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Inverse problems and well-posedness

The operator equation

F (x) = y , x ∈ D ⊂ X , y ∈ Y

is said to be well-posed according to Hadamard, if the following
three conditions hold:

For every y ∈ Y there exists at least one x ∈ D satisfying
F (x) = y (existence).

The element x satisfying F (x) = y is uniquely determined in
D (uniqueness).

The solution x depends continuously on the right hand side y

(stability).
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Chemical reaction I

Ordinary differential equation

u′(t) = x(t)u(t), u(0) = u0

Direct problem: determination of u(t) for 0 ≤ t ≤ T , with given
u0 and x(t)

[F (x)](s) = u0 exp

(
∫ s

0
x(t)dt

)

, (0 ≤ s ≤ T )

or

F = N ◦ J, [J(x)](s) :=

∫ s

0
x(t)dt, (0 ≤ s ≤ T ).
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Chemical reaction II

Inverse problem: identification of x(t) in [0,T ] with given
concentration u(t).

Fréchet derivative F ′(x0):

[F ′(x0)(h)](t) = [F (x0)](t)[J(h)](t), h ∈ X = L2(0,T )

or F ′(x0) = M ◦ J with the multiplication operator:

m(t) := [F (x0)](t), 0 < c ≤ |m(t)| ≤ C < ∞.
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Heat conduction I

∂u(z , t)

∂t
= x(t)

∂2u(z , t)

∂z2
, (0 < z < 1, 0 < t < T ),

x(t), (0 ≤ t ≤ T ) is the coefficient of thermal conductivity
u(z , t), (0 ≤ z ≤ 1, 0 ≤ t ≤ T ): temperature field
initial condition

u(z , 0) = sin(πz), (0 ≤ z ≤ 1).

homogenous boundary conditions given by

u(0, t) = u(1, t) = 0 (0 ≤ t ≤ T ).

temperature in the middle of the rod, i.e. at z = 1
2 is known:

y(t) := u

(

1

2
, t

)
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Heat conduction II

Direct problem: nonlinear mapping x(t) → y(t).

Solution y to the above problem:

y(t) = exp

(

−π2

∫ t

0
x(τ)dτ

)

.

Inverse problem: identification of the thermal conductivity
x(t) in [0,T ], i.e. finding the solution to the nonlinear
problem

[F (x)](t) = exp

(

−π2

∫ t

0
x(τ)dτ

)

, (0 ≤ t ≤ T ),

which may also be written as a composition F = N ◦ J.

as before: F ′(x0) = M ◦ J with the multiplication operator:
m(t) := −π2[F (x0)](t)

Melina Freitag Numerical Analysis Seminar Bath



Outline
Motivation

Singular value asymptotic
Numerical approaches to the problem

Tikhonov regularization
Conclusions

Inverse problems
The origin of multiplication operators
Linear operators

Heat conduction II

Direct problem: nonlinear mapping x(t) → y(t).

Solution y to the above problem:

y(t) = exp

(

−π2

∫ t

0
x(τ)dτ

)

.

Inverse problem: identification of the thermal conductivity
x(t) in [0,T ], i.e. finding the solution to the nonlinear
problem

[F (x)](t) = exp

(

−π2

∫ t

0
x(τ)dτ

)

, (0 ≤ t ≤ T ),

which may also be written as a composition F = N ◦ J.

as before: F ′(x0) = M ◦ J with the multiplication operator:
m(t) := −π2[F (x0)](t)

Melina Freitag Numerical Analysis Seminar Bath



Outline
Motivation

Singular value asymptotic
Numerical approaches to the problem

Tikhonov regularization
Conclusions

Inverse problems
The origin of multiplication operators
Linear operators

Heat conduction II

Direct problem: nonlinear mapping x(t) → y(t).

Solution y to the above problem:

y(t) = exp

(

−π2

∫ t

0
x(τ)dτ

)

.

