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Motivation
Inverse problems

The origin of multiplication operators
Linear operators

Inverse problems and well-posedness

The operator equation
F(x)=y, xeDcCcX, yeY

is said to be well-posed according to Hadamard, if the following
three conditions hold:

@ For every y € Y there exists at least one x € D satisfying
F(x) = y (existence).
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Inverse problems

The origin of multiplication operators
Linear operators

Inverse problems and well-posedness

The operator equation
F(x)=y, xeDcCcX, yeY

is said to be well-posed according to Hadamard, if the following
three conditions hold:

@ For every y € Y there exists at least one x € D satisfying
F(x) = y (existence).

@ The element x satisfying F(x) = y is uniquely determined in
D (uniqueness).
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Motivation
Inverse problems

The origin of multiplication operators
Linear operators

Inverse problems and well-posedness

The operator equation
F(x)=y, xeDcCcX, yeY

is said to be well-posed according to Hadamard, if the following
three conditions hold:
@ For every y € Y there exists at least one x € D satisfying
F(x) = y (existence).
@ The element x satisfying F(x) = y is uniquely determined in
D (uniqueness).
@ The solution x depends continuously on the right hand side y
(stability).
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Motivation
Inverse problems

The origin of multiplication operators
Linear operators

Chemical reaction |

Ordinary differential equation
U'(t) = x(t)u(t), u(0)=up

Direct problem: determination of u(t) for 0 < ¢t < T, with given
up and x(t)

[FOO(s) = o exp ( /0 ) x(t)dt>  (0<s<T)

F=NoJ, [(x)(s):= /0 x(t)dt, (0<s<T).
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Motivation
Inverse problems

The origin of multiplication operators
Linear operators

Chemical reaction I

@ Inverse problem: identification of x(t) in [0, T| with given
concentration u(t).
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Motivation
Inverse problems

The origin of multiplication operators
Linear operators

Chemical reaction I

@ Inverse problem: identification of x(t) in [0, T| with given
concentration u(t).

@ Fréchet derivative F'(xp):
[F'(x0)(M](t) = [F(x)I()U(MI(t), he X = L*(0, T)
or F/(xp) = M o J with the multiplication operator:

m(t) = [F(x0)](t), 0<c<|m(t)] < C < oo
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Motivation
Inverse problems

The origin of multiplication operators
Linear operators

Heat conduction |

du(z,t) 0%u(z,t)
T\ ) ) —— 7

ot x(t) 9z2 7’

@ x(t), (0 <t < T) is the coefficient of thermal conductivity

(0<z<1,0<t<T),
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Motivation
Inverse problems

The origin of multiplication operators
Linear operators

Heat conduction |

du(z,t) 0%u(z,t)

T\ ) ) —— 7

ot x(t) 922 7’

@ x(t), (0 <t < T) is the coefficient of thermal conductivity
® u(z,t),(0<z<1,0<t<T): temperature field

(0<z<1,0<t<T),
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Motivation
Inverse problems
The origin of multiplication operators
Linear operators

Heat conduction |

2

8u(azt, ) = x(t)%, (0<z<1,0<t<T),
@ x(t), (0 <t < T) is the coefficient of thermal conductivity
® u(z,t),(0<z<1,0<t<T): temperature field
@ initial condition

u(z,0) =sin(rz), (0<z<1).
homogenous boundary conditions given by

u(0,t) =u(l,t) =0 (0<t<T).
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Motivation
Inverse problems

The origin of multiplication operators
Linear operators

Heat conduction |

ou(z,t 0%u(z,t
e 20
@ x(t), (0 <t < T) is the coefficient of thermal conductivity
® u(z,t),(0<z<1,0<t<T): temperature field
@ initial condition

(0<z<1,0<t<T),

u(z,0) =sin(rz), (0<z<1).
homogenous boundary conditions given by
u(0,t) =u(l,t) =0 (0<t<T).
1

@ temperature in the middle of the rod, i.e. at z = 5 is known:

y(t):=u (%, t> 2

Melina Freitag Numerical Analysis Seminar Bath



Motivation
Inverse problems

The origin of multiplication operators
Linear operators

Heat conduction I

@ Direct problem: nonlinear mapping x(t) — y(t).
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Motivation
Inverse problems

