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Abstract

We investigate the Preissmann Box Scheme which is the standard numerical scheme

used by hydraulic engineers to model open channel flows or surcharged flows in

pipes.

We apply the Scheme to both subcritical and transcritical flow and analyse its

behaviour in both cases. Since the Box Scheme breaks down in the second case we

present a method, which overcomes this problem.

By adopting the work which has been done for steady transonic flows and ap-

plying it to unsteady open channel flows we develop a modified Box Scheme which

works efficiently for transcritical flows. Numerical examples supporting our results

are presented.

Analysis of the solution of nonlinear systems is used together with computa-

tional testing of new algorithms.
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1 Introduction

The accurate computer simulation of river and pipe flows is of great importance in

the design of urban drainage networks. The St Venant equations are widely used by

Hydraulic Engineers as an accurate model for one-dimensional open channel flow

and surcharged flow in pipes. However, the analytic solution to these nonlinear

equations is only known for a limited number of special cases. Therefore we need a

reliable and accurate numerical solver.

Finite difference schemes, such as the Preissmann Box Scheme [27], are the stan-

dard schemes used in the solution of the St Venant equations. The Box Scheme, as

an implicit method, is unconditionally stable and extremely robust as it allows one

to choose the time step on the basis of accuracy rather than stability. It leads to

a nonlinear system of equations, which may be solved iteratively, using Newton’s

Method. Using its block-tridiagonal structure, the resulting system can be solved

relatively cheaply with the Thomas Algorithm. [24].

Figure 1: Supercritical flow with hydraulic jumps under a bridge

The Box Scheme can be applied to both purely subcritical and purely supercritical

flow. However, the occurrence of transcritical flow (i.e. the existence of both sub-

critical and supercritical flow regions in the considered domain) leads to problems

with the original implementation of the Box Scheme and the method breaks down.

We describe these problems and the reasons for their occurrence.

1
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Transcritical flow occurs frequently in channels with rapidly changing channel width

or on steep slopes, for example in mountainous areas. Steep slopes sometimes lead

to the formation of shocks, that is stationary or moving hydraulic jumps. Another

occurrence of transcritical flow is for dam-break waves.

There have been many attempts to overcome this limitation of the Box Scheme. One

approach is to change the underlying system of differential equations, such that

the flow remains subcritical [9, 11]. This sometimes gives reasonable results, but is

physically incorrect.

The correct approach is to keep the differential equations unmodified and switch

between the subcritical and supercritical implementation of the Box Scheme. Since

the mathematical situation is similar to that for compressible gas flow in a transonic

duct, we can use the concept of residual distribution, which was introduced in Mor-

ton et al. [25] and successfully applied to the steady-state Euler equations. We want

to adapt this technique to the unsteady St Venant equations, and show that we can

accurately model time dependent transcritical flow. Several test problems will be

carried out and we will see in the numerical results, that even transcritical prob-

lems involving shocks are modelled accurately. All computations are carried out in

MATLAB [8]. The description of all code developed and used for this report may be

found in the appendices.

2
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2 The Saint Venant Equations

In this section we will give a derivation of the Saint Venant equations and ap-

ply them to a channel with trapezoidal cross-section. We will use these equations

throughout this report as model equations for open channel flow.

2.1 Assumptions and Derivation

The St Venant equations are generally used to provide an accurate model of one

dimensional open channel flow. They are essentially obtained from the principles

of mass and momentum conservation. In order to derive them, certain assumptions

have to be made:

• the flow is essentially 1-D,

• the water in the channel is an incompressible ideal fluid and has constant den-

sity,

• the pressure is hydrostatic,

• all forces are due to gravity and friction, i.e. forces due to wind stress, Coriolis

force, atmospheric pressure etc. are negligible,

• the channel bed does not change in time,

• the volumetric inflow due to rain, tributaries and evaporation is negligible.

2.1.1 Mass Conservation

Using the assumptions of uniform density and incompressibility of water in a river,

the continuity equation of the Navier-Stokes equations (see [26]) reduces to

∇ · u = ∇ · (u, v, w) = 0, (2.1)

where u is the velocity vector field. Without any assumptions on the x, y-variation

of the surface we now average over the depth h−b, by integrating over z, see Figure

3
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Figure 2: Channel cross-section

2. Furthermore we assume free surface conditions,

D

Dt
(h(x, y, t) − z) = 0, (2.2)

i.e. particles on the surface cannot leave the surface; and similarly

D

Dt
(b(x, y) − z) = 0, (2.3)

for the channel bed. Those equations simplify to

(∂t + u∂x + v∂y) |z=hh − w|z=h = 0, (2.4)

(u∂x + v∂y) |z=bb − w|z=b = 0. (2.5)

We define the vector q to be the integral of (u, v) over the depth, i.e.





q1

q2



 =

∫ η=h

η=b





u

v



 dη. (2.6)

Using this equation and (2.1), (2.4) and (2.5) we get

∂th + ∇ · q = 0, (2.7)

the flow equation in terms of the height and the velocities. In order to complete the

cross-sectional averaging, we assume the flow is parallel to the boundary and define

4
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the discharge

Q(x, t) =

∫ yR(x)

yL(x)

q1dy, (2.8)

and the wetted cross-sectional area

A(x, t) =

∫ yR(x)

yL(x)

(h − b)dy, (2.9)

so that we can integrate (2.7) to get

At + Qx = 0. (2.10)

Another way to derive this equation is to consider the change of mass in a cross-

section. The principle of mass conservation states that the total change in mass

is balanced by the flow through the boundary, with no flow through the bed or

the surface. These assumptions lead to the integral form of the mass conservation,

which was derived in [9],

∫ x+∆x

x

[A]t+∆t
t dx +

∫ t+∆t

t

[Q]x+∆x
x dt = 0. (2.11)

2.1.2 Momentum Conservation

Now we can apply the same argument as in the previous section to the x-momentum.

From the basic Navier-Stokes equations (see [26]) we have

ut + ∇ · (uu + pI) = F, (2.12)

where u = (u, v, w) is the velocity vector field, p is the pressure and F represents all

external forces. We need to make assumptions about the normal momentum flux on

the boundary, the momentum, gravity and bed friction.