Inverse problem: identification of the thermal conductivity
x(t) in [0,T ], i.e. finding the solution to the nonlinear
problem

[F (x)](t) = exp

(

−π2

∫ t

0
x(τ)dτ

)

, (0 ≤ t ≤ T ),

which may also be written as a composition F = N ◦ J.

as before: F ′(x0) = M ◦ J with the multiplication operator:
m(t) := −π2[F (x0)](t)

Melina Freitag Numerical Analysis Seminar Bath



Outline
Motivation

Singular value asymptotic
Numerical approaches to the problem

Tikhonov regularization
Conclusions

Inverse problems
The origin of multiplication operators
Linear operators

Heat conduction II

Direct problem: nonlinear mapping x(t) → y(t).

Solution y to the above problem:

y(t) = exp

(

−π2

∫ t

0
x(τ)dτ

)

.

Inverse problem: identification of the thermal conductivity
x(t) in [0,T ], i.e. finding the solution to the nonlinear
problem

[F (x)](t) = exp

(

−π2

∫ t

0
x(τ)dτ

)

, (0 ≤ t ≤ T ),

which may also be written as a composition F = N ◦ J.

as before: F ′(x0) = M ◦ J with the multiplication operator:
m(t) := −π2[F (x0)](t)

Melina Freitag Numerical Analysis Seminar Bath



Outline
Motivation

Singular value asymptotic
Numerical approaches to the problem

Tikhonov regularization
Conclusions

Inverse problems
The origin of multiplication operators
Linear operators

Option pricing I

Fair option prices u(t) on arbitrage-free markets are explicitely
given by the Black-Scholes-type formula

u(t) = uBS(X ,K , r , t,S(t)), (0 ≤ t ≤ T ),

where S(t) is given by

S(t) :=

∫ t

0
x(τ)dτ.

Inverse problem: finding the volatility function x(t)

Nemytskii operator:

[N(v)](t) := uBS(X ,K , r , t, v(t)), (0 ≤ t ≤ T ).
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Option pricing II

With [N(z)](t) = k(t, z(t)),

[F (x)](t) = k(t, [J(x)](t)), (0 ≤ t ≤ 1),

or F = N ◦ J, where J is an inner linear operator, and N is an
outer nonlinear Nemytskii operator
Fréchet derivative F ′(x0) = M ◦ J

[F ′(x0)(h)](t) = m(t)[J(h)](t), h ∈ X = L2(0,T )

where

m(t) =
∂k(t, [J(x0)](t))

∂s
, (0 ≤ t ≤ 1).

We may estimate (see Hofmann/Hein (2003))

m(t) ∼ exp

(

− 1

tα

)

.
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SVD of compact operators

Linear operator equations

Ax = y , x ∈ D ⊂ X , y ∈ Y A ∈ L(X ,Y )

For each compact operator A there exists a singular system

{σj , uj , vj}, j = 1, . . . ,∞
where

{σj}j∈J is non-increasing and lim
j→∞

σj = 0

Auj = σjvj (j ∈ J) and A∗vj = σjuj (j ∈ J).

For all x ∈ X there exists an element x0 ∈ N(A) with

x = x0 +
∑

j∈J

〈x , uj 〉X uj and Ax =
∑

j∈J

σj〈x , uj 〉X vj .
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The degree of ill-posedness I

We have

A∗Auj = σ2
j uj and AA∗vj = σ2

j vj .

With the help of singular value decomposition we may define
a minimum norm solution:

xmn = A†y =
∑

j∈J

〈y , vj 〉Y
σj

uj , y ∈ R(A) ⊕ R(A)⊥.

Picard condition
∞

∑

j=1

〈y , vj〉2Y
σ2

j

< ∞

has to be satisfied
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The degree of ill-posedness II

Let Ax = y be given and the Pseudo-Inverse A† be applied to
a perturbed right hand side yδ = y + δ for a small δ

error in the solution is given by

‖xδ
mn − xmn‖X = ‖A†yδ − A†y‖X

≤ ‖A†‖L(Y ,X ) · δ.

