbf{H}_0^T \mathbf{d}_0 + \mathbf{M}_{1,0}^T [\mathbf{H}_1^T \mathbf{d}_1 + \mathbf{M}_{2,1} [\mathbf{H}_2^T \mathbf{d}_2 + \dots + \mathbf{M}_{n,n-1}^T \mathbf{H}_n^T \mathbf{d}_n] \dots] \end{aligned}$$

- initialise adjoint variable $\tilde{\mathbf{x}}_n = \mathbf{0}$ and then $\tilde{\mathbf{x}}_{i-1} = \mathbf{M}_{i,i-1}^T (\tilde{\mathbf{x}}_i + \mathbf{H}_i^T \mathbf{d}_i)$
etc., $\dots \tilde{\mathbf{x}}_0 = -\frac{1}{2} \nabla J_O$

Outline

1 Introduction

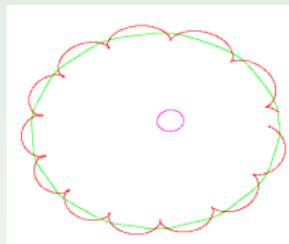
2 Variational Data Assimilation

3 Three-Body Problem

4 Model error

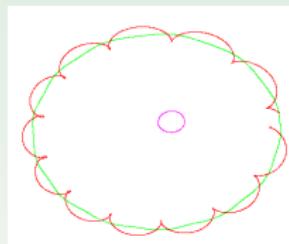
Example - Three-Body Problem

Motion of three bodies in a plane, two position (\mathbf{q}) and two momentum (\mathbf{p}) coordinates for each body $\alpha = 1, 2, 3$



Example - Three-Body Problem

Motion of three bodies in a plane, two position (\mathbf{q}) and two momentum (\mathbf{p}) coordinates for each body $\alpha = 1, 2, 3$



Equations of motion (nondimensionalised)

$$H(\mathbf{q}, \mathbf{p}) = \frac{1}{2} \sum_{\alpha} \frac{|\mathbf{p}_{\alpha}|^2}{m_{\alpha}} - \sum_{\alpha < \beta} \frac{m_{\alpha}m_{\beta}}{|\mathbf{q}_{\alpha} - \mathbf{q}_{\beta}|}$$

$$\frac{d\mathbf{q}_{\alpha}}{dt} = \frac{\partial H}{\partial \mathbf{p}_{\alpha}}$$

$$\frac{d\mathbf{p}_{\alpha}}{dt} = -\frac{\partial H}{\partial \mathbf{q}_{\alpha}}$$

Example - Three-Body problem

- solver: partitioned Runge-Kutta scheme with time step $h = 0.001$
- **observations** are taken as noise from the truth trajectory
- **background** is given from a perturbed initial condition

Example - Three-Body problem

- solver: partitioned Runge-Kutta scheme with time step $h = 0.001$
- **observations** are taken as noise from the truth trajectory
- **background** is given from a perturbed initial condition
- assimilation window is taken 300 time steps
- minimisation of cost function J using a Gauss-Newton method (neglecting all second derivatives)

$$\nabla J(\mathbf{x}_0) = 0$$

$$\nabla \nabla J(\mathbf{x}_0^j) \Delta \mathbf{x}_0^j = -\nabla J(\mathbf{x}_0^j), \quad \mathbf{x}_0^{j+1} = \mathbf{x}_0^j + \Delta \mathbf{x}_0^j$$

- subsequent forecast is take 5000 time steps
- \mathbf{R} is diagonal with variances between 10^{-3} and 10^{-5}

