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Challenges in Data Assimilation

The MetOffice weather forecast for today (18/01/2011)

Tue 18 Jan, deytime Clouds, wind and temp_emture Tue 18 Jan, daytime

Forecast Bath: White Cloud, Temperature 0° - 4° Celsius, Wind 17 mph.
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The UK MetOffice forecast over the last 40 years

Accuracy

Met Office
| RMS surface pressure error over the NE Atlantic
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ssimilation for NWP Challenges in Data Assimilation

Observation network
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Data Assimilation for NWP

Global model

Introduce a 3D grid covering the atmosphere:
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ation for NWP

Global model

Introduce a 3D grid covering the atmosphere:

m In each of the 432 x 320 x 50 grid points we have 7 variables (pressure,
humidity, temperature, wind speed).

m Size of the state vector x: 432 x 320 x 50 x 7 ~ 107, _
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milation for NWP

Observations

ECMWF Data Coverage (All obs DA) - SYNOP/SHIP ECMWF Data Coverage (All obs DA) - BUOY
21/APR/2008; 00 UTC 21/APR/2008; 00 UTC
_Total number of obs = 28683 Total number of obs = 7438

ECMWF Data Coverage (All obs DA) - AIRCRAFT ECMWF Data Coverage (All obs DA) - ATOVS
21/APR/2008; 00 UTC 21/APR/2008; 0D UTC
Total number of obs = 51809 Total number of oba = 341239
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Data Assimilation for NWP

Observations and state vector

m We put all the observations into a vector y (size ~ 10° — 10°).
m Size of the state vector x: 432 x 320 x 50 x 7 ~ 107,
m y = H(x) maps from state space into observation space.

m Problem is under-determined and the observations are very irregular.
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Data Assimilation for NWP

Wanted: estimate x; (time ¢) for the true atmospheric state

Observations y;

Satellites, ships and buoys,
surface stations, aeroplanes
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Data Assimilation for NWP

Wanted: estimate x; (time ¢) for the true atmospheric state

Observations y;
Model — " i
tellit 1
model for the atmosphere ALETLLES, SUPS anc buoys,
surface stations, aeroplanes

Xi+1 = M(XZ)
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Data Assimilation for NWP

Wanted: estimate x; (time ¢) for the true atmospheric state

Observations y;

Model

model for the atmosphere Satellites, ships and buoys,

surface stations, aeroplanes
Xi+1 = M(XZ)

link between model and observation
space y; = H(x;)
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Data Assimilation for NWP Challenges v Assimilation

Wanted: estimate x; (time ¢) for the true atmospheric state

Observations y;

Model

model for the atmosphere Satellites, ships and buoys,

surface stations, aeroplanes
Xi+1 = M(XZ)

A priori information
link between model and observation

space y; = H(x;) Background state (previous

forecast)
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Data Assimilation for NWP Challenges in Data Assimilation

Wanted: estimate x; (time ¢) for the true atmospheric state

Observations y;

Model

model for the atmosphere Satellites, ships and buoys,

surface stations, aeroplanes
Xi+1 = M(XZ)

A priori information

link between model and observation

space y; = H(x;) Background state (previous

forecast)

Assimilation algorithms

m find an (approximate) state of the atmosphere x; at time 4

m forecast future states of the atmosphere Y
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Data Assimilation for NWP

Wanted: estimate x; (time ¢) for the true atmospheric state

Model
Satellites, ships and buoys,

model for the atmosphere .
surface stations, aeroplanes

Xi+1 = M(XZ)

A priori information
link between model and observation

space y; = H(x;) Background state (previous

forecast) has errors!

Assimilation algorithms

m find an (approximate) state of the atmosphere x; at time 4

m forecast future states of the atmosphere
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Data milation for NWP

Schematics of Data Assimilation (in 1D)

State x

time
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Data milation for NWP

Schematics of Data Assimilation (in 1D)
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milation for NWP
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Four-dimensional variational assimilation (4DVar)
Minimise the cost function

J(x0) = (%0 — x7) B~ (x0 — x{) +Z H(x) "Ry (yi — H(x,))

subject to model dynamics x; = M0_>ix0.
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Data Assimilation for NWP

Four-dimensional variational assimilation (4DVar)
Minimise the cost function

J(x0) = (x0 — x§) B (x0 — x§) +

subject to model dynamics x; = My_.;Xg.
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nilation for NWP

Four-dimensional variational assimilation (4DVar)
Minimise the cost function

J(x0) = (x0 — x¢ )" B (x0 — x¢ ) + Z H(x;) "Ry (yi — H(x,))

subject to model dynamics x; = M0_>ix0.
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Challenges in Data Assimilz

Inverse Problems
Data Assimilation belongs to the class of Inverse Problems

is
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time steps

Figure: Solution to a ”chaotic” problem
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Challenges in Data Assimilation

Inverse Problems
Data Assimilation belongs to the class of Inverse Problems

is
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Data Assimilation for NWP

Resolution

guicker
less predictable
" | g .
Tornado 3

| & more severe

30 Minutes _
Thunderstorm
3 Hours

Rain band
2 days
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Data Assimilation for Numerical Weather Prediction

Challenges in Data Assimilation

Weather spell

10 days

UNIVERSITY OF

University of Bath



Challenges in Data Assim

Challenges in Data Assimilation

m forecast needs to be improved at smaller ”spacial scales” and ”time

Melina Fre

scales” in order to forecast severe weather events

increasing the model resolution leads to computational challenges -
efficient implementations of Data Assimilation algorithms

several components of the Data Assimilation process need to be
improved

m model error

m estimating the correct covariance matrices

m using better algorithms in order to forecast sharp fronts
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