Let A ∈ L(X ,Y ) and separable Hilbert spaces X ,Y . Then
Ax = y has got a degree of ill-posedness of ν > 0 if there
exist constants 0 ≤ C ≤ C < ∞, such that

Cnν ≤ 1

σn

≤ Cnν , n = 1, 2, . . .
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A Volterra integral operator

[Jx ](s) =

∫ s

0
x(t)dt, (0 ≤ s ≤ 1).

Eigenvalue equation:

[J∗Ju](τ) = σ2u(τ) =

∫ 1

τ

∫ s

0
u(t)dtds, (0 ≤ τ ≤ 1),

which leads to the boundary value problem

−u(t) = σ2u′′(t) with u(1) = u′(0) = 0,

with singular values

σn =
2

(2n − 1)π
, n = 1, 2, . . . ,

i.e. ν = 1.
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An integral operator with infinite degree of ill-posedness

Heat equation

∂u

∂t
=

∂2u

∂x2
, (x , t) ∈ [0, π] × [0, 1], u(0, t) = u(π, t) = 0.

given u(x , 1) = f (x)

task: determine the initial temperature u(x , 0) = g(x)

solution to the heat equation:

u(x , t) =
∞

∑

n=1

ane
−n2t sin(nx), an =

2

π

∫ π

0
u(x , 0) sin(ny)dy .

u(x , 1) = f (x) =
2

π

∞
∑

n=1

e−n2
sin(nx)

∫ π

0
g(x) sin(ny)dy := [Ag ](x).

singular values σn = e−n2
, n = 1, 2, . . .
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n=1

ane
−n2t sin(nx), an =

2

π

∫ π

0
u(x , 0) sin(ny)dy .

u(x , 1) = f (x) =
2

π

∞
∑

n=1

e−n2
sin(nx)

∫ π

0
g(x) sin(ny)dy := [Ag ](x).

singular values σn = e−n2
, n = 1, 2, . . .
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Multiplication operators

Problem: Finding the singular value asymptotics of the
composite operator B : L2(0, 1) → L2(0, 1):

[Bx ](s) := m(s)

(
∫ s

0
x(t)dt

)

, (0 ≤ s ≤ 1)

for special multiplier functions m(s).
B = M ◦ J is a compact operator, if J is compact and
m ∈ L∞(0, 1)
If m has got a positive essential infimum, then J and B are
spectrally equivalent
Consider special multiplier functions

m(s) = sα or m(s) = exp

(

− 1

sα

)

, α > 0.
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Some analytical results I

Vu Kim Tuan/Gorenflo (1994):

[s−αJrx ](s) := s−α

∫ s

0

(s − t)r−1

Γ(r)
x(t)dt, (0 ≤ s ≤ 1)

yields σn(Jr ) ∼ n−r , for all r > 0 as n → ∞ if
r > 2α ≥ 0.

Write B = M ◦ J as Fredholm integral equation

[Bx ](s) =

∫ 1

0
k(s, t)x(t)dt, (0 ≤ s ≤ 1)

with

k(s, t) =

{

m(s), (0 ≤ t ≤ s ≤ 1)
0, (0 ≤ s ≤ t ≤ 1).
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Some analytical results II

Chang (1952): k ∈ L2((0, 1)2) ⇒ σn(B) = o(n− 1
2 )

Minimax principle:

σn(B) = min
x∈span(u1,...,un)\{0}

‖Bx‖Y

‖x‖X

and

‖Bx‖L2(0,1) = ‖M(Jx)‖L2(0,1) ≤ ‖m‖L∞(0,1)‖Jx‖L2(0,1)

i.e.