Example- Three-Body problem

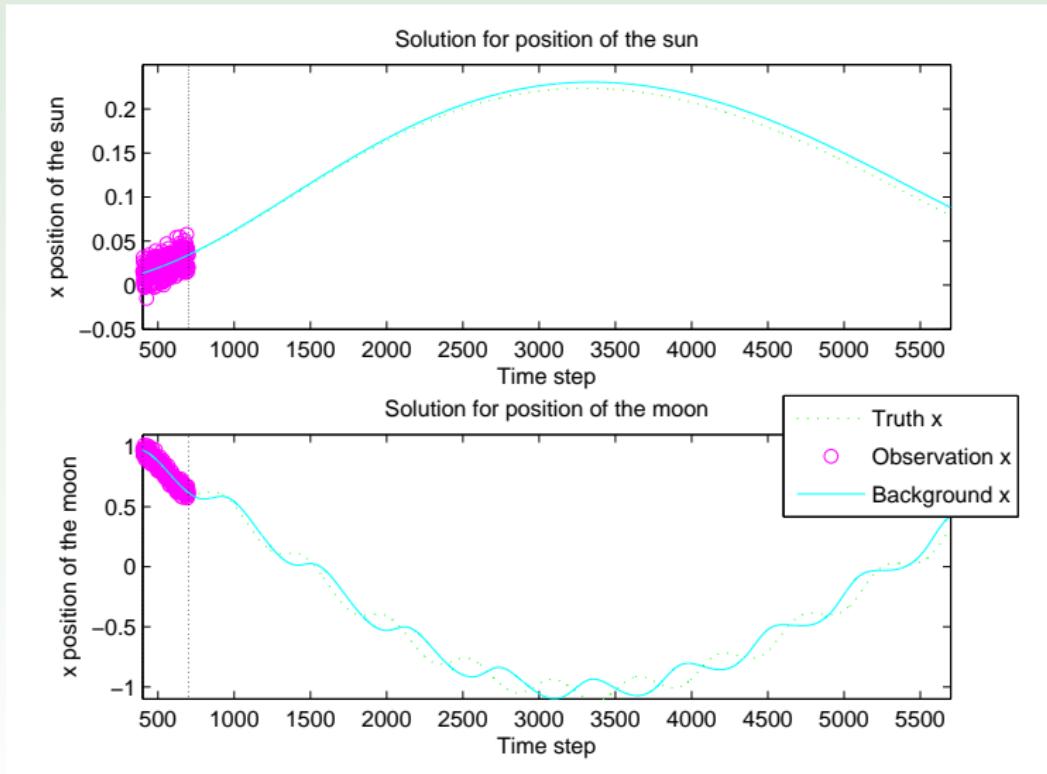


Figure: Truth trajectory with observations and background

Example- Three-Body problem

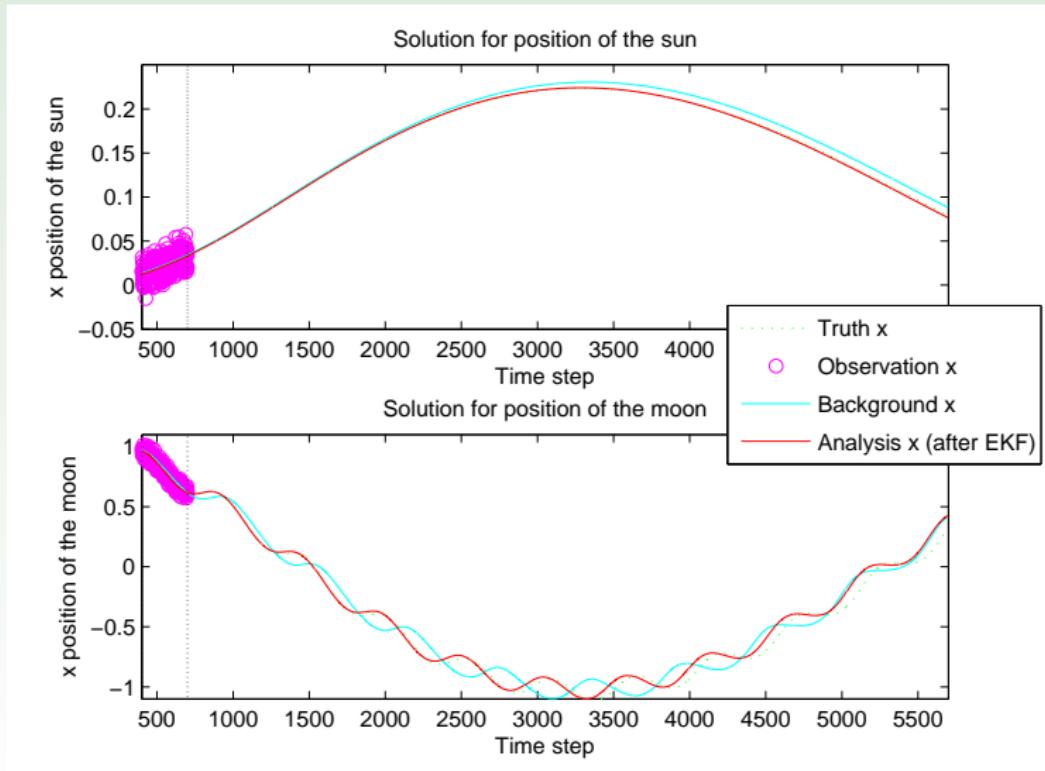


Figure: Analysis

Example- Three-Body problem

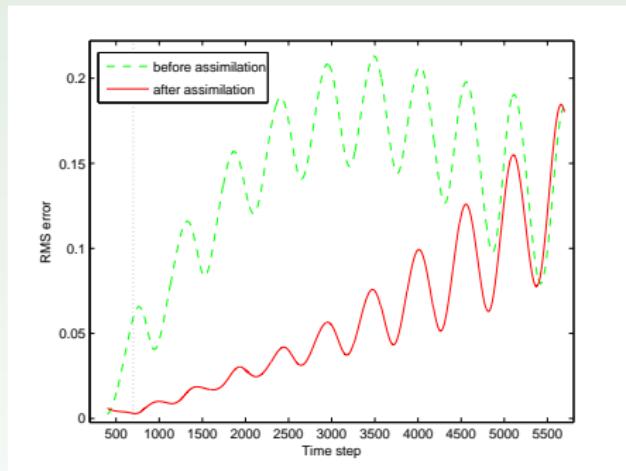


Figure: RMS error

Example- Three-Body problem

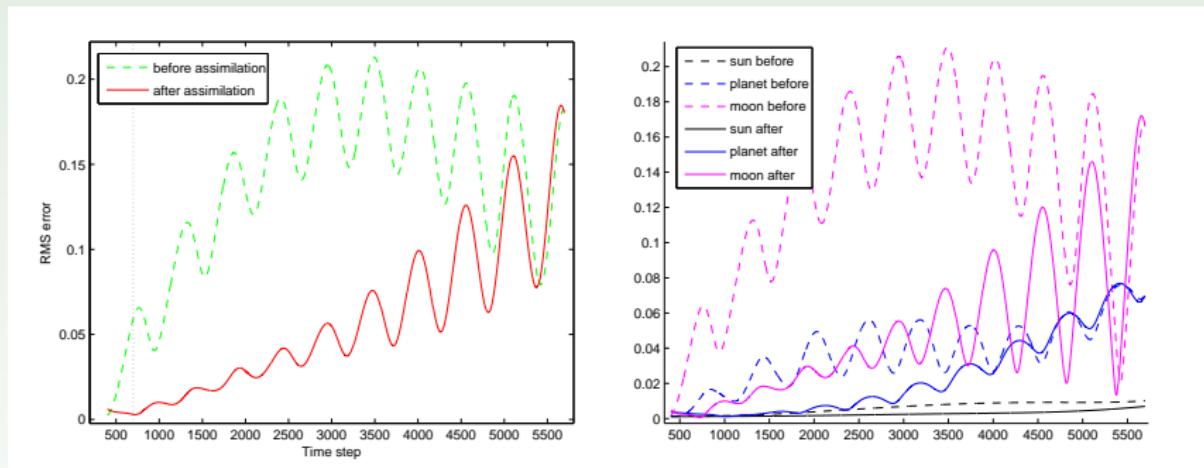


Figure: RMS error

The Kalman Filter Algorithm

State and error covariance forecast

$$\begin{aligned}\text{State forecast} \quad \mathbf{x}_{i+1}^F &= \mathbf{M}_{i+1,i} \mathbf{x}_i^A \\ \text{Error covariance forecast} \quad \mathbf{B}_{i+1}^F &= \mathbf{M}_{i+1,i} \mathbf{B}_i^A \mathbf{M}_{i+1,i}^T + \mathbf{Q}_i\end{aligned}$$

State and error covariance analysis

$$\begin{aligned}\text{Kalman gain} \quad \mathbf{K}_i &= \mathbf{B}_i^F \mathbf{H}_i^T (\mathbf{H}_i \mathbf{B}_i^F \mathbf{H}_i^T + \mathbf{R}_i)^{-1} \\ \text{State analysis} \quad \mathbf{x}_i^A &= \mathbf{x}_i^F + \mathbf{K}_i (\mathbf{y}_i - \mathbf{H}_i \mathbf{x}_i^F) \\ \text{Error covariance of analysis} \quad \mathbf{B}_i^A &= (\mathbf{I} - \mathbf{K}_i \mathbf{H}_i) \mathbf{B}_i^F\end{aligned}$$