Again, by integrating over the cross-section in x-direction, the first term in (2.12) is

given by
∫ x+∆x

x

[Q]t+∆t
t dx. (2.13)

Assuming hydrostatic pressure, i.e. p = pat + g(h − z), the second term in (2.12)

5
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becomes
∫ t+∆t

t

[

βQ2

A
+ gI1

]x+∆x

x

, (2.14)

where β ≥ 1 depends on the vertical variation of the velocities and

I1(x, t) =

∫ h

b

∫ yR

yL

(h − z)dydz (2.15)

is the cross-sectional moment integral. The external forces give terms from the bed

friction but also from g(h − z), arising from the change in bed cross-section with x,

and obtained from integrating g(h − z) over the bed surface area projected into the

x-direction. Hence, the external forces may be written as

∫ t+∆t

t

∫ x+∆x

x

g(A(S0 − Sf ) + I2)dxdt, (2.16)

where S0 is the bed slope, Sf is the frictional slope from the fricitional forces and

I2(x, t) =

∫ h

b

∫ yR

yL

(h − z)σxdydz (2.17)

is the pressure force acting on the channel bed. The function σx represents the

change in channel width in the x-direction. Hence, the momentum equation (2.12)

becomes

∫ x+∆x

x

[Q]t+∆t
t dx +

∫ t+∆t

t

[

βQ2

A
+ gI1

]x+∆x

x

=

∫ t+∆t

t

∫ x+∆x

x

g(A(S0 − Sf) + I2)dxdt.

(2.18)

These equations are often derived in terms of the river width at each level rather

than its depth at each y-position. In order to see the relationship between those two

approaches, we refer to Figure 2 and consider first the description of the bed shape

at each value of x.

In the (y, z)-plane the bed shape is given either by z = b(y) or equivalently by ∆y =

ς(z), where ς(z) is the channel width at height z. Then we can introduce the bed

level ξ(x) and replace z by η := z − ξ(x), a translation in the z-direction. Hence,

the channel width may be written as σ(x, η) = σ(η) − ς(z). Then, from (2.9), we can

6
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define the river depth D(x, t) by

∫ D

0

σ(x, η)dη = A(x, t); (2.19)

so it is really an average depth over the width of the channel, i.e, the depth does not

depend on the y-variation of the water surface. As a result we can write

I1(x, t) =

∫ D(x,t)

0

(D(x, t) − η)σ(x, η)dη, (2.20)

I2(x, t) =

∫ D(x,t)

0

(D(x, t) − η)σx(x, η)dη. (2.21)

Where required we define the river height as h(x, t) = D(x, t) + ξ(x); note that the

height of a river is more easily observed than its depth.

A more detailed derivation of the St Venant equations may be found in [29].

2.2 A General Differential Form

Using the derivation of the previous section a general differential form of the St

Venant equations for unsteady flow is given by

∂A

∂t
+

∂Q

∂x
= 0, (2.22)

∂Q

∂t
+

∂

∂x

(

βQ2

A
+ gI1

)

= gI2 + gA(S0 − Sf), (2.23)

provided the wetted cross-sectional area A(x, t) and the discharge Q(x, t) are suffi-

ciently smooth. The distance along the channel is given by x, t is the time, S0(x) is

the bed slope, Sf (x, A, Q) is the frictional slope, g is the gravitational acceleration

and β is the momentum coefficient. For an ideal fluid, with no boundary layers, we

usually have β = 1. Furthermore, the bed slope S0 is given by

S0(x) = −dξ

dx
, (2.24)

where ξ(x) is the bed level, the elevation of the bed above some horizontal datum.

I1(x, t) and I2(x, t) are given by (2.20) and (2.21). The average fluid velocity for each

channel cross-section is given by v(x, t) =
Q(x, t)

A(x, t)
. Finally, for the frictional slope Sf

7
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we use Manning’s formula , stated in [9] with

Sf =
Q|Q|
K2

, (2.25)

where the conveyance K(x, h) is given by

K =
A5/3

nP 2/3
. (2.26)

P (x, h) is the wetted perimeter and n is Manning’s coefficient, which measures the

roughness of the channel. In the following section we describe how the general St

Venant equations (2.22) and (2.23) can be written in the case of trapezoidal cross-

sections.

2.3 Channel with Trapezoidal Cross-section

Figure 3: Trapezoidal channel cross-section

If the channel cross-section is trapezoidal, then the width of the channel can be de-

scribed by

σ(x, η) = B(x) + 2ST (x)η, (2.27)

where ST (x) is the side slope of the channel and B(x) is its bottom width, see Figure

3. For the special case of a rectangular channel ST (x) equals zero. We can evaluate

(2.20) and (2.21) to get

I1(x, t) = D(x, t)2

(

B(x)

2
+

D(x, t)ST (x)

3

)

, (2.28)

I2(x, t) = D(x, t)2

(

1

2

∂B(x)

∂x
+

D(x, t)

3

∂ST (x)

∂x

)

. (2.29)

8
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Also, the wetted cross-sectional area A(x, t) depends on the depth D(x, t) of the

water:

A(x, t) = D(x, t)B(x) + D(x, t)2ST (x) and
∂A

∂D
(x, t) = B(x) + 2D(x, t)ST (x).

(2.30)

Since ST (x) ≥ 0 and B(x) > 0 we can always determine the depth of the water

D(x, t) from A(x, t):

D(x, t) =



















A(x, t)

B(x)
, if ST (x) = 0

− B(x)

2ST (x)
+

√

B(x)2

4ST (x)2
+

A(x, t)

ST (x)
, if ST (x) > 0.

