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Problem and iterative methods

Find a small number of eigenvalues and eigenvectors of:

Az =Xz, AeC,zeC"

m A is large, sparse, nonsymmetric




Problem and iterative methods

Find a small number of eigenvalues and eigenvectors of:

Az =Xz, AeC,zeC"

m A is large, sparse, nonsymmetric
m [terative solves

m Power method

m Simultaneous iteration
m Arnoldi method

m Jacobi-Davidson method

m The first three of these involve repeated application of the matrix A to
a vector

Generally convergence to largest/outlying eigenvector
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Shift-invert strategy

= Wish to find a few eigenvalues close to a shift o
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Shift-invert strategy

= Wish to find a few eigenvalues close to a shift o

m Problem becomes "

T

A—o

m each step of the iterative method involves repeated application of
(A—0oI)~! to a vector

m Inner iterative solve:

(A—ol) 'z =

(A-ocl)y==

using Krylov method for linear systems.

leading to inner-outer iterative method.
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Outline

Inexact Shift-invert Arnoldi method
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The algorithm

Arnoldi’s method

= Arnoldi method constructs an orthogonal basis of k-dimensional
Krylov subspace

Ki(A,¢) = span{g™, g™, A2¢", ..., AF 1M},

et |

AQr, = QrHy, + qrirhi1keh = Qria { h o
k+1,k€L

QHQr =1
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The algorithm

Arnoldi’s method

= Arnoldi method constructs an orthogonal basis of k-dimensional
Krylov subspace

ICk (A7 q(l)) = Spa‘n{q(l)7-’4q(l)7 A2q(1)7 e 7Ak_1q(1)}7

et |

AQr, = QrHy, + qrirhi1keh = Qria { h o
k+1,k€k

QHQr =1

= Eigenvalues of Hy are eigenvalue approximations of (outlying)
eigenvalues of A

Irell = Az — 0z|| = [|(AQx — QrHi)ull = |hr+1kllex ul,
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The algorithm

Arnoldi’s method

= Arnoldi method constructs an orthogonal basis of k-dimensional
Krylov subspace
ICk (A7 q(l)) = Spa‘n{q(l) ) Aq(1)7 A2q(1)7 SRR Ak_lq(l) }7
H Hy,
AQk = QrHi + gr+1hrt1,kk = Qrt1 A H
k+1,k€k

QHQr =1

= Eigenvalues of Hy are eigenvalue approximations of (outlying)
eigenvalues of A

Irell = Az — 0z|| = [|(AQx — QrHi)ull = |hr+1kllex ul,

= at each step, application of A to qx: Agr = Gr+1
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random complex matrix of dimension n = 144 generated in MATLAB:
G=numgrid(’N’,14) ;B=delsq(G) ; A=sprandn(B)+i*sprandn(B)

eigenvalues of A
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after 5 Arnoldi st

Arnoldi after 5 steps
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after 10 Arnoldi steps

Arnoldi after 10 steps
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after 15 Arnoldi steps

Arnoldi after 15 steps
T T T —— T T T T

+
++° + ot

sl ]
O,
+ o+ o4
++ T +
2r + ++ + 7
L
1r + + ++ 4
(o] + + T +
+ o
+ +~++#"'+"' &+ 'hq'.*-..
P RRAC I ++{_,, + +0%
+ +
-1t * g T + ]

+
£ L+
+ +
ol .+ ﬂ'# o+ f
o+ +
3l + ]
o

A UNIVERSITY OF




after 20 Arnoldi steps

Arnoldi after 20 steps
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after 25 Arnoldi steps

Arnoldi after 25 steps
©

®
+ +@
|l ® s |
®© + 4 +
+
oL + Lt +} . + . 1
@ + +G+ -l'-.' ++*++o
1t + + ...‘.G-l- R
® + +,,,"'+:, Hy 4 @
s 1 oLk
or + e+ + + g
-] + t o+ +3 +
+ + + 4
- * 't}.'_ ++ Tt + 4 i
£ syt B
© # +H +++
o o +F4& . ]
+ ,':'p e
-3r °+ 4

UNIVERSITY OF



after 30 Arnoldi steps

Arnoldi after 30 steps
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The algorithm: take o =0

Shift-Invert Arnoldi’s method A := A~}

= Arnoldi method constructs an orthogonal basis of k-dimensional
Krylov subspace
Ki(A™",q") = span{q™, A71¢W, (A7), ... (A7) D},
-1 H Hk
A" Qr = QrHr + gr+1hkt1,€k = Qi1 h H
k+1,k€k

QFQu=1.
= Eigenvalues of Hy, are eigenvalue approximations of (outlying)
eigenvalues of A~!