Example - Three-Body Problem

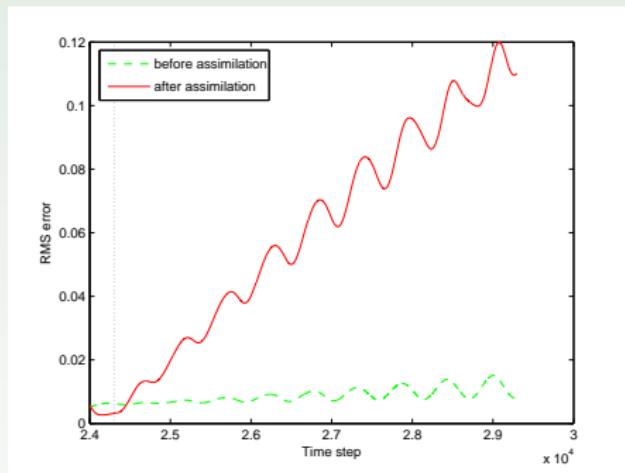


Figure: 4D-Var with $\mathbf{B} = \mathbf{I}$

Example - Three-Body Problem

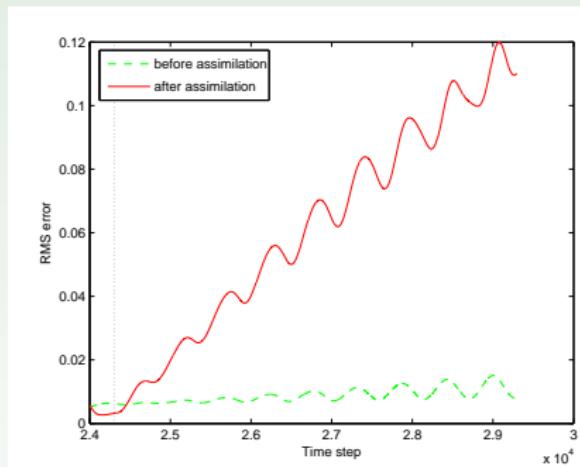


Figure: 4D-Var with $\mathbf{B} = \mathbf{I}$

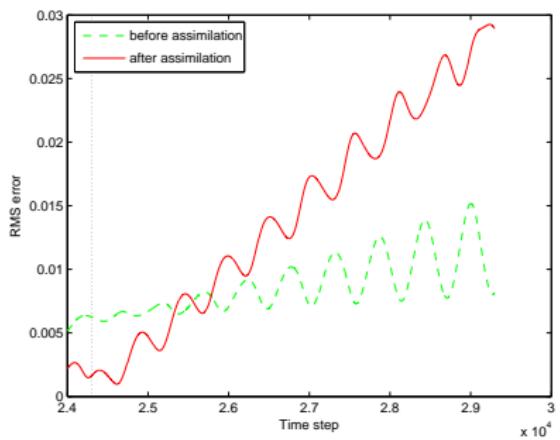


Figure: 4D-Var with $\mathbf{B} = \mathbf{P}^A$

Outline

1 Introduction

2 Variational Data Assimilation

3 Three-Body Problem

4 Model error

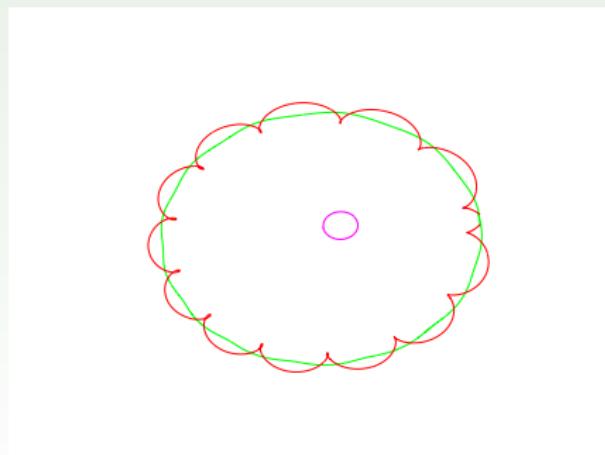
Changing the masses of the bodies

DA needs Model error!

$$m_s = 1.0 \rightarrow m_s = 1.1$$

$$m_p = 0.1 \rightarrow m_p = 0.11$$

$$m_m = 0.01 \rightarrow m_m = 0.011$$



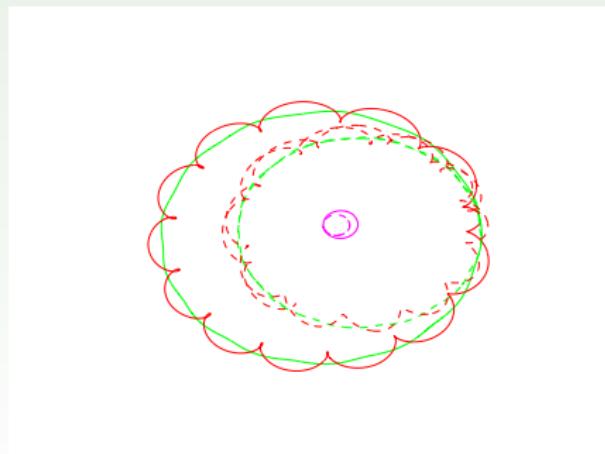
Changing the masses of the bodies

DA needs Model error!