(2.31)

Also, for a trapezoidal channel we have

T (x, D) = B(x) + 2D(x, t)ST (x) and P (x, D) = B(x) + 2D(x, t)
√

1 + ST (x)2,

(2.32)

for the water surface width T and the wetted perimeter P . Therefore the system

may be written in the conservative vector form

ut + fx = s, (2.33)

where

u = [A, Q]T , (2.34)

f =

[

Q,
Q2

A
+ g

(

D2B

2
+

D3ST

3

)]T

, (2.35)

s =

[

0, gA(S0 − Sf ) + gD2

(

1

2

∂B

∂x
+

D

3

∂ST

∂x

)]T

. (2.36)

The Jacobian of f is given by

A(u) =
∂f

∂u
=





0 1

c2 − v2 2v



 , (2.37)

9
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where v =
Q

A
is the average velocity and, using (2.30) and (2.32),

c2 = g
∂I1

∂A
= g

(DB + D2ST )∂D

∂A
= g

DB + D2ST

B + 2DST
= g

A

T
, (2.38)

i.e. we get c =

√

gA

T
for the wave celerity. The eigenvalues of A(u) are given by

a1 = v − c, (2.39)

a2 = v + c, (2.40)

and the eigenvectors are

v1 =





1

v − c



 and v2 =





1

v + c



 . (2.41)

Hence, A(u) has got 2 real eigenvalues and 2 linearly independent eigenvectors if

c 6= 0. By definition the system is hyperbolic (see [13]), and also, since in the latter

case the eigenvalues are distinct, strictly hyperbolic.

10
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3 The Preissmann Box Scheme

The Preissmann Box Scheme is the standard method used by hydraulic engineers to

describe one dimensional flow. It is a so-called cell-vertex scheme (Morton [21]) and,

as a four-point finite-difference implicit scheme, unconditionally stable. However,

the Box Scheme can only be used to model strictly subcritical or supercritical flow.

We will show why it breaks down for transcritical flow.

3.1 Scalar Equation

We consider the scalar conservation law

ut + f(u)x = s(u, x), (3.1)

and approximate u by a discrete set of values un
j ≈ u(xj , t

n), which correspond to

the function values on the rectangular grid for which the nodes are given by (xj , t
n).

We take the values of u and f at four corners of a computational box as it can be seen

in Figure 4. Then we obtain the Box Scheme by replacing the partial derivatives in

t
n+1

 

t
n
 

x
j
 x

j+1
 

∆ t 

h
j
 

o o 

o o 

Figure 4: The Preissmann Box Scheme stencil

the equation (3.1) by its finite difference approximations,

∂u

∂t
≈

un+1
j+1 − un

j+1 + un+1
j − un

j

2∆t
, (3.2)

∂f

∂x
≈

θ(fn+1
j+1 − fn+1

j ) + (1 − θ)(fn
j+1 − fn

j )

hj

, (3.3)

11
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where θ ∈ [0, 1]. The grid points x0 < x1 < . . . < xN are variably spaced with

hj = xj+1 − xj for all j = 0, . . . , N − 1. The spatial derivatives are centered in

space and weighted in time according to the weighting factor θ. For θ = 0 the

scheme is fully explicit and for θ = 1 it is fully implicit. The source term s(u, x)

is approximated by a weighted average of the four points in the stencil in Figure 4

with

s(u, x) ≈ 1

2
θ(sn+1

j+1 + sn+1
j ) +

1

2
(1 − θ)(sn

j+1 + sn
j ), (3.4)

where sn
j = s(un

j , xj). These approximations finally lead to the scheme

un+1
j+1 − un

j+1

2
+

un+1
j − un

j

2
+

∆t

hj

θ(fn+1
j+1 − fn+1

j ) +
∆t

hj

(1 − θ)(fn
j+1 − fn

j )

− ∆t

(

1

2
θ(sn+1

j+1 + sn+1
j ) +

1

2
(1 − θ)(sn

j+1 + sn
j )

)

= 0.

(3.5)

for j = 0, . . . , N − 1.

3.2 Systems of Equations

We consider the differential form of the St Venant equations

ut + f(u)x = s(u, x), (3.6)

where u = [A, Q]T , and apply the Box Scheme (3.5) in vector form, which gives

un+1
j+1 − un

j+1

2
+

un+1
j − un

j

2
+ λjθ(f

n+1
j+1 − fn+1

j ) + λj(1 − θ)(fn
j+1 − fn

j )

− ∆t

(

1

2
θ(sn+1

j+1 + sn+1
j ) +

1

2
(1 − θ)(sn

j+1 + sn
j )

)

= 0,

(3.7)

for all j = 0, . . . , N − 1, where λj =
∆t

hj
and hj = xj+1 − xj. The vectors u, f and s are

taken from (2.34)-(2.36). Therefore we may implement the Box Scheme for a general

trapezoidal channel including friction forces and variable width.

12
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3.3 Implementation

In order to implement the Box Scheme we consider a finite domain x ∈ [0, L] and use

N + 1 grid points [x0, . . . , xN ] which are variably spaced with distance hj. This vari-

able spacing allows us to respond to changes in channel width and bed slope and

helps to approximate the depth of the water more exactly. It might also be useful

for shock recovery. The implementation procedure is described in [9]. Since there

are two unknowns Aj and Qj at each node xj , we have a total number of 2N + 2 un-

knowns. By defining the left-hand side of (3.7) to be the cell residual Rj+ 1

2

of each of

the N cells [xj , xj+1], j = 0, . . . , N−1, we get 2N equations. Thus, we need two more

equations, which are supplied by the boundary conditions. For subcritical flow the

discharge Q is usually prescribed upstream and the height h downstream. Both Q

and h are prescribed at the upstream boundary for supercritical flow.

Since the St Venant equations are nonlinear we need a nonlinear iteration technique,

to solve

Rj+ 1

2

= 0, ∀j = 0, . . . , N − 1. (3.8)

We also need an efficient method, since within each time step we have to iterate

successively. We use Newton’s Method for systems, which is described in [2], in

order to solve (3.8). Suppose the solution is known up to time level tn and we want

to find the solution at time level tn+1. Let u(k) be the estimate of the solution un+1

after k iterations. The residual for this estimate is

R
(k)

j+ 1

2

=
u

(k)
j+1 − un

j+1

2
+

u
(k)
j − un

j

2
+ λjθ(f

(k)
j+1 − f

(k)
j ) + λj(1 − θ)(fn

j+1 − fn
j )

− ∆t

(

1

2
θ(s

(k)
j+1 + s

(k)
j ) +

1

2
(1 − θ)(sn

j+1 + sn
j )

)

.

