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Data Assimilation in NWP
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Data Assimilation in NWP

Estimate the state of the atmosphere x;.

. . Observations
A priori information x” y

Satellites
Ships and buoys

m background state (usual
previous forecast)

m Surface stations

Modlkelk Aeroplanes
m a model how the atmosphere

evolves in time (imperfect) Assimilation algorithms

Xit1 = M(x;) m used to find an (approximate)
state of the atmosphere x; at
m a function linking model space times 4 (usually ¢ = 0)
and observation space m using this state a forecast for
(imperfect) future states of the atmosphere
can be obtained
yi = H(xi)

m x: Analysis (estimation of the
true state after the DA) ATH



Schematics of DA

State x

time

Figure: Background state xB
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Schematics of DA
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Figure: Observations y
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Schematics of DA

State x

time

Figure: Analysis x* (consistent with observations and model dynamics)
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Data Assimilation in NWP

Underdeterminacy

m Size of the state vector x: 432 x 320 x 50 x 7 = O(107)
m Number of observations (size of y): O(10° — 10°)
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Data Assimilation in NWP

Estimate the state of the atmosphere x;.

Observations y has errors!

. . B
Apriori information x

Satellites

m background state (usual Ships and buoys

previous forecast) has errors!

m Surface stations

Aeroplanes
Models

m a model how the atmosphere Assimilation algorithms

evolves in time (imperfect)
m used to find an (approximate)

Xi+1 = M(x;) + error state of the atmosphere x; at

s times 4 (usually ¢ = 0)
m a function linking model space

and observation space
(imperfect)

m using this state a forecast for
future states of the atmosphere
can be obtained

yi = H(x:) + error m x“': Analysis (estimation of the

true state after the DA)
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Error variables

Modelling the errors

m background error eZ = x? — x™" of average 2 and covariance

B =(cB —2P)(c? —28)T
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Error variables

Modelling the errors

m background error eZ = x? — x™" of average 2 and covariance

B =(cB —2P)(c? —28)T

m observation error €€ =y — H(x™"*") of average ° and covariance

R = (e0 —9)(c0 — 20)7

. Trutt = .
m analysis error e = x* — xT* of average * and covariance

A=(cA—eN) (A —eNT

m measure of the analysis error that we want to minimise
tr(A) = [e4 — 4|
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Assumptions

m Nontrivial errors: B, R are positive definite
m Unbiased errors: xB — xTruth — y — f(xTruth) = (

m Uncorrelated errors: (xB — xTruth)(y — H(xTruth))T = (




Optimal least-squares estimater (3D-Var)

Cost function

Solution of the variational optimisation problem x“

= arg minJ(x) where
Jx) = (x-x")"B(x—x")+(y-Hx)"R'(y - H(x)

= Js(x)+ Jo(x)
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Optimal least-squares estimater (3D-Var)

Cost function

A

Solution of the variational optimisation problem x* = arg minJ(x) where

Jx) = (x=x")"B7'(x—x")+(y—-Hx)"R ' (y - H(x))
= Js(x)+ Jo(x)

Four-dimensional variational assimilation (4D-Var)

Minimisation of the cost function
J(x0) = (x0 —x")" B (%0 — x”) + Z VTR (ys — Hi(x:))

subject to model dynamics x; = Mo—;Xo.




Minimisation of the 4D-Var cost function

Efficient implementation of J and VJ:
m forecast state x; = M; -1 M;—1,i—2 ... Mi,0Xo
m normalised departures d; = R; ' (y; — Hi(x:))
m cost function Jo; = (yi — H,,;(xi))Td,,;
m VJ is calculated by

—% ;woz-

n
z : T r T
= Ml,() e Mi,i—lHi dq,
=0

1
—=VJ
5 vVJo

= Hido+ M o[H{di +Ma:[Hids+...+ M}, Hid,]...]

m initialise adjoint variable X, = 0 and then X;_; = Mg:i_l(fci + HleZ)
etc., ...Xo = —3VJo
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Outline

Three-Body Problem
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Example - Three-Body Problem

coordinates for each body a =1, 2,3

Motion of three bodies in a plane, two position (q) and two momentum (p)
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Example - Three-Body Problem

Motion of three bodies in a plane, two position (q) and two momentum (p)
coordinates for each body a =1, 2,3

Equations of motion (nondimensionalised)

Hap) = (Y By 3 e

a<p
dqgo. OH
dt  Opa
dpa OH

o R



Example - Three-Body problem

m solver: partitioned Runge-Kutta scheme with time step A = 0.001
m observations are taken as noise from the truth trajectory

m background is given from a perturbed initial condition
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Example - Three-Body problem

solver: partitioned Runge-Kutta scheme with time step h = 0.001
observations are taken as noise from the truth trajectory
background is given from a perturbed initial condition
assimilation window is taken 300 time steps

minimisation of cost function J using a Gauss-Newton method
(neglecting all second derivatives)

VJ(X()) =0
VVJ(x))Ax) = =V J(x)), x)*'=x)+ Ax)

subsequent forecast is take 5000 time steps

R is diagonal with variances between 102 and 10~°
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ample- Three-Body problem