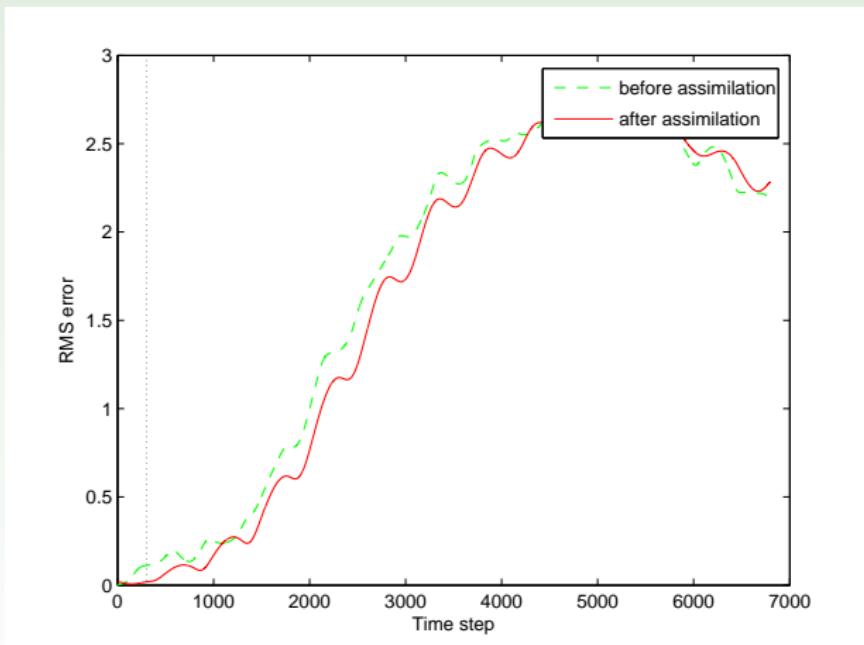
$$m_s = 1.0 \rightarrow m_s = 1.1$$

$$m_p = 0.1 \rightarrow m_p = 0.11$$

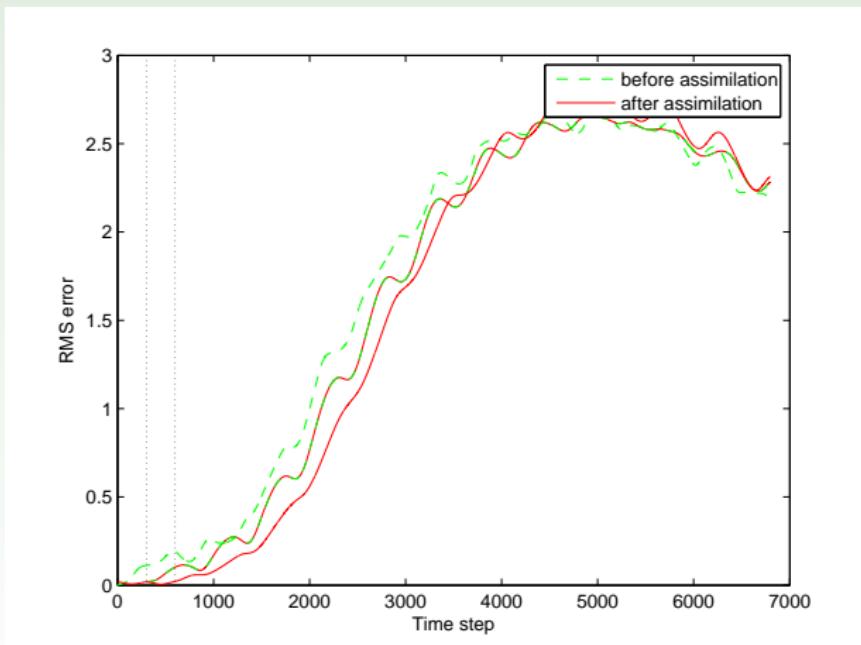
$$m_m = 0.01 \rightarrow m_m = 0.011$$



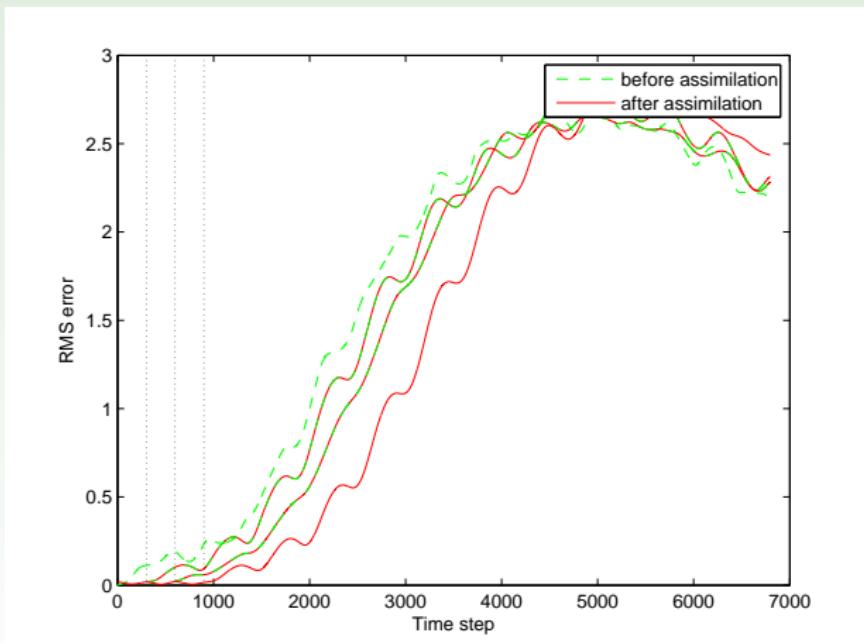
Changing the masses of the bodies



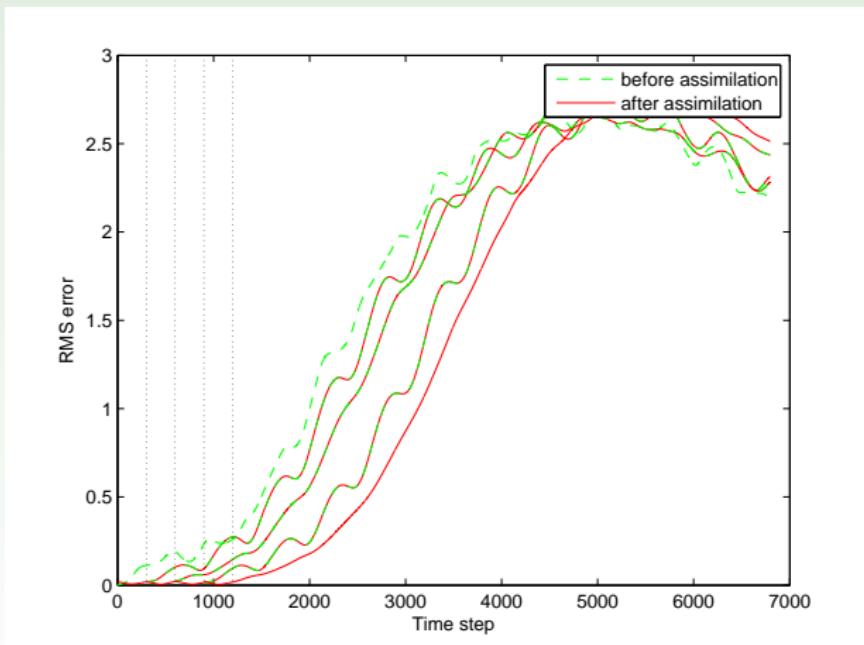
Changing the masses of the bodies



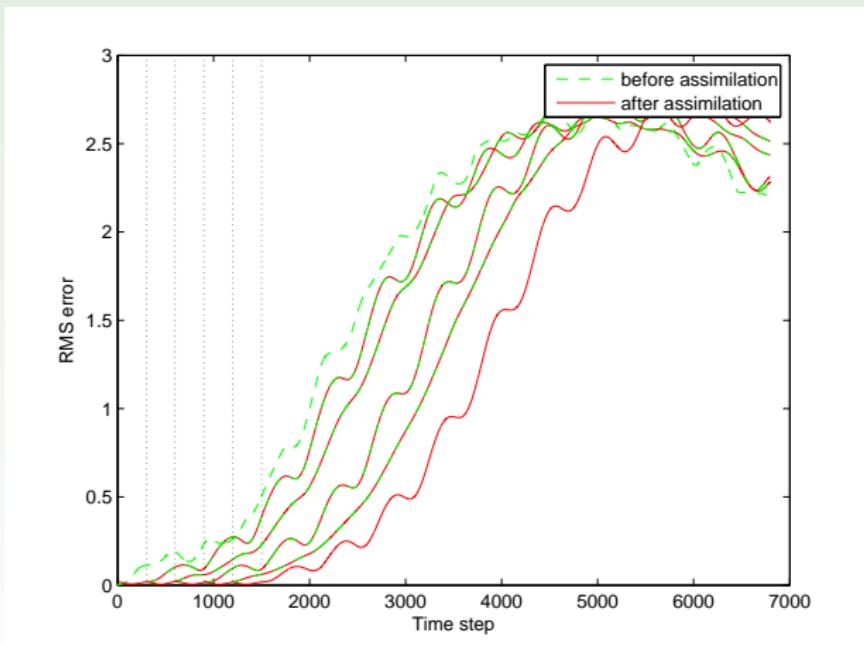
Changing the masses of the bodies