The origin of multiplication operators
Linear operators

Heat conduction I

@ Direct problem: nonlinear mapping x(t) — y(t).
@ Solution y to the above problem:

y(t) = exp (=2 [ x(r)dr ).
(= ) o)
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Motivation
Inverse problems

The origin of multiplication operators
Linear operators

Heat conduction I

@ Direct problem: nonlinear mapping x(t) — y(t).
@ Solution y to the above problem:

y(t) = exp (=2 [ x(r)dr ).
(= ) o)

@ Inverse problem: identification of the thermal conductivity
x(t) in [0, T], i.e. finding the solution to the nonlinear
problem

FE) =0 (—a* [ atr)ar). 0<e<T),

which may also be written as a composition F = N o J.
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Motivation
Inverse problems

The origin of multiplication operators
Linear operators

Heat conduction I

@ Direct problem: nonlinear mapping x(t) — y(t).
@ Solution y to the above problem:

y(t) = exp (=2 [ x(r)dr ).
(= ) o)

@ Inverse problem: identification of the thermal conductivity
x(t) in [0, T], i.e. finding the solution to the nonlinear
problem

FE) =0 (—a* [ atr)ar). 0<e<T),

which may also be written as a composition F = N o J.
@ as before: F'(xg) = M o J with the multiplication operator:
m(t) := —m?[F(x0)](t)



Motivation
Inverse problems

The origin of multiplication operators
Linear operators

Option pricing |

Fair option prices u(t) on arbitrage-free markets are explicitely
given by the Black-Scholes-type formula

u(t) = ugs(X,K,r,t,5(t)), (0<t<T),

where 5(t) is given by

S(t) = /0 x(r)dr.

@ Inverse problem: finding the volatility function x(t)
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Motivation
Inverse problems

The origin of multiplication operators
Linear operators

Option pricing |

Fair option prices u(t) on arbitrage-free markets are explicitely
given by the Black-Scholes-type formula

u(t) = ugs(X,K,r,t,5(t)), (0<t<T),

where 5(t) is given by

S(t) = /0 x(r)dr.

@ Inverse problem: finding the volatility function x(t)
@ Nemytskii operator:

[IN(W](t) := ugs(X, K., r, t,v(t)), (0<t<T).
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Motivation
Inverse problems

The origin of multiplication operators
Linear operators

Option pricing Il

o With [N(2)](t) = k(t, z(1)),
[FOOI(E) = k(¢ [J(0)I(8), (0 <t<1),

of F = No J, where Jis an inner linear operator, and N is an
outer nonlinear Nemytskii operator
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Motivation
Inverse problems

The origin of multiplication operators
Linear operators

Option pricing Il

o With [N(2)](t) = k(t, z(t)),

[FOAI(E) = k(8 [J(0)](2)), (0<t<1),
of F = No J, where Jis an inner linear operator, and N is an

outer nonlinear Nemytskii operator
@ Fréchet derivative F'(xg) = Mo J

[F'(x0)(MI(t) = m(t)[J(M)](t), h € X = L*(0, T)

where
m(t) _ 8k(t7 [Ja(SXO)](t))’ (0 <t< 1)
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Motivation
Inverse problems

The origin of multiplication operators
Linear operators

Option pricing Il

o With [N(2)](t) = k(t, z(t)),

[FOAI(E) = k(8 [J(0)](2)), (0<t<1),
of F = No J, where Jis an inner linear operator, and N is an

outer nonlinear Nemytskii operator
@ Fréchet derivative F'(xg) = Mo J
[F'(x0)(M](t) = m(£)[J(M)](t), h € X = L*(0, T)
where
m(t) _ 8k(t7 [Ja(SXO)](t))’ (0 <t< 1)

@ We may estimate (see Hofmann/Hein (2003))

m(t) ~ exp <—tia> .
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Motivation
Inverse problems

The origin of multiplication operators
Linear operators

SVD of compact operators

Linear operator equations
Ax=y, xeDcCX, yeY AecL(X,Y)
For each compact operator A there exists a singular system
{oj,uj,vi}, j=1,...,00
where

{oj}jes is non-increasing and lim ¢; =0
j—o0

Auj=ojvi(j€J) and A'vj=oju;(j € J).
For all x € X there exists an element xg € N(A) with
x:xo+z<x, uj)xuj and Ax:Zaj(X, up) xvj.
j€ed jed
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Motivation
Inverse problems

The origin of multiplication operators
Linear operators

The degree of ill-posedness |

@ We have

* L2 * o 2
AAUJ—O'J-UJ and AA vj = 0.
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Motivation
Inverse problems

The origin of multiplication operators
Linear operators

The degree of ill-posedness |

@ We have

* L2 * o 2
AAUJ—O'J-UJ and AA vj = 0.