Irell = 1A™" 2 — 6zll = (A7 Qx — QrHr)ull = [hesrkllex ul,

m at each step, application of A=* to gr: A7 g = Gra1
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Inexact solves

Inexact solves (Simoncini 2005), Bouras and Frayssé (2000)

m Wish to solve ~
lge — Adiesall = lldi]) <




Inexact solves

Inexact solves (Simoncini 2005), Bouras and Frayssé (2000)

m Wish to solve ~
llgr — AGkt1ll = [|d |l < 7%

m leads to inexact Arnoldi relation

A7'Qr = Qrpa [ hk+Hk } + Dk, = Qr11 [ h s ] +[di] - . . |d]

H H
1,k€L k+1,k€k
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Inexact solves

Inexact solves (Simoncini 2005), Bouras and Frayssé (2000)

m Wish to solve ~
gk — Adt1ll = [|dill < 7

m leads to inexact Arnoldi relation

A7'Qr = Qrpa [ hk+Hk } + Dk, = Qr11 [ h s ] +[di] - . . |d]

H H
1,k€L k+1,k€k
m u eigenvector of Hy:

7kl = (A7 Qr — QrHi)ull = |his1,x]ler u| + Dy,
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Inexact solves

Inexact solves (Simoncini 2005), Bouras and Frayssé (2000)
m Wish to solve ~
lax — Agetrll = lldnll < 7

m leads to inexact Arnoldi relation

_ H, H
A 1Qk=Qk+1 [ hes k :|—|—Dk=Qk+1 [ h keH ]+[d1|...|dk]

H
1,k€L k+1,k€k

m u eigenvector of Hy:
Irell = (A Qx — Qe Hr)ull = |huyr,xlled ul + Dyu,

= Linear combination of the columns of Dy

k
Dyu = Z diug, if w; small, then d; allowed to be large!
=1
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Inexact solves

Inexact solves (Simoncini 2005), Bouras and Frayssé (2000)
Linear combination of the columns of Dy

k
Dyu = Z diuy, if w; small, then d; allowed to be large!
=1

1
ldiwll < ze = [ Diull <e

and
[wi] < C(LE)|r—a|l s
leads to i
llae — AGryall = [|dk|
1

ldell = C ==
[l




The inner iteration for AP_lcij = qk

Preconditioning
= Introduce preconditioner P and solve
AP 'Gy1 =gk, P7'Gki1 = qen
using GMRES
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The inner iteration for (A —ol)y =«

GMRES
The kth iterate of GMRES applied to Bz = b is the solution to

min lb — Bzg||,
2 €20+Ky (B,ro)

where K (B, ro) = span{ro, Bro, B*ro, ..., B* 'ro}. Set

k—1
2k = 2o + Z’}/ijTo

Jj=0

and
k—1

llrill = 112 = > B yroll = lp(B)roll-

Jj=0
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The inner iteration for AP~ G411 = i

Preconditioning
m GMRES convergence bound
ldal = & min _ max |p(us)|idoll

depending on

UNIVERSITY OF




The inner iteration for AP~ G411 = i

Preconditioning
m GMRES convergence bound
ldal = & min _ max |p(us)|idoll

depending on
» the eigenvalue clustering of AP~!

» the condition number

» the right hand side (initial guess)
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The inner iteration for AP~ G411 = i

Preconditioning
m GMRES convergence bound
ldal = & min _ max |p(us)|idoll

depending on
» the eigenvalue clustering of AP~!

» the condition number
» the right hand side (initial guess)

= using a tuned preconditioner for Arnoldi’s method

PrQr = AQy; given by Py =P+ (A— P)QirQr
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The inner iteration for Ag = ¢

Theorem (Properties of the tuned preconditioner)

Let P with P = A+ E be a preconditioner for A and assume k steps of
Arnoldi’s method have been carried out; then k eigenvalues of AIF’,;l are
equal to one:

[AP,]AQk = AQx

and n — k eigenvalues are close to the corresponding eigenvalues of AP1.
They are eigenvalues of L € C"~**"=F with

IL—1|| < CllE]|.
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The inner iteration for Ag = ¢

Theorem (Properties of the tuned preconditioner)

Let P with P = A+ E be a preconditioner for A and assume k steps of

Arnoldi’s method have been carried out; then k eigenvalues of AIP’,;1 are
equal to one:

[AP, 1| AQk = AQx

and n — k eigenvalues are close to the corresponding eigenvalues of AP1.
They are eigenvalues of L € C"~F*"=F with

IL = 1]l < C|IE].