Changing the masses of the bodies

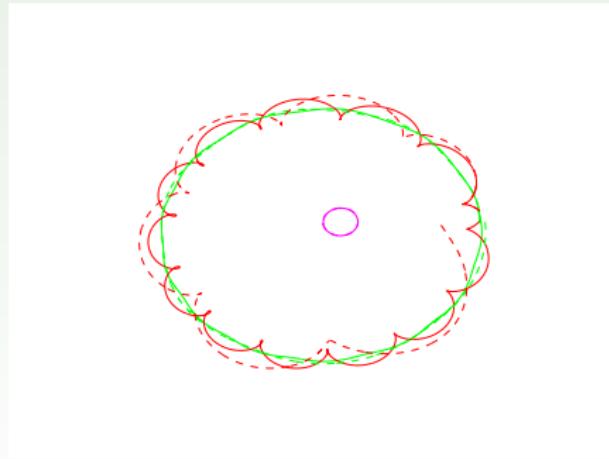


Changing the masses of the bodies

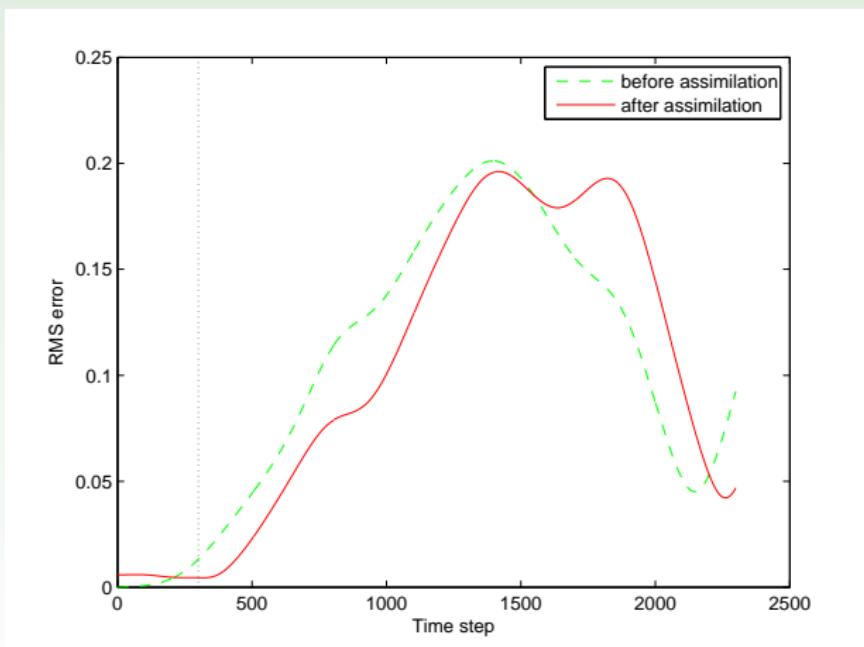


Changing numerical method

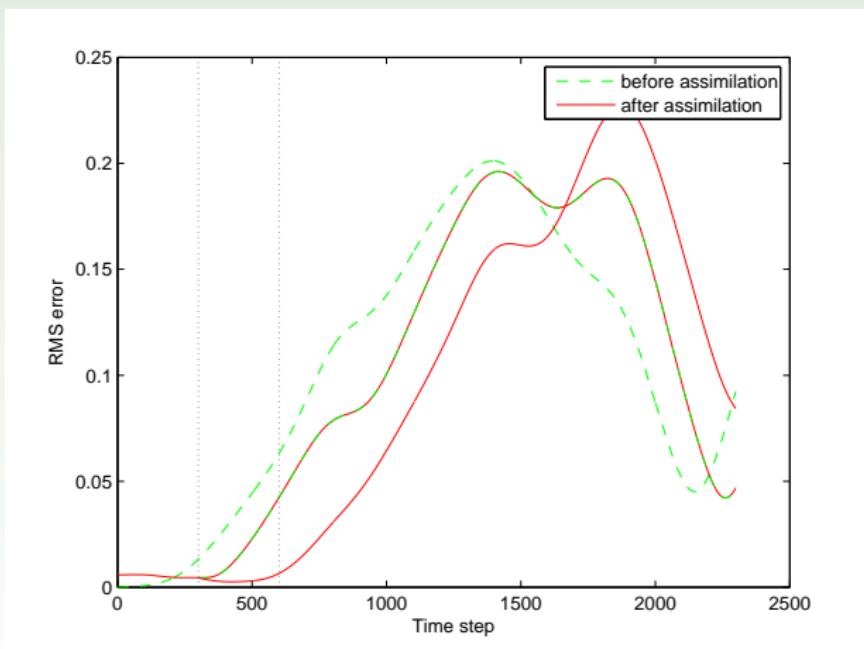
- **Truth trajectory:** 4th order Runge-Kutta method with local truncation error $\mathcal{O}(\Delta t^5)$
- **Model trajectory:** Explicit Euler method with local truncation error $\mathcal{O}(\Delta t^2)$