@ With the help of singular value decomposition we may define
a minimum norm solution:

)V'
S = Ally =5 0107{%/“1, y € R(A)® R(A)".

jed J
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Motivation
Inverse problems

The origin of multiplication operators
Linear operators

The degree of ill-posedness |

@ We have

* L2 * o 2
AAUJ—O'J-UJ and AA vj = 0.

@ With the help of singular value decomposition we may define
a minimum norm solution:

xmn = Aly =3 WY e R(A) @ R(A)E
e Y
@ Picard condition
= (v, vj)3
S
= 9

has to be satisfied
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Motivation
Inverse problems

The origin of multiplication operators
Linear operators

The degree of ill-posedness |l

@ Let Ax = y be given and the Pseudo-Inverse AT be applied to
a perturbed right hand side y5 = y 4+  for a small §
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Motivation
Inverse problems
The origin of multiplication operators
Linear operators

The degree of ill-posedness |l

@ Let Ax = y be given and the Pseudo-Inverse AT be applied to
a perturbed right hand side y5 = y 4+  for a small §
@ error in the solution is given by

Ixmn = Xmallx = |ATys — Aly|x

< Al gev x) - 6

Melina Freitag Numerical Analysis Seminar Bath



Motivation
Inverse problems

The origin of multiplication operators
Linear operators

The degree of ill-posedness |l

@ Let Ax = y be given and the Pseudo-Inverse AT be applied to
a perturbed right hand side y5 = y 4+  for a small §
@ error in the solution is given by

Ixmn = Xmallx = |ATys — Aly|x

< ||AT||£(Y,X) o (1)
@ Let A€ L(X,Y) and separable Hilbert spaces X, Y. Then

Ax =y has got a degree of ill-posedness of v > 0 if there
exist constants 0 < C < C < oo, such that

1
Cnh<—<Cn”, n=1,2,...
On
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Motivation
Inverse problems

The origin of multiplication operators
Linear operators

A Volterra integral operator

[ (s) = /0 x(t)dt, (0<s<1).

Eigenvalue equation:

[ Ju]() / / fdtds, (0<7<1),
which leads to the boundary value problem
—u(t) = a%d"(t) with u(1) = d/(0) =0,

with singular values
2

—_— =1,2,...
(2”—1)71" n )y < )

Op —

ie. v=1.
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Motivation
Inverse problems

The origin of multiplication operators
Linear operators

An integral operator with infinite degree of ill-posedness

@ Heat equation
ou u

5 = 3 (x,t) € [0,x] x [0,1], u(0,t) = u(m,t)=0.
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Motivation
Inverse problems

The origin of multiplication operators
Linear operators

An integral operator with infinite degree of ill-posedness

@ Heat equation
ou_ P
ot 0x?’

@ given u(x,1) = f(x)

(x,t) € [0,x] x [0,1], u(0,t) = u(m,t)=0.
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Motivation
Inverse problems

The origin of multiplication operators
Linear operators

An integral operator with infinite degree of ill-posedness

@ Heat equation
ou  d%u
ot 0x?’

@ given u(x,1) = f(x)

@ task: determine the initial temperature u(x,0) = g(x)

(x,t) € [0,x] x [0,1], u(0,t) = u(m,t)=0.
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Motivation
Inverse problems
The origin of multiplication operators
Linear operators

An integral operator with infinite degree of ill-posedness

@ Heat equation

2
% = %’ (X, t) c [Oaﬂ-] X [07 1]7 U(O’ t) = U(7T, t) =0.

@ given u(x,1) = f(x)
@ task: determine the initial temperature u(x,0) = g(x)

@ solution to the heat equation:

Za,, Ysin(nx), a,= %/OW u(x,0)sin(ny)dy.

u(x,1) :%Z ~ sin(nx) /Owg(x)sin(ny)dy = [Ag](x).
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Motivation
Inverse problems
The origin of multiplication operators
Linear operators

An integral operator with infinite degree of ill-posedness

@ Heat equation
2
% = %’ (X, t) c [Oaﬂ-] X [07 1]7 U(O’ t) = U(7T, t) =0.