Implementation

m Sherman-Morrison-Woodbury.

® Only minor extra costs (one back substitution per outer iteration)




Numerical Example

sherman5.mtx nonsymmetric matrix from the Matrix Market library
(3312 x 3312).

m smallest eigenvalue: \; ~ 4.69 x 1072,

m Preconditioned GMRES as inner solver (both fixed tolerance and
relaxation strategy),

m standard and tuned preconditioner (incomplete LU).




No tuning and standard preconditioner
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Tuning the preconditioner

inner itertaions
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Relaxation
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Tuning and relaxation strategy
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Ritz values of exact and inexact Arnoldi

Exact eigenvalues

Ritz values (exact Arnoldi)

Ritz values (inexact Arnoldi, tuning)

+4.69249563e-02
+1.25445378e-01
+4.02658363e-01
+5.79574381e-01
+6.18836405e-01

+4.692495630-02
+1.25445378e-01
+4.02658347¢-01
+5.79625498¢-01
+6.18798666e-01

+4.69249563e-02
+1.25445378e-01
+4.02658244e-01
+5.79817301e-01
+6.18650849e-01

Table: Ritz values of exact Arnoldi’s method and inexact Arnoldi’s method with

the tuning strategy compared to exact eigenvalues closest to zero after 14

shift-invert Arnoldi steps.
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Outline

Inexact Shift-invert Arnoldi method with implicit restarts
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Implicitly restarted Arnoldi (Sorensen (1992))

Exact shifts

m take an k + p step Arnoldi factorisation

H
AQk+p = QrtpHrtp + Grtpt1hksp1,k+p€tp
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Implicitly restarted Arnoldi (Sorensen (1992))

Exact shifts

m take an k + p step Arnoldi factorisation

H
AQk+p = QrtpHrtp + Grtpt1hksp1,k+p€tp

= Compute A(Hg+,) and select p shifts for an implicit QR iteration




Implicitly restarted Arnoldi (Sorensen (1992))

Exact shifts

m take an k + p step Arnoldi factorisation

H
AQk+p = QrtpHrtp + Grtpt1hksp1,k+p€tp

= Compute A(Hg+,) and select p shifts for an implicit QR iteration

(1)
m implicit restart with new starting vector zj<1> _ pA)g

 p(A)g™]|
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Implicitly restarted Arnoldi (Sorensen (1992))

Exact shifts

m take an k + p step Arnoldi factorisation

H
AQk+p = QrtpHrtp + Grtpt1hksp1,k+p€tp

= Compute A(Hg+,) and select p shifts for an implicit QR iteration

(1)
m implicit restart with new starting vector zj<1> _ pA)g

 p(A)g™]|

Aim of IRA

AQy = QrHy, + @1 i1k enf
——

— 0
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Relaxation strategy for IRA

Theorem
For any given € € R with € > 0 assume that

@}
—— if 1>k,
ja < AR ¥ o

€ otherwise.

Then
|AQmU — @mU®O — Rp|| < e.

m Very technical

m Relaxation strategy also works for IRA!
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Tuning

Tuning for implicitly restarted Arnoldi’s method
= Introduce preconditioner P and solve
APEIQH-I = (qk, IP’,ZldkH = gk+1
using GMRES and a tuned preconditioner

PrQr = AQy; given by P, =P+ (A— P)QwQr




Tuning

Why does tuning help?
m Assume we have found an approximate invariant subspace, that is

A7'Qr = QuHi + gt 1hiiirer
—

~0
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Tuning

Why does tuning help?
m Assume we have found an approximate invariant subspace, that is
A7'Qr = QuHi + gt 1hiiirer
—_————
~0

m let A=! have the upper Hessenberg form

[Q @t ]7A ' [ Qe @t ]= Hr Tha

= H
hiy1,ke1er T |’

where [ Qr Qwnt ] is unitary and Hy € C** and Ty, € C"*"F are
upper Hessenberg.
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Tuning

Why does tuning help?
m Assume we have found an approximate invariant subspace, that is
A7 Qr = QrHy + Qk+1hk+1,kekH
T
m let A=! have the upper Hessenberg form

1 7H 41 1 Hy, Ti2
A =
[ Qr Qr" ] [ Qr Qr" ] herixeren Tos |’
where [ Qr Qut ] is unitary and Hy € C** and Thy € C* %" F are
upper Hessenberg.