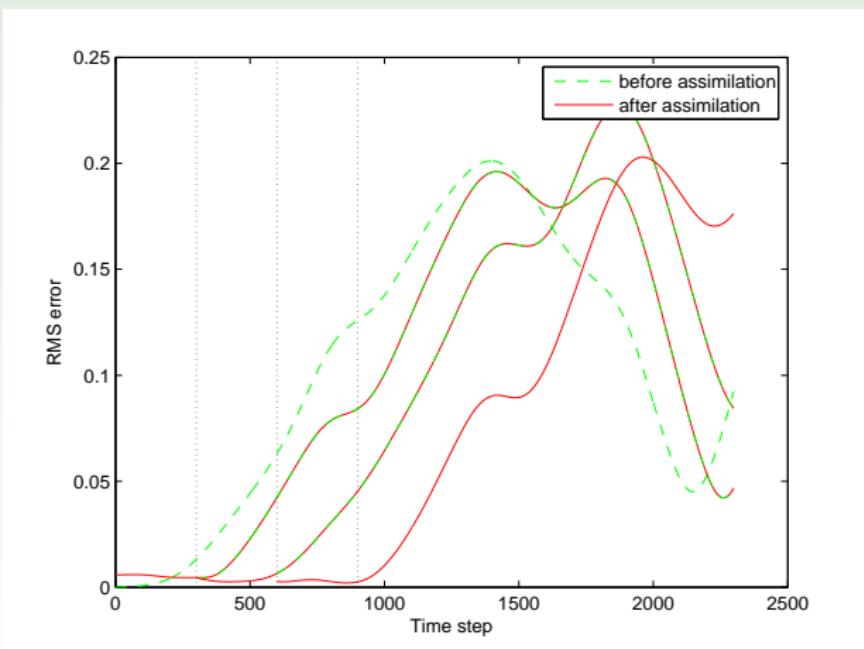
Changing numerical method



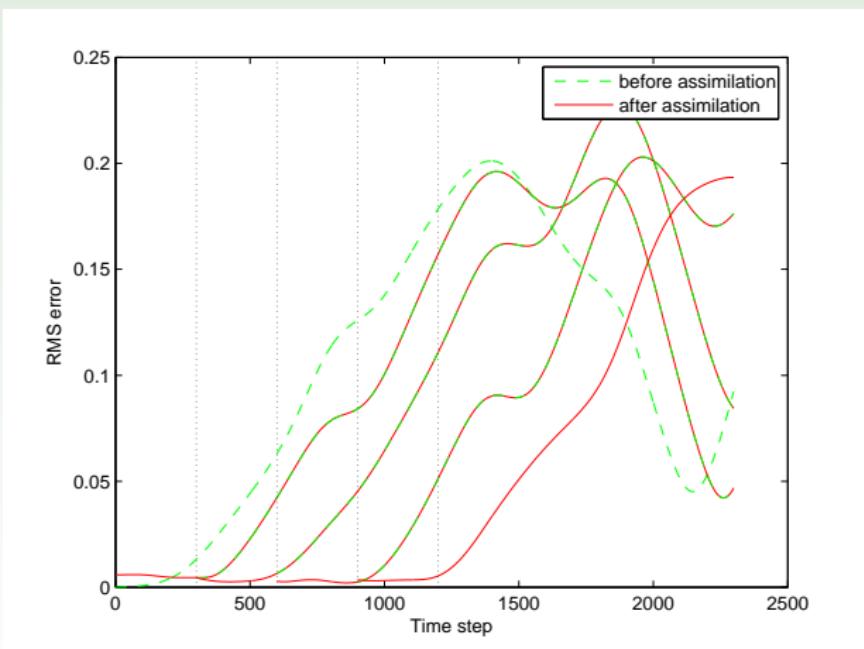
Changing numerical method



Changing numerical method



Changing numerical method



Problem

Estimation of the background error covariance matrix \mathbf{B}

- Kalman Filter approach does not work

Problem

Estimation of the background error covariance matrix \mathbf{B}

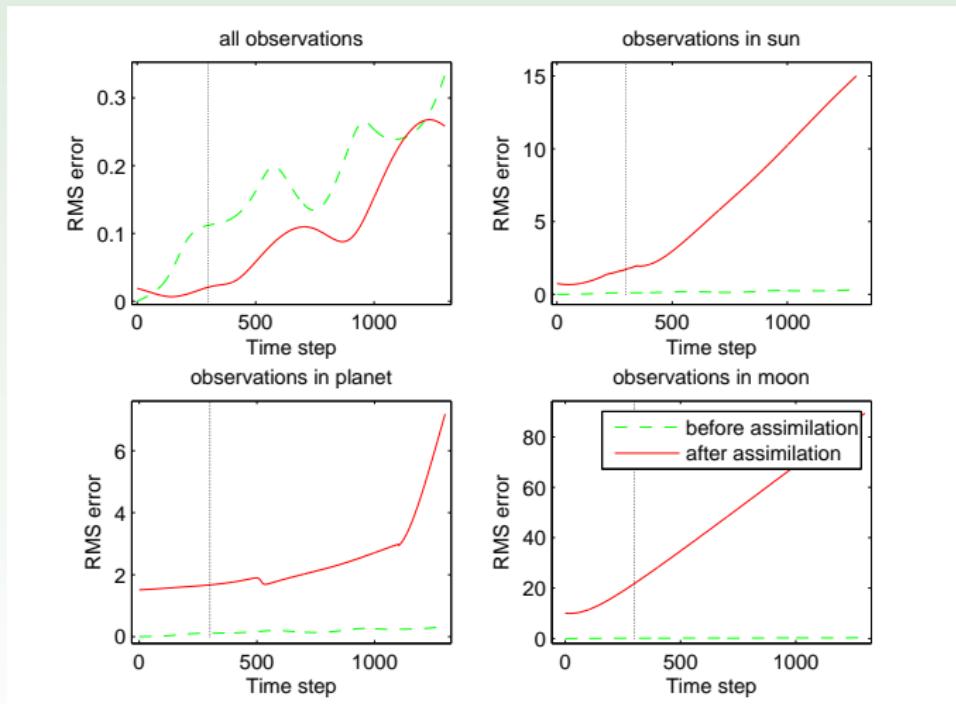
- Kalman Filter approach does not work
- $\mathbf{B} = \mathbf{I}$ appears to be the best result

Problem

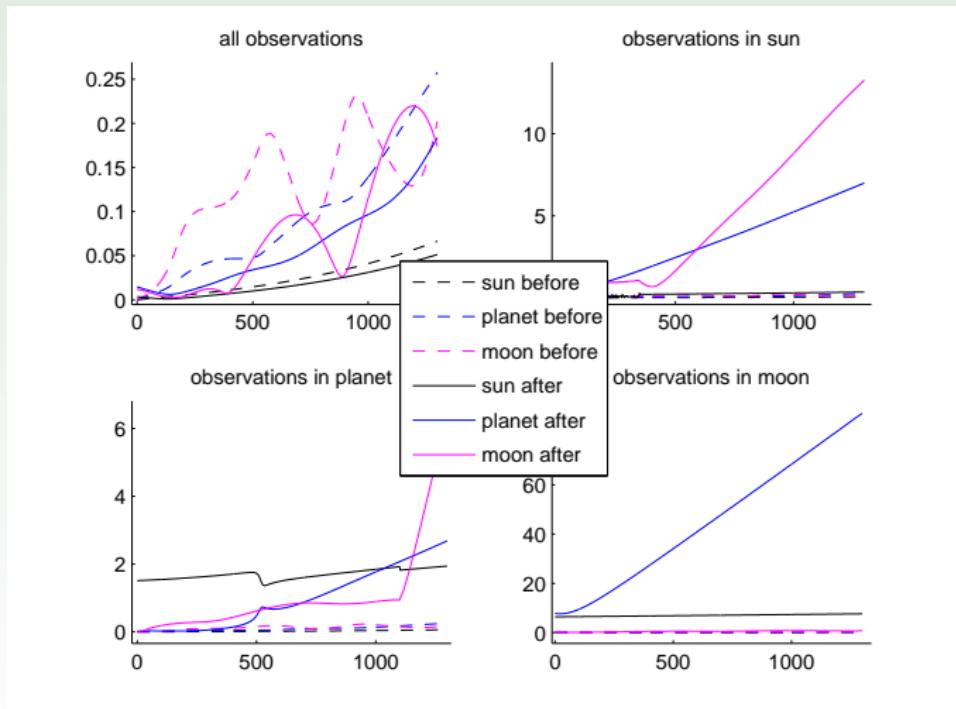
Estimation of the background error covariance matrix \mathbf{B}