@ given u(x,1) = f(x)
@ task: determine the initial temperature u(x,0) = g(x)

@ solution to the heat equation:

Za,, Ysin(nx), a,= %/OW u(x,0)sin(ny)dy.

u(x,1) :%Z ~ sin(nx) /Owg(x)sin(ny)dy = [Ag](x).

g 2
@ singular values 0, =€, n=12,...
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Singular value asymptotic Multiplication operators
Analytical results

Multiplication operators

@ Problem: Finding the singular value asymptotics of the
composite operator B : L2(0,1) — L2(0,1):

1340 = o) (/0 x(t)dt) L (0<s<1)

for special multiplier functions m(s).
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Singular value asymptotic Multiplication operators
Analytical results

Multiplication operators

@ Problem: Finding the singular value asymptotics of the
composite operator B : L2(0,1) — L2(0,1):

1340 = o) (/0 x(t)dt> L (0<s<1)

for special multiplier functions m(s).
@ B = Mo Jis a compact operator, if J is compact and
m e L*°(0,1)
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Singular value asymptotic Multiplication operators
Analytical results

Multiplication operators

@ Problem: Finding the singular value asymptotics of the
composite operator B : L2(0,1) — L2(0,1):

1340 = o) (/0 x(t)dt> L (0<s<1)

for special multiplier functions m(s).

@ B = Mo Jis a compact operator, if J is compact and
m e L*°(0,1)

@ If m has got a positive essential infimum, then J and B are
spectrally equivalent
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Singular value asymptotic Multiplication operators
Analytical results

Multiplication operators

@ Problem: Finding the singular value asymptotics of the
composite operator B : L2(0,1) — L2(0,1):

1340 = o) (/0 x(t)dt> L (0<s<1)

for special multiplier functions m(s).

@ B = Mo Jis a compact operator, if J is compact and
m e L*°(0,1)

@ If m has got a positive essential infimum, then J and B are
spectrally equivalent

@ Consider special multiplier functions

1
m(s) =s* or m(s)=exp (—s—a> , a>0.
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Singular value asymptotic Multiplication operators
Analytical results

Some analytical results |

@ Vu Kim Tuan/Gorenflo (1994):

[s7*Jx](s) == s~ /OS (-

yields o,(J,) ~n=", forall r>0 as n— ooif
r>2a>0.
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Singular value asymptotic Multiplication operators
Analytical results

Some analytical results |

@ Vu Kim Tuan/Gorenflo (1994):

[ x](s) i= 5~ /0 DT hd (0<s<1)

yields o,(J,) ~n=", forall r>0 as n— ooif

r>2a>0.
@ Write B = M o J as Fredholm integral equation

[Bx](s) = /O K(s, )x(t)dt, (0<s<1)
with

m(s), 0<t<s<1
k(s’t):{ ((),) Eogsgtglg.

Melina Freitag Numerical Analysis Seminar Bath



Singular value asymptotic Multiplication operators
Analytical results

Some analytical results I

1

o Chang (1952): k € L?((0,1)?) = 0n(B) = o(n"2)
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Singular value asymptotic Multiplication operators
Analytical results

Some analytical results I

1

o Chang (1952): k € L?((0,1)?) = 0n(B) = o(n"2)

@ Minimax principle:

O',,(B): m ||BX||Y
xespan(un,...un)\{0} [|X]|x
and
||BX||L2(0,1) = ||M(JX)HL2(0,1) < ||m||L°°(o,1)||JX||L2(0,1)
i.e.

ow(B) = 04(M o J) < [ mllu=(o1)n(J) < C™"
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Singular value asymptotic Multiplication operators
Analytical results

Some analytical results Il

o Eigenvalues of B*B:

[B*Bx|(r) = /O 1 < /0 k(s TGS, t)ds> x(t)dt

Reade (1984): The eigenvalues of operators B*B Lipschitz
continuous self-adjoint positive definite kernels satisfy

M(B*B) = O(n™?)
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The Sturm-Liouville problem
Finite difference methods