σn(B) = σn(M ◦ J) ≤ ‖m‖L∞(0,1)σn(J) ≤ Cn−1
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Some analytical results III

Eigenvalues of B∗B :

[B∗Bx ](τ) =

∫ 1

0

(
∫ 1

0
k(s, τ)k(s, t)ds

)

x(t)dt

Reade (1984): The eigenvalues of operators B ∗B Lipschitz
continuous self-adjoint positive definite kernels satisfy

λn(B
∗B) = O(n−2)
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Formulation as a Sturm-Liouville problem

Formulate

[Bx ](s) =

∫ s

0
m(s)x(t)dt, (0 ≤ s ≤ 1),

as a boundary value problem, using the eigenvalue equation
B∗Bu = σ2u:

σ2

(

u′(τ)

m2(τ)

)′

= −u(τ), m(τ) 6= 0, u ∈ C 2[0, 1]

or
−(a(τ)u′(τ))′ = λu(τ), u(1) = lim

τ→0
a(τ)u′(τ) = 0,

where λ = 1
σ2 and a(τ) = 1

m2(τ)
.
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Finite difference methods for the SL-problem

Boundary value problem:

−(a(τ)u′(τ))′ = λu(τ)

u(1) = 0 and lim
τ→0

a(τ)u′(τ) = 0.

apply classical finite difference method:

(

ai+1 − ai−1

4h2
− ai

h2

)

ui−1 +
2ai

h2
ui

+

(

ai−1 − ai+1

4h2
− ai

h2

)

ui+1 = λui

right hand side τ0 := ε.
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Results for m(s) = s
α
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Figure: Computed eigenvalues of Sturm-Liouville problem −(au ′)′ = λu

for n = 500 in logarithmic scales

λapprox
n (A) = (α + 1)2π2n2 + O(n)
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Results for m(s) = e
− 1

sα
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Figure: Computed eigenvalues of Sturm-Liouville problem −(au ′)′ = λu

for n = 100 in logarithmic scales

λapprox
n (A) = f (α)n2 + O(n)
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Galerkin method for integral equations

[B(x)](s) =

∫ 1

0
k(s, t)x(t)dt, 0 ≤ s ≤ 1, 0 ≤ t ≤ 1

singular value expansion for square integrable kernels:

k(s, t) =

∞
∑

j=1

σjuj(t)vj(s), 0 ≤ s ≤ 1, 0 ≤ t ≤ 1.

algebraic singular value decomposition of A ∈ R
n,n:

A = UΣV T =

n
∑

j=1

sjujv
T
j ,

‖B‖2
HS :=

∑∞
j=1 σ2

j < ∞, ‖A‖2
F :=

∑n
i=1

∑n
j=1 a2

ij =
∑n

j=1 s2
j .
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Algorithm for Galerkin’s method

Choose {Ψj} and {Φj} orthonormal sets of basis functions in
It = (0, 1), Is = (0, 1).

Determine matrix A ∈ R
n,n with

aij = 〈BΦj ,Ψi〉L2(0,1) i , j = 1, . . . , n.

Compute the SVD of this matrix

Av = s(n)u.
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Matrix structure for m(s) = s
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Matrix structure for m(s) = e
− 1
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− 1
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Approximation properties

Proposition Let

‖B‖2 :=

∫ 1

0

∫ 1

0
|k(s, t)|2dtds =

∞
∑

i=1

σ2
i .

Then
s
(n)
i ≤ s

(n+1)
i ≤ σi , i = 1, . . . , n.