- Kalman Filter approach does not work
- $\mathbf{B} = \mathbf{I}$ appears to be the best result
- Problem too easy?

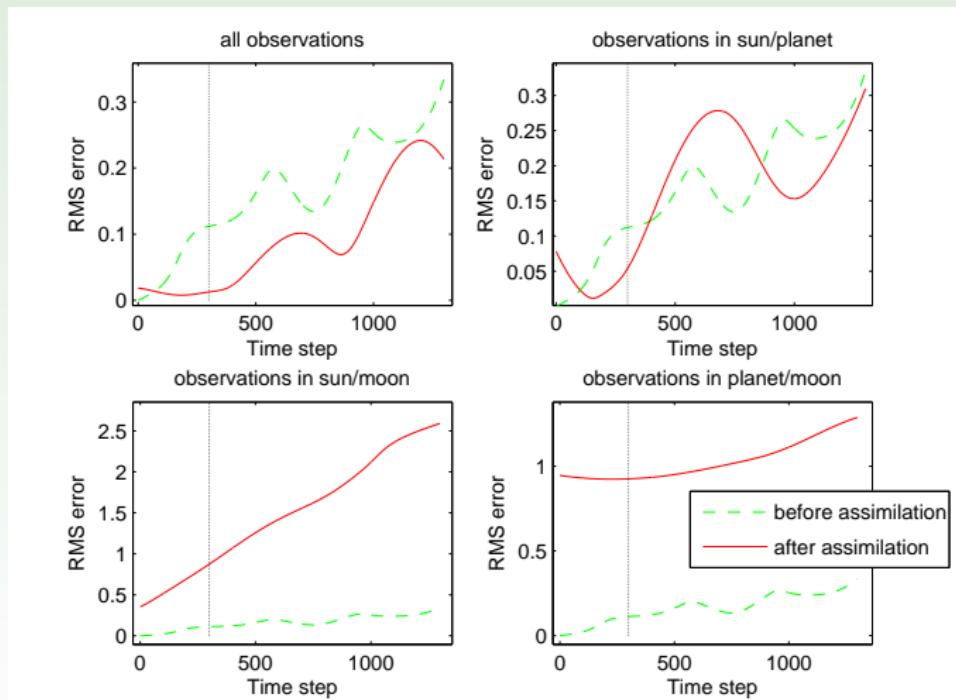
Observations in different time scales $B = I$, large model error



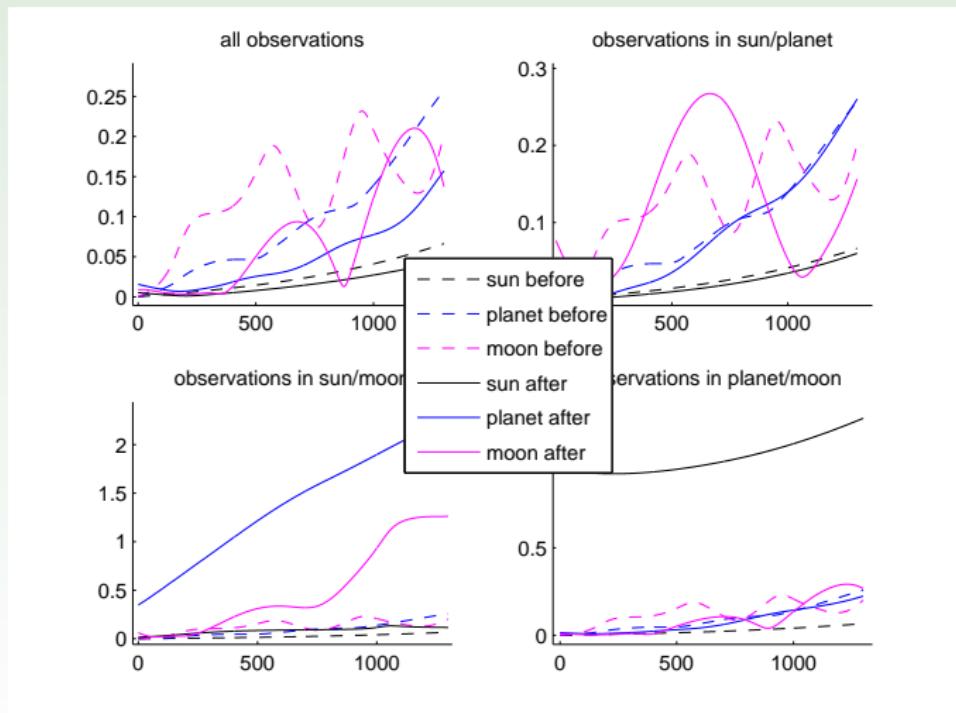
Observations in different time scales $B = I$, large model error