Numerical approaches to the problem Galerkin method for integral equations
Further numerical approaches

Formulation as a Sturm-Liouville problem

Formulate
[Bx](s) = /0 T m(s)x(t)dt, (0<s<1),

as a boundary value problem, using the eigenvalue equation
B*Bu = o u:

o2 ( “'((T) ) = —u(r), m(r)#0,ue C[0,1]

—~(a(r)u' (7)) = Mu(r), u(1) = lim a(7)u'(7) = O,

where A = 0—12 and a(7) = m+(7')
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The Sturm-Liouville problem
Finite difference methods

Numerical approaches to the problem Galerkin method for integral equations
Further numerical approaches

Finite difference methods for the SL-problem

@ Boundary value problem:

—(a(r)u' (7)) = Au(7)

u(l)=0 and lim a(t)d'(7) = 0.
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The Sturm-Liouville problem
Finite difference methods

Numerical approaches to the problem Galerkin method for integral equations
Further numerical approaches

Finite difference methods for the SL-problem

@ Boundary value problem:
—(a(m)u' (1)) = Au(7)
u(l)=0 and lim a(t)d'(7) = 0.

@ apply classical finite difference method:

djiy1—ai-1 & 2a;
(22— e o+ S
aj—1 — dj+1 a;
N <T+ _ p) Uis1 = Aui
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The Sturm-Liouville problem
Finite difference methods

Numerical approaches to the problem Galerkin method for integral equations
Further numerical approaches

Finite difference methods for the SL-problem

@ Boundary value problem:
—(a(m)u' (1)) = Au(7)
u(l)=0 and lim a(t)d'(7) = 0.

@ apply classical finite difference method:

djiy1—ai-1 & 2a;
(22— e o+ S
aj—1 — dj+1 a;
N <T+ _ p) Uis1 = Aui

@ right hand side 79 := €.
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The Sturm-Liouville problem
Finite difference methods

Numerical approaches to the problem Galerkin method for integral equations
Further numerical approaches

Results for m

Logarithmic scaling of eigenvalue asympotics.

10°F

— a=a
— exact solution for a=0

eigenvalues in logarithmic scale.

10
number of eigenvalue in logarithmic scale

Figure: Computed eigenvalues of Sturm-Liouville problem —(au’)’ = Au
for n =500 in logarithmic scales

A2PPIOX(A) = (o + 1)%72n? + O(n)



The Sturm-Liouville problem

Finite difference methods

Galerkin method for integral equations
Further numerical approaches

Numerical approaches to the problem

Results for m(

Logarithmic scaling of eigenvalue asymptotics

a=1
— exact solution for a=0 h

<
g

eigenvalues

10
number of eigenvalue in logarithmic scale

Figure: Computed eigenvalues of Sturm-Liouville problem —(au’)’ = Au
for n =100 in logarithmic scales

N2PPIOX(A) = f(a)n? + O(n)
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The Sturm-Liouville problem
Finite difference methods

Numerical approaches to the problem Galerkin method for integral equations
Further numerical approaches

Galerkin method for integral equations

@ singular value expansion for square integrable kernels:

k(s t) = Zajuj(t)vj(s), 0<s<1,0<t<1
j=1
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The Sturm-Liouville problem
Finite difference methods

Numerical approaches to the problem Galerkin method for integral equations
Further numerical approaches

Galerkin method for integral equations

(B()](s) = /01 K(s,t)x(t)dt, 0<s<1, 0<t<1

@ singular value expansion for square integrable kernels:
o0
k(s t) = Zajuj(t)vj(s), 0<s<1,0<t<1
j=1
@ algebraic singular value decomposition of A € R™":

A=UsVT = sun],
j=1
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The Sturm-Liouville problem
Finite difference methods

Numerical approaches to the problem Galerkin method for integral equations
Further numerical approaches

Galerkin method for integral equations

@ singular value expansion for square integrable kernels:
Zajuj t)vj(s), 0<s<1,0<t <1,
@ algebraic singular value decomposition of A € R™":

A=UsVT = sun],

° |IBllfs = ZJ 1‘7 < oo, AR =X, }7:1 3,21' = Zf:l 51'2'
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The Sturm-Liouville problem
Finite difference methods

Numerical approaches to the problem Galerkin method for integral equations
Further numerical approaches