Solution for position of the sun
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Figure: Truth trajectory with observations and background %—



ample- Three-Body problem

Solution for position of the sun
T T T T T
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ample- Three-Body problem

before assimilation|

after assimilation
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Figure: RMS error
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Three-Body problem
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Figure: RMS error
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The Kalman Filter Algorithm

State and error covariance forecast

State forecast xi,; = M,y 1ixi
AT
M;11,:Bi Mt ; +Q:

. F
Error covariance forecast Bjy;

State and error covariance analysis

Kalman gain K; = B/H;(H;B/H! +R;)"'
State analysis xfl = xf +Ki(y: — Hle)
Error covariance of analysis Bfl = (I- KIHI)BlF
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Example - Three-Body Problem

before assimilation|
after assimilation
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Figure: 4D-Var with B =1
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cample - Three-Body Problem
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Outline

Model error
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Changing the masses of the bodies

DA needs Model error!

ms=10 — ms=1.1
my =01 — my=0.11
mm =0.01 — m,, =0.011

g
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Changing the masses of the bodies

3 T T T T T T
before assimilation
after assimilation
25 4
2r 4

RMS error
=
C
T
I

05 B

ad

0 . . . .
0 1000 2000 3000 4000 5000 6000 7000
Time step




Changing the masses of the bodies

RMS error
=
C
T
I

05 / B

0 f . . . . .
0 1000 2000 3000 4000 5000 6000 7000
Time step




Changing the masses of the bodies
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Changing the masses of the bodies
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Changing the masses of the bodies

RMS error
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Changing numerical method

m Truth trajectory: 4th order Runge-Kutta method with local truncation
error O(At®)

m Model trajectory: Explicit Euler method with local truncation error
O(A?)
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Changing numerical method
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Changing numerical method
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Changing numerical method

RMS error
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Problem

Estimation of the background error covariance matrix B

m Kalman Filter approach does not work
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Problem

Estimation of the background error covariance matrix B

m Kalman Filter approach does not work

m B =1 appears to be the best result




Problem

Estimation of the background error covariance matrix B

m Kalman Filter approach does not work
m B =1 appears to be the best result

m Problem too easy?




ations in different time scales B = I, large model error

all observations observations in sun
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ations in different time scales B = I, large model error
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ations in different time scales B = I, large model error

all observations observations in sun/planet
0.3 03
_ _ 025
e e
T 0.2 g 02
2 2 015
%01 % 01
0.05
0
0 500 1000 0 500 1000
Time step Time step
observations in sun/moon observations in planet/moon
25
. 2 .1
e g
3 15 @ before assimilation
g g after assimilation
x 1! g 05
0.5
0 0
0 500 1000 0 500 1000

Time step Time step

A UNIVERSITY OF




ations in different time scales B = I, large model error

all observations observations in sun/planet
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observations in different time scales B = I, large model error
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Making the Three-Body Problem chaotic

Parameters (Chaotic shuffling of the moon)

ms = 0.5
my, = 0.5
mm = 0.0

Choose initial position and velocity of the moon such that problem becomes
chaotic.

1 o o
Hap) = §ylel_gryn mems

a<p
dqgo. _  OH
dt  Opa
dpo OH
dt T 0qa
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Making the Three-Body Problem chaotic

Solve using PRK

Problem: singularities in the numerical scheme as bodies approach each

other: . | |
1 Pa _Mamg
2 za: Ma -2 |9a — qg

a<p
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Making the Three-Body Problem chaotic

Solve using PRK with adaptive time stepping

-1 — _

-1 -08 -06 -04 -02 0 02 04 06 08 1

hstar
Time step h = start

UNIVERSITY OF



Making the Three-Body Problem chaotic

Adaptive time stepping

hstart

m Time step h = I R E—
T1g +T13 + T3
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Making the Three-Body Problem chaotic

Adaptive time stepping
hstart
—2 = —2
Tig + T3 + 7oz

m Problem: Data Assimilation with adaptive time stepping?

m Time step h =
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Making the Three-Body Problem chaotic

Adaptive time stepping
hstart
—2 = —2
Tig + T3 + 7oz

m Problem: Data Assimilation with adaptive time stepping?

m Time step h =

m Truth trajectory - Model trajectory
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Making the Three-Body Problem chaotic

Adaptive time stepping
hstart
—2 = —2
Tig + T3 + 7oz

m Problem: Data Assimilation with adaptive time stepping?

m Time step h =

m Truth trajectory - Model trajectory
m weighting
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Plans

m design a simple chaotic model of reduced order (Lorenz model)

m include several time scales (to model the atmosphere)
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Plans

design a simple chaotic model of reduced order (Lorenz model)
include several time scales (to model the atmosphere)

identify and analyse model error and analyse influence of this model
error onto the DA scheme

analyse the influence of the error made by the numerical
approximation (part of the model error) on the error in the DA scheme

compare assimilation algorithms and optimisation strategies to reduce
existing errors
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Plans

design a simple chaotic model of reduced order (Lorenz model)
include several time scales (to model the atmosphere)

identify and analyse model error and analyse influence of this model
error onto the DA scheme

analyse the influence of the error made by the numerical
approximation (part of the model error) on the error in the DA scheme

compare assimilation algorithms and optimisation strategies to reduce
existing errors

improve the forecast of small scale features (like convective storms)
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