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The MetOffice weather forecast for today (18/01/2011)

Forecast Bath: White Cloud, Temperature 0◦ - 4◦ Celsius, Wind 17 mph.
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The UK MetOffice forecast over the last 40 years
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Observation network
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Global model

Introduce a 3D grid covering the atmosphere:
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Global model

Introduce a 3D grid covering the atmosphere:

In each of the 432× 320× 50 grid points we have 7 variables (pressure,
humidity, temperature, wind speed).

Size of the state vector x: 432 × 320 × 50 × 7 ≈ 107.
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Observations
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Observations and state vector

We put all the observations into a vector y (size ≈ 105
− 106).

Size of the state vector x: 432 × 320 × 50 × 7 ≈ 107.

y = H(x) maps from state space into observation space.

Problem is under-determined and the observations are very irregular.
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Wanted: estimate xi (time i) for the true atmospheric state

Observations yi

Satellites, ships and buoys,
surface stations, aeroplanes
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Wanted: estimate xi (time i) for the true atmospheric state

Model

model for the atmosphere

xi+1 = M(xi)

Observations yi

Satellites, ships and buoys,
surface stations, aeroplanes
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Wanted: estimate xi (time i) for the true atmospheric state

Model

model for the atmosphere

xi+1 = M(xi)

link between model and observation
space yi = H(xi)

Observations yi

Satellites, ships and buoys,
surface stations, aeroplanes

A priori information xB

i

Background state (previous
forecast)

Assimilation algorithms

find an (approximate) state of the atmosphere xi at time i

forecast future states of the atmosphere
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Wanted: estimate xi (time i) for the true atmospheric state

Model has errors!

model for the atmosphere

xi+1 = M(xi)

link between model and observation
space yi = H(xi)

Observations yi have errors!

Satellites, ships and buoys,
surface stations, aeroplanes

A priori information xB

i

Background state (previous
forecast) has errors!

Assimilation algorithms

find an (approximate) state of the atmosphere xi at time i

forecast future states of the atmosphere
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Schematics of Data Assimilation (in 1D)

Figure: Previous forecast x
B
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Schematics of Data Assimilation (in 1D)

Figure: Observations y
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Schematics of Data Assimilation (in 1D)

Figure: Analysis x
A (consistent with observations and model dynamics)
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Four-dimensional variational assimilation (4DVar)
Minimise the cost function

J(x0) = (x0 − xB

0 )TB−1(x0 − xB

0 ) +
n∑

i=0

(yi − H(xi))
TR−1

i
(yi − H(xi))

subject to model dynamics xi = M0→ix0.

Figure: Copyright:ECMWF
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Inverse Problems

Data Assimilation belongs to the class of Inverse Problems
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Figure: Solution to a ”chaotic” problem
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Resolution
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Challenges in Data Assimilation

forecast needs to be improved at smaller ”spacial scales” and ”time
scales” in order to forecast severe weather events

increasing the model resolution leads to computational challenges -
efficient implementations of Data Assimilation algorithms
several components of the Data Assimilation process need to be
improved

model error
estimating the correct covariance matrices
using better algorithms in order to forecast sharp fronts
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