If Rit1,k # 0 then

I+ QF AP, Qi

[ Qk le ]HA]PD;I [ Qk le ] = o T2_21( i_HPQi_)_l +%
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Tuning

Why does tuning help?
m Assume we have found an approximate invariant subspace, that is

AT'Qr = QrHy + qri1his rer
————
~0
m let A=! have the upper Hessenberg form

[ Qe Qr* ]HA*I[ Qr Qut )= o %z 0

= H
hiy1,ke1er

where [ Qr Qwnt ] is unitary and Hy € C** and Ty, € C"*"F are
upper Hessenberg.

If hk+1,k =0 then

(@ @t 1747 [ @t ]=| ( pipuipghy

I QHEAP'Qf ]



Tuning

Another advantage of tuning
m System to be solved at each step of Arnoldi’s method is

AP Gotr = ary Prldke1 = G
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Tuning

Another advantage of tuning
m System to be solved at each step of Arnoldi’s method is
AP Ger = @y Py = G
= Assuming invariant subspace found then (A™'Qx = Q1 Hy):

AP g = qu




Tuning

Another advantage of tuning
m System to be solved at each step of Arnoldi’s method is
AP Ger = @y Py = G
= Assuming invariant subspace found then (A™'Qx = Q1 Hy):
A]P’,:lqlc = qr

m the right hand side of the system matrix is an eigenvector of the
system!
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Tuning

Another advantage of tuning
m System to be solved at each step of Arnoldi’s method is
AP Ger = @y Py = G
= Assuming invariant subspace found then (A™'Qx = Q1 Hy):
A]P’,:lqlc = qr

m the right hand side of the system matrix is an eigenvector of the
system!

m Krylov methods converge in one iteration
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Tuning

Another advantage of tuning

m In practice:
AT'Qr = QrHy + qrr1hir ker

and
AP, g — qrll = O(lhkt1kl)
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Tuning

Another advantage of tuning

m In practice:
AT'Qr = QrHy + qrr1hir ker

and
AP, g — qrll = O(lhkt1kl)

m number of iterations decreases as the outer iteration proceeds
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Tuning

Another advantage of tuning

m In practice:
AT'Qr = QrHy + qrr1hir ker

and
IAP; gk — aill = O(lhk+1,l)
m number of iterations decreases as the outer iteration proceeds

= Rigorous analysis quite technical.
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Numerical Example

shermanb.mtx nonsymmetric matrix from the Matrix Market library
(3312 x 3312).

m k = 8 eigenvalues closest to zero
m IRA with exact shifts p =4

m Preconditioned GMRES as inner solver (fixed tolerance and relaxation
strategy),

m standard and tuned preconditioner (incomplete LU).
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No tuning and standard preconditioner
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iterations total number of inner iterations
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Tuning

rnoldi tolerance 10e-12|
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Figure: Inner iterations vs outer Figure: Eigenvalue residual norms vs
iterations total number of inner iterations
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Relaxation
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Tuning and relaxation strategy
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Numerical Example

qc2534 .mtx matrix from the Matrix Market library.
m k = 6 eigenvalues closest to zero
= IRA with exact shifts p =4

= Preconditioned GMRES as inner solver (fixed tolerance and relaxation
strategy),

m standard and tuned preconditioner (incomplete LU).
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Tuning and relaxation strategy

100 . : . . . . . : . . ' ' ' ' " [~ = Amoldi tolerance 106-12
—=&— Amold relaxed tolerance
90 —*— Amnoldi 10e-12 tuned
10° —8— Amold relaxed tolerance tuned|
80 =
%) =
4 =
. 9 70 *
]
g 60 g -
Q o 10
£ 5 <
= =
]
Q
=}
= S
T ow 3
— % — Amoldi tolerance 10e-12 = 10"
20| —&— Amold relaxed tolerance S
—#— Amoldi 10e-12 tuned *
10| —s— Arold relaxed tolerance tuned S
5 10 15 20 25 . 30 . 35 40 45 50 55 500 1000 1500 2000 2_500 3090 35(_)0 4000 4500 5000
outer iterations sum of inner iterations
Figure: Inner iterations vs outer Figure: Eigenvalue residual norms vs
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Outline

Conclusions




Conclusions

m For eigencomputations it is advantageous to consider small rank
changes to the standard preconditioners (works for any preconditioner)

m Extension of the relaxation strategy to IRA
m Best results are obtained when relaxation and tuning are combined

m Current work: Link to Jacobi-Davidson
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