(3.9)

The next iterate u(k+1) is obtained by solving the Newton system

1

2
(I + 2λjθA(k)

j+1)∆u
(k)
j+1 +

1

2
(I − 2λjθA(k)

j )∆u
(k)
j

− 1

2
θ∆tS(k)

j+1∆u
(k)
j+1 −

1

2
θ∆tS(k)

j ∆u
(k)
j = −R

(k)

j+ 1

2

,
(3.10)
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where A =
∂f

∂u
, S =

∂s

∂u
and j = 0, . . . , N − 1. For the Jacobian we assume that

∂B

∂x
= 0 and

∂ST

∂x
= 0, (3.11)

and therefore

A =





0 1

c2 − v2 2v



 and S =





0 0

g
(

S0 + Sf

(

7
3
− 8A

3TP

√

1 + S2
T

))

−2gA
Q

Sf



 ,

(3.12)

where the wave celerity c and the average velocity v are given by

c =

√

gA

T
and v =

Q

A
. (3.13)

The system, we have to solve for each state u(k), may then be written in block-

tridiagonal form. If we multiply by 2 and, just for the purpose of a simpler notation,

omit S, the system may be written in the form

MW = Z, (3.14)

where

M =



































α0 β0 0 · · · · · · · · ·
I − 2θλ0A0 I + 2θλ0A1 0 · · · · · ·

0 I − 2θλ1A1 I + 2θλ1A2 0 · · ·
· · · · · · . . . . . . · · ·
· · · 0 I − 2θλN−2AN−2 I + 2θλN−2AN−1 0

· · · · · · 0 I − 2θλN−1AN−1 I + 2θλN−1AN

· · · · · · · · · 0 αN βN



































(3.15)

with the Jacobian Aj evaluated at xj , j = 0, . . . , N, and

W =
[

∆u
(k)
0 ∆u

(k)
1 · · · ∆u

(k)
N−1 ∆u

(k)
N

]T

, (3.16)

Z =
[

γ0 −2R 1

2

−2R 3

2

· · · −2RN−
3

2

−2RN−
1

2

γN

]T

. (3.17)
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The first and the last equation

α0∆A0 + β0∆Q0 = γ0, (3.18)

αN∆AN + βN∆QN = γN , (3.19)

represent the boundary conditions at inflow and outflow. The number of boundary

conditions at inflow and outflow is determined by the kind of flow present.

Once the new iterate u(k+1) is calculated using the Newton update

u(k+1) = u(k) + ∆u(k), (3.20)

the whole process is repeated, until the stopping criterion,

‖u(k+1) − u(k)‖1

‖u(k)‖1
< tol, (3.21)

is satisfied, where the tolerance tol is a small positive number or until a fixed num-

ber of iterations has been carried out.

Note, that if (3.11) is not satisfied or by omitting S in the Jacobian, we only get a

Quasi-Newton method.

3.4 Solution Procedure

We consider available methods in order to solve the system of linearised equations.

Standard matrix inversion techniques usually need a number of operations which

is proportional to N3 ,or, at best N2 (see, for example [5]), where N is the number of

grid points. In order to solve the block-tridiagonal Newton system (3.14) with 2 × 2

blocks, we may use the Thomas algorithm, a non-pivoting Gaussian elimination for

tridiagonal matrices which can be extended to block-tridiagonal matrices. The num-

ber of operations is proportional to the number of grid points N ([1]). This method

is identical to successively applying the double sweep algorithm and described for

an easier system in [20] and in [28].
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The tridiagonal system of linear equations may be written in the form

AiWi−1 + DiWi + CiWi+1 = Zi, i = 0, . . . , N, (3.22)

where Ai, Di and Ci are 2x2 matrices and Wi = [∆Ai, ∆Qi]
T . Using the boundary

conditions at inflow and outflow we get

A0 = 0, and Aj =





−2θλj−1(c
2
j−1 − v2

j−1) 1 − 4θλj−1vj−1

0 0



 , j = 1, . . . N,

(3.23)

for the subdiagonal elements,

CN = 0, and Cj =





0 0

1 2θλj



 , j = 0, . . .N − 1, (3.24)

for the superdiagonal elements and

D0 =





α0 β0

1 −2θλ0



 , DN =





2θλN(c2
N − v2

N) 1 + 4θλNvN

αN βN



 (3.25)

and

Dj =





2θλj(c
2
j − v2

j ) 1 + 4θλjvj

1 −2θλj



 , j = 1, . . .N − 1, (3.26)

for the diagonal block entries. Direct solution gives the backwards recursion

WN = FN , (3.27)

Wj = EjWj+1 + Fj , j = N − 1, . . . , 0, (3.28)

where Ej and Fj are given by the forward recursion

Ej = −(Dj + AjEj−1)
−1Cj, j = 0, . . . , N − 1, (3.29)

Fj = (Dj + AjEj−1)
−1(Zj − AjFj−1), j = 0, . . . , N, (3.30)

and F−1 = 0, E−1 = 0. This technique is has a very similar structure to the simple

Marching Scheme, described in [25] and is a stable procedure if the inverses exist

16
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and if

‖Ej‖ ≤ 1, ∀j. (3.31)

Diagonal dominance is a sufficient condition to guarantee (3.31) as stated for the

scalar case in Morton and Mayers [24]. The generalisation for the case of block-

tridiagonal systems is

(‖Aj‖ + ‖Cj‖)‖D−1
j ‖ ≤ 1 ∀j. (3.32)

In section 6.4 we will show with a similar analysis as it was done in Morton [20], that

our Thomas Algorithm is well-conditioned. The described algorithm is easier and

faster than setting up and solving the whole system, since less storage is required

and only 2x2 matrices have to be inverted.

3.5 Overall Algorithm Description

In order to implement the above algorithm, we need to set up the boundary condi-

tions as well as the initial conditions at the nodes. For the cross-sectional area Aj

and and the discharge Qj we take constant initial conditions, subject to the bound-

ary conditions. Then, for each time step, we perform the following algorithm, until

the steady state is reached:

1. set up Aj, Dj , Cj and Zj for all j = 0, . . . , N using (3.23)-(3.26);

2. calculate Ej , j = 0, . . . , N − 1, and Fj , j = 0, . . . , N by the forward recursions

(3.29) and (3.30);

3. solve the system by the Thomas Algorithm (3.27) and (3.28);

4. calculate the new iterate using (3.20);

5. check, if stopping criterion (3.21) is satisfied. If so, then move on to the next

time level, otherwise start with 1. again.