The errors of the approximate singular values s
(n)
i are bounded by

0 ≤ σi − s
(n)
i ≤ δn, i = 1, . . . , n,

where δ2
n = ‖B‖2 − ‖A‖2

F . Furthermore

s
(n)
i ≤ σi ≤ [(s

(n)
i )2 + δ2

n]
1
2 , i = 1, . . . , n.
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Results for m(s) = s
α
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Figure: Computed singular values of integral equation Bv = σu for n =

100 in logarithmic scales

σapprox
n (B) ∼ 1

(α + 1)πn
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Discrete singular values for n → ∞

m(s) = s, n = 100
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Discrete singular values for n → ∞

m(s) = s, n = 150
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Discrete singular values for n → ∞

m(s) = s, n = 200

10
0

10
1

10
2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

number of singular value in logarithmic scale

si
ng

ul
ar

 v
al

ue
s 

in
 lo

ga
rit

hm
ic

 s
ca

le

Melina Freitag Numerical Analysis Seminar Bath



Outline
Motivation

Singular value asymptotic
Numerical approaches to the problem

Tikhonov regularization
Conclusions

The Sturm-Liouville problem
Finite difference methods
Galerkin method for integral equations
Further numerical approaches

Discrete singular values for n → ∞

m(s) = s, n = 400
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Discrete singular values for n → ∞

m(s) = s, n = 1000
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Results for m(s) = e
− 1

sα

10
1

10
2

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

number of singular value in logarithmic scale

si
ng

ul
ar

 v
al

ue
s 

in
 lo

ga
rit

hm
ic

 s
ca

le

Logarithmic scaling of singular value asymptotics

α=0
α=0.2
α=0.5
α=1
α=2

Figure: Computed singular values of integral equation Bv = σu for n =

100 in logarithmic scales

σapprox
n (B) ∼ 1

g(α)n
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Discrete singular values for n → ∞
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Further numerical approaches and summary

Rayleigh-Ritz method for symmetric kernel B ∗B

Orthonormal/Non-orthonormal basis functions

Generalized singular value problem/Generalized eigenproblem

Combination of analytical and numerical results:

Cn−1 = σapprox
n (B) ≤ σexact

n (B) ≤ Cn−1, n → ∞

Comparison yields

σn(B) =

∫ 1

0
m(s)ds · σn(J) =

∫ 1

0
m(s)ds · 2

π(2n − 1)
,

for the integral operator B = M ◦ J.

no influence of decay rate of m(s) → 0
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Local ill-posedness

local ill-posedness of nonlinear problems

relationship between ill-posedness of nonlinear problems and
its linearizations

If F is a compact operator and Fréchet differentiable then
F ′(x0) ∈ L(X ,Y ) is compact, too.
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Regularization

find
xmn = A†y

as stable and exact as possible

apply regularization operator Rα to the approximated given
data yδ:

xδ
α = Rαyδ

estimate the total regularization error

‖xδ
α − xmn‖X ≤ ‖Rα‖L(X ,Y )δ + ‖Rαy − A†y‖X .
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Tikhonov regularization I

Tikhonov regularization of the linearized problem

xδ
α = (B∗B + αI )−1B∗yδ

choose α = α(δ) to satisfy the conditions

α(δ) → 0 and
δ2

α(δ)
→ 0 for δ → 0

then the regularization is convergent

Convergence rates

‖xδ
α − xmn‖ ≤ C

√
δ

if source condition xmn = B∗w is satisfied and if we choose
α ∼ δ
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Tikhonov regularization II

convergence rates for inexact source conditions for the
linearized as well as the nonlinear problem

Convergence rates

‖xδ
α − xmn‖ ≤ C

√
δ + ε

where ε depends on
∫ 1
0 (1 − m(t))2dt.
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Conclusions

provided several analytical tools in order to derive the degree
of ill-posedness of F ′(x0) = M ◦ J

stated the problems if m(t) has got a zero

numerical computation of the SVD of the discretized problem
through various methods

error estimates and approximation properties
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Conclusions

relationship

σn(F
′(x0)) =

∫ 1

0
m(s)dsσn(J) =

∫ 1

0
m(s)ds

2

π(2n − 1)

no influence of decay rate of m(s) → 0

very limited influence of the multiplication operators on
Tikhonov regularization (non)linear problem
∫ 1
0 m(s)ds is important (generalization of the results by Vu

Kim Tuan and Gorenflo (1994)) for m(s) = s−α)
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Thanks for your attention.
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