Observations in different time scales $B = I$, large model error



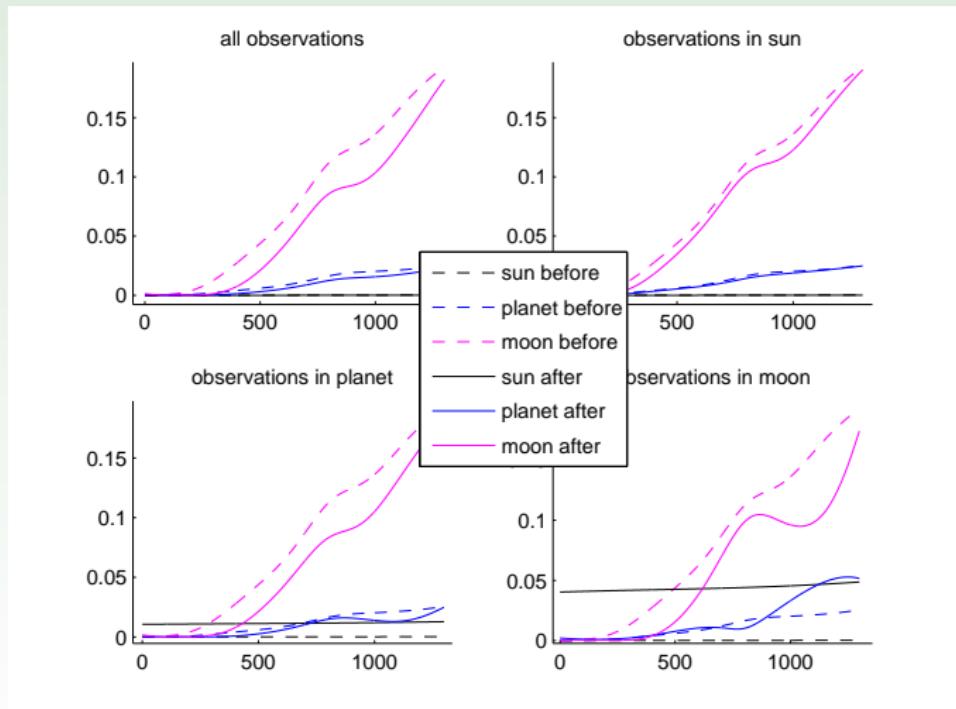
Observations in different time scales $B = I$, large model error



Perfect observations in different time scales $B = I$, large model error



Perfect observations in different time scales $B = I$, small model error



Making the Three-Body Problem chaotic

Parameters (Chaotic shuffling of the moon)

$$m_s = 0.5$$

$$m_p = 0.5$$

$$m_m = 0.0$$

Choose initial position and velocity of the moon such that problem becomes chaotic.

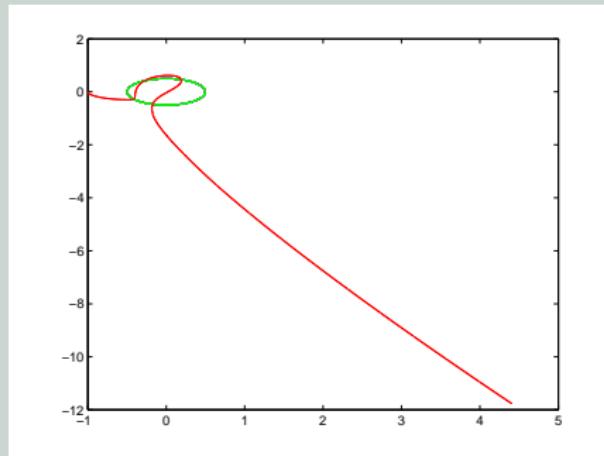
$$H(\mathbf{q}, \mathbf{p}) = \frac{1}{2} \sum_{\alpha} \frac{|\mathbf{p}_{\alpha}|^2}{m_{\alpha}} - \sum_{\alpha < \beta} \frac{m_{\alpha}m_{\beta}}{|\mathbf{q}_{\alpha} - \mathbf{q}_{\beta}|}$$

$$\frac{d\mathbf{q}_{\alpha}}{dt} = \frac{\partial H}{\partial \mathbf{p}_{\alpha}}$$

$$\frac{d\mathbf{p}_{\alpha}}{dt} = -\frac{\partial H}{\partial \mathbf{q}_{\alpha}}$$

Making the Three-Body Problem chaotic

Solve using PRK

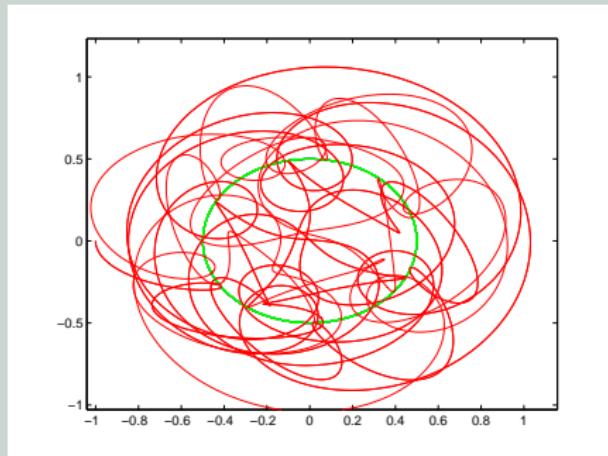


Problem: singularities in the numerical scheme as bodies approach each other:

$$H(\mathbf{q}, \mathbf{p}) = \frac{1}{2} \sum_{\alpha} \frac{|\mathbf{p}_{\alpha}|^2}{m_{\alpha}} - \sum_{\alpha < \beta} \frac{m_{\alpha} m_{\beta}}{|\mathbf{q}_{\alpha} - \mathbf{q}_{\beta}|}$$

Making the Three-Body Problem chaotic

Solve using PRK with adaptive time stepping



$$\text{Time step } h = \frac{h_{\text{start}}}{r_{12}^{-2} + r_{13}^{-2} + r_{23}^{-2}}$$

Making the Three-Body Problem chaotic

Adaptive time stepping

- Time step $h = \frac{h_{\text{start}}}{r_{12}^{-2} + r_{13}^{-2} + r_{23}^{-2}}$

Adaptive time stepping

- Time step $h = \frac{h_{\text{start}}}{r_{12}^{-2} + r_{13}^{-2} + r_{23}^{-2}}$
- Problem: Data Assimilation with adaptive time stepping?

Making the Three-Body Problem chaotic

Adaptive time stepping

- Time step $h = \frac{h_{\text{start}}}{r_{12}^{-2} + r_{13}^{-2} + r_{23}^{-2}}$
- Problem: Data Assimilation with adaptive time stepping?
- Truth trajectory - Model trajectory

Making the Three-Body Problem chaotic

Adaptive time stepping

- Time step $h = \frac{h_{\text{start}}}{r_{12}^{-2} + r_{13}^{-2} + r_{23}^{-2}}$
- Problem: Data Assimilation with adaptive time stepping?
- Truth trajectory - Model trajectory
- weighting

Plans

- design a simple chaotic model of reduced order (Lorenz model)
- include several time scales (to model the atmosphere)

Plans

- design a simple chaotic model of reduced order (Lorenz model)
- include several time scales (to model the atmosphere)
- identify and analyse model error and analyse influence of this model error onto the DA scheme
- analyse the influence of the error made by the numerical approximation (part of the model error) on the error in the DA scheme
- compare assimilation algorithms and optimisation strategies to reduce existing errors

Plans

- design a simple chaotic model of reduced order (Lorenz model)
- include several time scales (to model the atmosphere)
- identify and analyse model error and analyse influence of this model error onto the DA scheme
- analyse the influence of the error made by the numerical approximation (part of the model error) on the error in the DA scheme
- compare assimilation algorithms and optimisation strategies to reduce existing errors
- improve the forecast of small scale features (like convective storms)