Hence, for each time step, we have to do a Newton iteration.

3.6 Transcritical Flow

The term transcritical flow denotes the existence of both subcritical and supercritical

flow regions in an open-channel system. It is similar to transonic flow in gas dy-

17
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namics and occurs in irrigation canals especially on steep slopes or rapidly changing

channel width.

In order to characterise the flow, the eigenvalues of the Jacobian (2.37),

a1 = v − c, (3.33)

a2 = v + c, (3.34)

are important. As stated in [9] the eigenvalues can be thought of as the veloci-

ties at which disturbances propagate. When the eigenvalues have opposite signs,

disturbances travel both upstream and downstream. When the eigenvalues have

the same sign, no information is carried upstream and disturbances can only travel

downstream. In the first case, the flow is said to be subcritical, in the latter case it is

supercritical. By calculating the Froude number (see [7]),

F =
|v|
c

, with c =

√

gA

T
(3.35)

similar to the Mach number in gas flow, the flow may be determined to be subcriti-

cal or supercritical as F is less or greater than unity. Some authors refer tranquil and

rapid flow instead [3]. From (3.35) we clearly see, that for a slowly flowing river

we always have subcritical flow. We also find that supercritical flow occurs, if the

velocity of the stream is increasing. This happens if the bed slope steepens, or, if

water flows through a narrow region.

A typical situation, that arises in a river is the following: The flow is subcritical

at inflow and at outflow, i.e. the bed slope is very gentle. If the velocity of the

stream increases, we will have a region of supercritical flow. Typically, flow changes

smoothly to supercritical flow at the so called sonic point and returns to subcritical

flow via a shock or hydraulic jump.

As we will explain more detailed in section 7.1, setting the cell residuals to zero

won’t work in this subcritical - supercritical - subcritical case. It turns out, that there

is too little information at the sonic point, and too much information at the shock.
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The problem is therefore locally ill-posed and cannot be solved.

Hence, flows in parts of the river with steep bed slope or rapidly changing chan-

nel width cannot be resolved. We will see some examples for this limitation in the

following 2 sections.
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4 Model Problems

We need to create test problems with a known analytical solution, in order to check

our algorithms. In this section we describe how to construct such test problems and

we introduce some problems to which we will later apply our algorithms.

4.1 Steady Open Channel Test Problems

In [15] and [16] a method is described, that allows the construction of test problems,

where in each case the exact solution for the steady St Venant equations is known.

Under steady state conditions it is assumed that the depth D = D(x) and the dis-

charge Q = Q(x). Furthermore we use a trapezoidal channel with I2 = 0, i.e. the

side slope ST and the channel width B are constant. Then equations (2.22) and (2.23)

reduce to

∂Q

∂x
= 0, (4.1)

∂

∂x

(

βQ2

A
+ g

(

D2B

2
+

D3ST

3

))

= gA(S0 − Sf). (4.2)

From the first equation, Q is clearly constant along the length of the channel. Differ-

entiating the momentum term in the second equation yields

(

1 − Q2T

gA3

)

dD

dx
= S0 − Sf . (4.3)

Hence, the bed slope function S0(x) can be deduced from (4.3). The usual approach

is now an inverse one. We choose a smooth depth function D = D(x) and use (4.3)

in order to calculate the bed slope S0. The analytic solution to this steady state prob-

lem is then given by D = D(x). Constructing test problems with a non-smooth

analytic solution is similar, but we have to take care about the hydraulic jump. The

hypothetical flow must be physically allowable. A procedure for achieving this is

described in [16].

We are going to study the unsteady case, but still, the steady solution is important.

On the one hand, if constant boundary conditions are imposed and we let t → ∞,
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then the flow converges to a steady state, for which the analytical solution is known.

On the other hand steady flows are often required as initial data for unsteady simu-

lations. We therefore state some steady test problems.

4.2 Subcritical Problem with Small Froude Number (P1)

The first problem, that we consider is a trapezoidal channel of length 1 km, width

B = 10 m and side slope ST = 1. We impose a discharge of Q = 20 m3/s at inflow

and a depth of Dout = 1.112299 m. The flow is subcritical at inflow and outflow.

As Manning roughness coefficient we choose n = 0.02. Using (4.3) the slope of the

channel is then given by

S0(x) =

(

1 − Q2T

gA3

)

D′(x) +
Q2n2P

4

3

A
10

3

, (4.4)

where P, T and A are chosen according to (2.32) and (2.30). The depth D(x) of the

water for the steady problem is given by

D(x) =

(

4

g

)
1

3

(

3

2
− 2

5
exp

(

−144

(

x

1000
− 1

2

)2
))

. (4.5)

The solution for the steady state is shown in Figures 5 and 6.
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Figure 5: Depth and bed slope (P1)
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Figure 6: Bed level and surface level (P1)
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4.3 Near-critical Problem (P2)

We choose the same channel geometry as in the previous problem (P1), but with

depth Dout = 0.748323 m at outflow. As Manning roughness coefficient we choose

n = 0.03. The depth of the water for the steady problem is given by

D(x) =

(

4

g

)
1

3

(

1 +
1

2
exp

(

−16

(

x

1000
− 1

2

)2
))

, (4.6)

and the slope is again calculated by (4.4). The solution for the steady state is shown

in Figures 7 and 8. We include this problem, because it is close to being transcritical
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Figure 7: Depth and bed slope (P2)
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Figure 8: Bed level and surface level (P2)

at both ends of the channel.

4.4 Transcritical Problem Involving a Hydraulic Jump (P3)

As a test problem for transcritical flow we take an example from [16]. Again, we

choose a trapezoidal channel of length 1 km, width B = 10 m and side slope ST = 1.

The inlet discharge is Q = 20 m3/s. Now, flow is subcritical at inflow and at out-

flow with depth Dout = 1.349963 m, but, due to the steepening bed slope, it changes

smoothly to supercritical flow and returns to subcritical flow via a hydraulic jump.