Algorithm for Galerkin's method

@ Choose {W;} and {®;} orthonormal sets of basis functions in
I =(0,1), Is =(0,1).
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The Sturm-Liouville problem
Finite difference methods

Numerical approaches to the problem Galerkin method for integral equations
Further numerical approaches

Algorithm for Galerkin's method

@ Choose {W;} and {®;} orthonormal sets of basis functions in
I =(0,1), Is =(0,1).
@ Determine matrix A € R™" with

aij:<B¢j7wi>L2(0,l) i,j:l,...,n.
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The Sturm-Liouville problem
Finite difference methods

Numerical approaches to the problem Galerkin method for integral equations
Further numerical approaches

Algorithm for Galerkin's method

@ Choose {W;} and {®;} orthonormal sets of basis functions in
I =(0,1), Is =(0,1).

@ Determine matrix A € R™" with
ajj = <B¢j, Wi>L2(O,1) i,j = 1, 000l
@ Compute the SVD of this matrix

Av = s(My.
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The Sturm-Liouville problem
Finite difference methods

Numerical approaches to the problem Galerkin method for integral equations
Further numerical approaches

Matrix structure for m(s)

SOOCSS
SIS S
SSOTSSITTSS
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The Sturm-Liouville problem
Finite difference methods

Numerical approaches to the problem Galerkin method for integral equations
Further numerical approaches

Matrix structure for m(s)
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The Sturm-Liouville problem
Finite difference methods
Numerical approaches to the problem Galerkin method for integral equations

Further numerical approaches

Matrix structure for m(s) = s>

o~

j/,—/’//
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The Sturm-Liouville problem
Finite difference methods

Numerical approaches to the problem Galerkin method for integral equations
Further numerical approaches

Matrix structure for m(s) = e
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The Sturm-Liouville problem
Finite difference methods

Numerical approaches to the problem Galerkin method for integral equations
Further numerical approaches

. 1
Matrix structure for m(s) = e =2
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The Sturm-Liouville problem
Finite difference methods
Numerical approaches to the problem Galerkin method for integral equations
Further numerical approaches

Approximation properties

Proposition Let

1 1 0
18|12 ;:/ / ks, 1)[2dtds = 3 o2,
0 J0 i=1

Then
(n) (n+1) <

<gj, i=1...,n

The errors of the approximate singular values si(") are bounded by
0<o;—s" <6, i=1,...,n,

where 62 = ||B||?> — ||A||%. Furthermore

s” <o <[P+ 85, i=1...n

Melina Freitag Numerical Analysis Seminar Bath



The Sturm-Liouville problem

Finite difference methods
Numerical approaches to the problem Galerkin method for integral equations
Further numerical approaches

Results for m

Logarithmic scaling of singular value asymptotics

10
number of singuiar value i logaritmic scale

Figure: Computed singular values of integral equation Bv = ou for n =
100 in logarithmic scales
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Figure: Computed singular values of integral equation Bv = ou for n =
100 in logarithmic scales
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The Sturm-Liouville problem
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Numerical approaches to the problem Galerkin method for integral equations
Further numerical approaches

Further numerical approaches and summary

@ Rayleigh-Ritz method for symmetric kernel B*B
@ Orthonormal /Non-orthonormal basis functions
o Generalized singular value problem/Generalized eigenproblem

@ Combination of analytical and numerical results:

gn—l — O.ipprox(B) < Uf;xaCt(B) < ?n—l’ n — 00
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The Sturm-Liouville problem
Finite difference methods

Numerical approaches to the problem Galerkin method for integral equations
Further numerical approaches

Further numerical approaches and summary

(]
(*]
(*]
(]

Rayleigh-Ritz method for symmetric kernel B*B
Orthonormal /Non-orthonormal basis functions
Generalized singular value problem/Generalized eigenproblem

Combination of analytical and numerical results:

gn—l — O.ipprox(B) < Uf;xaCt(B) < ?n—l’ n — 00

Comparison yields

on(B) = /0 m(s)ds - o,(J) = /0 m(s)ds - ﬁ,

for the integral operator B = Mo J.
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The Sturm-Liouville problem
Finite difference methods

Numerical approaches to the problem Galerkin method for integral equations
Further numerical approaches