As Manning roughness coefficient we choose n = 0.02. Then the bed slope of the
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channel is given by (4.4), where the depth of the water is

D(x) =



































0.723449

(

1 − tanh

(

x

1000
− 3

10

))

, 0 ≤ x ≤ 300,

0.723449

(

1 − 1

6
tanh

(

6

(

x

1000
− 3

10

)))

, 300 < x ≤ 600,

3

4
+

3
∑

k=1

ak exp

(

−20k

(

x

1000
− 3

5

))

+
3

5
exp

( x

1000
− 1
)

, 600 < x ≤ 1000,

(4.7)

with a1 = −0.111051, a2 = 0.026876 and a3 = −0.217567. The analytic solution for

the steady state is shown in Figures 9 and 10.
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Figure 9: Depth and bed slope (P3)
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Figure 10: Bed level and surface level (P3)

4.5 Transcritical Problem with Changing Channel Width (P4)

This test problem is not constructed using the method described in section 4.1. In-

stead, it is taken from Skeels’ thesis [29, page 144]. We take a rectangular channel of

length 10 km, and smoothly changing width from B = 10 m to B = 5 m and back to

B = 10 m again. The width is obtained via a cubic polynomial,

B(x) =
2

25

( x

1000

)3

− 3

5

( x

1000

)2

+ 10, x = 0, . . . , 5000, (4.8)

mirrored in the line x = 5000. The upstream boundary condition is constant Q =

20 m3/s and at the downstream boundary we impose the depth Dout = 1.3 m. The

bed slope is constant S0(x) = 0.002 except between 4500 and 5500 metres, where the

bed slope is doubled (P4a). As Manning roughness coefficient we choose n = 0.03.

The channel bed and the channel width are illustrated in Figures 11 and 12.
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Figure 11: Channel bed (P4) Figure 12: Channel width (P4)

We can modify problem (P4a), which is subcritical, in order to investigate different

situations. By increasing the bed slope or by decreasing the channel width, the

average velocity v and therefore the Froude Number (3.35) increases. Hence, the

problem becomes transcritical, i.e. subcritical with an interior supercritical region.

This variation leads to problem (P4b): The bed slope is constant S0(x) = 0.002 except

between 4500 and 5500 metres, where the bed slope is S0(x) = 0.012, i.e. six times

steeper. Further modification leads to problem (P4c): The bed slope is constant

S0(x) = 0.002 but between 4500 and 5500 metres it is S0(x) = 0.04, i.e. twenty times

steeper.
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5 Steady State Solutions to Model Problems

We solve our unsteady test problems with the algorithm described above, i.e. by

driving the cell residuals to zero using Newton’s Method. We monitor the maximum

Froude Number for each time state tn,

F = max
j=0,...,N

|vj |
cj

, (5.1)

and also the maximum CFL number, which is

νmax = max{νn
j : j = 0, . . . , N ; n = 0, . . . , nT}, (5.2)

where tnT is the final time, i.e. the time when the steady state is reached. The CFL

number νn
j of the system at (xj , t

n) is defined by

νn
j = λjρ(A(un

j )), (5.3)

where ρ(.) denotes the spectral radius. By keeping the boundary conditions con-

stant, flow is allowed to approach the steady state. We will see that the Box Scheme

in its original implementation does not solve transcritical problems.

5.1 Subcritical Problem with Small Froude Number (P1)

For this problem we use Newton’s Method, i.e. the full Jacobian. We use constants

for discharge Q and depth D, which match the boundary conditions, as initial val-

ues. With θ = 2
3
, ∆x = 10, i.e. N = 100, ∆t = 10 and a tolerance of 10−10, the result-

ing depth for the steady state (after t = 900) may be seen in Figure 13. Initially the

maximum Froude Number is 0.5138, the maximum Froude Number for the steady

state is 0.8308. Approximations to the Froude Number for the steady state may be

seen in Figure 14. The maximum CFL number in this case is νmax = 5.1238. Conver-

gence at each time step takes about 3−5 iterations. We can increase the time step and

therefore the maximum CFL number, but we need more iterations for convergence

at each time step. If we omit the derivative of the source term S in the Jacobian, we

have to reduce the time step to about ∆t = 10, and convergence takes about 7 − 10
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Figure 13: Subcritical problem with small
Froude Number, steady state (P1)
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Figure 14: Approximations for Froude Num-
ber for subcritical problem (P1)

iterations. If ∆t is chosen too large, we get no convergence after the first time step.

This behaviour, due to Newton’s Method, will be explained in a later section.

We want to use this problem to check the order of convergence for the Box Scheme.

On that score we set θ = 1
2

and assume that the error e(∆x) satisfies e(∆x) = C∆xβ

for some constant C. Then we can calculate β using

β(∆x) =
ln e(2∆x)

e(∆x)

ln 2
. (5.4)

Several computations have been carried out and the error e(∆x) = ‖Danal −Dnum‖∞
has been calculated for problem (P1). Table 1 suggests O(∆x2) convergence for the

∆x N e(∆x) = ‖DANAL − DNUM‖∞ β(∆x)

40 25 0.00868 -
20 50 0.002997 1.53
10 100 9.42988·10−4 1.68

Table 1: Convergence rate

Box Scheme. In section 6 we will see that there is very little dissipation for θ = 1
2

and oscillations occur, which warp the 2nd order convergence of the Box Scheme.

In order to check the robustness of the method, we can also try θ = 1, which should

almost omit time-stepping. Using N = 100 and ∆t = 900, we get indeed a very

adequate solution for the steady state, after just one time-step and 8 iterations.
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5.2 Near-critical Problem (P2)

Again, we use the full Jacobian and θ = 2
3
, ∆x = 10, ∆t = 10 and a tolerance of

10−10. The initial values are constants, matching the boundary conditions. Small

period 2∆x oscillations occur at the boundary after the first time step. The steady

state solution can be seen in Figure 16. Initially the maximum Froude Number is
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Figure 15: Near-critical problem after one
time-step, t = 10 (P2)
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Figure 16: Near-critical problem at steady
state (P2)

0.9492, the maximum Froude Number for the steady state is 0.9492, too. The max-

imum CFL number in this case is νmax = 5.1065. Convergence takes about 4 − 5

iterations for each time step. After the first time step, the oscillations on the right

hand boundary are largest (see Figure 15), due to the Froude number being close to

unity. The oscillations die out during the iterations and cannot be seen in the steady

state solution. Again, the same result is obtained by omitting the derivative of the

source term S in the Jacobian, with ∆t = 10, 15 − 29 iterations for convergence for

each time step. If ∆t is chosen too large, we get no convergence after the first time

step.