Further numerical approaches and summary

(]
(*]
(*]
(]

Rayleigh-Ritz method for symmetric kernel B*B
Orthonormal /Non-orthonormal basis functions
Generalized singular value problem/Generalized eigenproblem

Combination of analytical and numerical results:

gn—l — O.ipprox(B) < Uf;xaCt(B) < ?n—l’ n — 00

Comparison yields

on(B) = /0 m(s)ds - o,(J) = /0 m(s)ds - ﬁ,

for the integral operator B = Mo J.
@ no influence of decay rate of m(s) — 0
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Tikhonov regularization

Local ill-posedness

@ local ill-posedness of nonlinear problems

o relationship between ill-posedness of nonlinear problems and
its linearizations
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Tikhonov regularization

Local ill-posedness

@ local ill-posedness of nonlinear problems

o relationship between ill-posedness of nonlinear problems and
its linearizations

@ If F is a compact operator and Fréchet differentiable then
F'(x0) € L(X,Y) is compact, too.
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Tikhonov regularization

Regularization

o find
Xmn = ATy

as stable and exact as possible
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Tikhonov regularization

Regularization

o find
Xmn = ATy
as stable and exact as possible

@ apply regularization operator R, to the approximated given
data ys:

1
Xo = RaYs
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Tikhonov regularization

Regularization

o find
Xmn = ATy

as stable and exact as possible

@ apply regularization operator R, to the approximated given
data ys:

1
Xo = RaYs

@ estimate the total regularization error

I = xmnllx < [Ralleex,v)0 + [Ray — Aly|x.
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Tikhonov regularization

Tikhonov regularization |

@ Tikhonov regularization of the linearized problem

x) = (B*B + al)"1B*ys
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Tikhonov regularization

Tikhonov regularization |

@ Tikhonov regularization of the linearized problem
X0 = (B*B+al)'B*y;

@ choose a = a(0) to satisfy the conditions

2
a(0) — 0 and %HO for 6—0

then the regularization is convergent
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Tikhonov regularization

Tikhonov regularization |

@ Tikhonov regularization of the linearized problem
X0 = (B*B+al)'B*y;

@ choose a = a(0) to satisfy the conditions

2
a(0) — 0 and %HO for 6—0

then the regularization is convergent
@ Convergence rates

||Xg — Xmnl|| < C\/S

if source condition x,,, = B*w is satisfied and if we choose
a~0
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Tikhonov regularization

Tikhonov regularization Il

@ convergence rates for inexact source conditions for the
linearized as well as the nonlinear problem
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Tikhonov regularization

Tikhonov regularization Il

@ convergence rates for inexact source conditions for the
linearized as well as the nonlinear problem

@ Convergence rates
12 — Xmn|| < CVE + ¢

where ¢ depends on fol(l — m(t))?dt.
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Conclusions

Conclusions

@ provided several analytical tools in order to derive the degree
of ill-posedness of F'(xg) = Mo J
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Conclusions

Conclusions

@ provided several analytical tools in order to derive the degree
of ill-posedness of F'(xg) = Mo J
@ stated the problems if m(t) has got a zero

@ numerical computation of the SVD of the discretized problem
through various methods
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Conclusions

Conclusions

@ provided several analytical tools in order to derive the degree
of ill-posedness of F'(xg) = Mo J

@ stated the problems if m(t) has got a zero

@ numerical computation of the SVD of the discretized problem
through various methods

@ error estimates and approximation properties

Melina Freitag Numerical Analysis Seminar Bath



Conclusions

Conclusions

@ relationship

1 1
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Conclusions

Conclusions

@ relationship
1 1

@ no influence of decay rate of m(s) — 0
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Conclusions

Conclusions

@ relationship
1 1

@ no influence of decay rate of m(s) — 0

@ very limited influence of the multiplication operators on
Tikhonov regularization (non)linear problem
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Conclusions

Conclusions

@ relationship
1 1 5
ool (x0)) = /0 m(s)dsora(J) = /0 m(s)ds s
@ no influence of decay rate of m(s) — 0

@ very limited influence of the multiplication operators on
Tikhonov regularization (non)linear problem

° fol m(s)ds is important (generalization of the results by Vu
Kim Tuan and Gorenflo (1994)) for m(s) = s=%)
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Conclusions

Thanks for your attention.
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