5.3 Transcritical Problem Involving a Hydraulic Jump (P3)

Using θ = 2
3
, ∆x = 10, ∆t = 1, constant initial values and a tolerance of 10−10 again,

convergence takes about 4 iterations for each time step. The maximum Froude

Number for the initial state is 0.3749 and it increases during the iterations. As soon

as the Froude Number approaches unity, the number of iterations for each time step

increases and period 2∆x oscillations occur in the supercritical region, especially
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near the shock. In Figure 17 we can see the result for maximum Froude Number

1.0833 and in Figure 18 the result for maximum Froude Number 1.1735. Shortly af-

ter that time, the scheme breaks down, and we get a completely wrong solution. The

steady state solution cannot even be approached, because it is transcritical. If ∆t is

0 100 200 300 400 500 600 700 800 900 1000
0.5

1

1.5

2

Channel length (m)

D
ep

th
 o

f t
he

 w
at

er
 (

m
)

Computed Solution after t = 47
Analytic solution for steady state

Figure 17: Transcritical problem at time t =
47 (P3)
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Figure 18: Transcritical problem at time t =
51 (P3)

chosen too large, we get no convergence after the first time step. The restriction on

the time step is stronger than in the previous cases.

5.4 Transcritical Problem with Changing Channel Width (P4)

For the problem with changing channel width we just take a Quasi-Newton method.

We calculate the Jacobian by assuming that
∂B

∂x
can be neglected. Since max

(

∂B

∂x

)

=

0.0015 this is justifiable. We use θ = 2
3
, ∆x = 100, i.e. N = 100 cells and ∆t = 100,

a tolerance of 10−8 and constant initial conditions matching the boundary values.

After t = 8000 the steady state is approached. The result we get for the depth func-

tion can be seen in Figure 19. Initially the maximum Froude Number is 0.8616, the

maximum Froude Number for the steady state is 0.5157. In Figure 20 we can see the

approximation of the Froude Number for the steady state, which clearly indicates

the subcritical case. The maximum CFL number is νmax = 6.6481 and convergence

at each time step takes about 3 − 6 Newton iterations. We can increase the time

step and therefore the maximum CFL number, but we need slightly more iterations

for convergence. If we omit the source term S in the Jacobian entirely, we still get

convergence, but only if we reduce the time-step, for example to ∆t = 10, and con-

vergence takes much longer (7 − 16 iterations).
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Figure 19: Subcritical problem with chang-
ing channel width at steady state
(P4a)
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Figure 20: Approximations to Froude Num-
ber for subcritical problem at
steady state (P4a)

In Figure 21, we see the result for the same problem but with a six times steeper

bed slope between x = 4500 and x = 5500. The problem becomes critical at the

steady state. Figure 22 shows Froude Number approximations for the steady state.

From that plot we can see that the problem is near-critical with a Froude Number

close to unity at the steady state. Just two nodes are in the supercritical region and

the problem can still be solved by our unmodified Box Scheme implementation (see

[29]). The maximum CFL number is νmax = 7.0872. Oscillations occur in the critical

region, especially near the shock.
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Figure 21: Near-critical problem with chang-
ing channel width, steady state
(P4b)
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Figure 22: Approximations to Froude Num-
ber for near-critical problem,
steady state (P4b)

For the same problem with a twenty times steeper bed slope (P4c) between x = 4500
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and x = 5500 the flow becomes supercritical in that particular region. For t = 0

the problem is wholly subcritical, but after running the algorithm for a certain time

t > 0, the unsteady solution becomes supercritical between x = 4500 and x = 5500

and and our unmodified Box Scheme implementation breaks down.
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6 Accuracy, Stability and time-step Constraint

In this section we investigate the accuracy and stability of the Box Scheme applied

to systems of equations. By this means we will also find some explanation, why the

Box Scheme cannot be applied to transcritical flow.

6.1 Accuracy of the Box Scheme

We use Taylor’s series expansion (see [6]) about
(

xj+ 1

2

, tn+ 1

2

)

in order to investigate

the accuracy of the Box Scheme (3.5) for a regular sized mesh. By using the homo-

geneous equation ut + fx = 0 only, the truncation error (see [22]) of the Box Scheme

may be written as

T n
j = utxx

∆x2

8
+uttt

∆t2

24
+fttx

∆t2

8
+fxxx

∆x2

24
−fxt

∆t

2
+θ(fxt∆t+O(∆t3, ∆x3)), (6.1)

where the derivatives are evaluated at
(

xj+ 1

2

, tn+ 1

2

)

. Therefore the Box Scheme is

first order accurate for general values of θ. If we choose θ = 1
2
, then the truncation

error becomes

T n
j = utxx

∆x2

12
− uttt

∆t2

12
= O(∆x2, ∆t2), (6.2)

and the Box Scheme is second order accurate in space and time for this special value

of θ. In practice θ = 1
2

+ O(∆t) is commonly used in order to get second order

accuracy.

6.2 Stability of the Box Scheme via Fourier Analysis

Consider the stability of the Box Scheme applied to the linearised form of the homo-

geneous St Venant equations (3.6),

ut + Aux = 0, (6.3)

where A is constant and given by (2.37). This system may be decoupled by intro-

ducing characteristic variables w = [w1, w2]T (see [13]), with w = V −1u, where V is

the matrix of eigenvectors (2.41) of A. Then, the system (6.3) can be written as two
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linear scalar equations,

w1
t + (v − c)w1

x = 0, (6.4)

w2
t + (v + c)w2

x = 0. (6.5)

Now, in this particular linear constant coefficient case, we can apply Fourier analy-

sis (see Morton and Mayers [24]) individually to each of those two equations. For

convenience, we write them in a general form,

wt + awx = 0, (6.6)

where a = v ± c. A sufficient condition for stability using a regularly spaced grid, is

that all solutions of the form

wn
j = µneijk∆x (6.7)

of the Box Scheme applied to (6.6),

wn+1
j+1 − wn

j+1

2
+

wn+1
j − wn

j

2
+

∆t

∆x
θa(wn+1

j+1 −wn+1
j )+

∆t

∆x
(1−θ)a(wn

j+1−wn
j ) = 0, (6.8)

must satisfy

|µ| ≤ 1 ∀k. (6.9)

Substituting (6.7) into (6.8) and defining ν = a
∆t

∆x
yields

µ =
cos k∆x

2
− 2iν(1 − θ) sin k∆x

2

cos k∆x
2

+ 2iνθ sin k∆x
2

. (6.10)

Therefore condition (6.9) is satisfied for

θ ≥ 1

2
, (6.11)

and the scheme is unconditionally stable. For θ = 1
2

or ν = 0, we have |µ| = 1 and the

scheme is neutrally stable and non-dissipative (see Johnson [9]). For ν = 0 there is

very little dissipation in the scheme and therefore any oscillations are not damped.

Hence, oscillations are likely to occur for the unsteady critical case.
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Note, that for k∆x = π, we get

µ = −1 − θ

θ
. (6.12)

Using (6.7), this leads to (−1)n oscillations in the solution for θ = 1
2
. For ∆t → ∞,

i.e. for large ν, we also get µ → −1, which explains the grid scale oscillation we

observed in the previous section.

We have shown, that the Box Scheme is unconditionally stable for the linearised St

Venant equations, the only constraint on the time-step is due to the convergence

theory of Newton’s Method, which we will describe later.

Now, by the fundamental theorem of numerical methods for linear differential equa-

tions, (stated for example in [14]), consistency (showed in the previous section) and

stability ensure convergence of the Box Scheme.

6.3 Stability of the Boundary Conditions

We consider the the stability of boundary conditions for the system

ut + f(u)x = s(u, x). (6.13)

We assume that the solution is known up to time level tn and use (3.7) in order to

calculate the solution at the new time level tn+1. Omitting the indices for the time,

we get a recurrence relation at the new time level of the form

uj+1 + uj

2
+ λjθ(fj+1 − fj) −

∆t

2
θ(sj+1 + sj) = Pj, (6.14)

where Pj represents all values which are known from the previous time step. Now

we may linearise this system which yields

uj+1 + uj

2
+ λjθA(uj+1 − uj) −

∆t

2
θS(uj+1 + uj) = ∆tQj , (6.15)
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where Qj is computed from Pj and further nonlinear terms. Reordering the equa-

tions gives

(I + 2λjθA− ∆tθS)uj+1 + (I − 2λjθA− ∆tθS)uj = ∆tQj . (6.16)

For convenience, we omit the source term S, introduce characteristic variables w =

V −1u, and write Rj = V −1Qj . Then we get

(I + 2λjθD)wj+1 + (I − 2λjθD)wj = ∆tRj, j = 0, . . . , N − 1 (6.17)

where D is a diagonal matrix containing the eigenvalues of the Jacobian A. If we

define

Gj = (I + 2λjθD)−1(I − 2λjθD), (6.18)

as an amplification matrix, then, using (6.17) the solution at time tn+1 may be written

as a recurrence relation

wN = (−1)N

(

N−1
∏

j=0

Gj

)

w0 + ∆tTN , (6.19)

where TN is chosen appropriately. We can calculate the amplification matrix Gj

which is given by

Gj =





1−2λjθ(vj−cj)

1+2λjθ(vj−cj)
0

0
1−2λjθ(vj+cj)

1+2λjθ(vj+cj)



 . (6.20)

For supercritical flow, vj + cj > vj − cj > 0, both the diagonal terms have modulus

less than one. So data w0 is transmitted in a stable manner across the domain. But,

for subcritical flow, the eigenvalues of the Jacobian, vj − cj < 0 and vj + cj > 0 have

opposite sign. Therefore the first component would be amplified, if it was imposed

on the left. So we have to impose one boundary condition at inflow and one at out-

flow, in order to damp small perturbations to boundary values. Then the scheme is

stable with respect to such boundary conditions.

We can also see, why problems arise, when the CFL number is very small, i.e. when

one of the eigenvalues of the Jacobian A passes through zero. If vj = cj, then the first
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entry of the amplification matrix (6.20) equals unity. Using (6.19) we will find that

any small perturbations to the left or right hand boundary conditions will result in

perturbations in the first variable with

w1
j = (−1)jw1

0. (6.21)

Also, if the CFL number is close to zero, the stability analysis in the previous section

(see equation (6.10)) shows, that there is very little damping for those oscillations.

This is characteristic for the so-called washboard effect [9], i.e. spurious period 2∆x

oscillations, which we can see in Figures 15, 17 and 18. The situation gets worse

for problems involving discontinuities, as it can be seen in Figure 21. Smoothing

methods in order to suppress those numerical artifacts, are described in Johnson’s

thesis [9]. Morton and Burgess [23] investigate the stability of boundary conditions

further for a different problem, but this is beyond our project.

6.4 Stability of the Thomas Algorithm

The Box Scheme gives a recurrence relation at the new time level. We want to have a

closer look at the natural sweep direction in the case of a system of equations, since

there are boundary conditions given on the left as well as on the right. We want to

check if it is necessary to be careful about the way in which the two sweeps, in order

to solve the tridiagonal system, are carried out.

The use of the recurrence relation (3.28) to calculate the values of Wj may be nu-

merically unstable and lead to increasing errors, if (3.31) is not satisfied. Therefore

we study Ej for the St Venant equations, in the way it has been done for the wave

equation in Morton’s paper[20].

For our calculations, we have to assume that A and Q are constant, such that cj = c

and vj = v. This is just true for the first time step (since we take constant initial con-

ditions), but since oscillations are observed for the first time step, this assumption is

suitable. For convenience we also use a regular grid, i.e. λj = λ. Then, the special

form of D = Dj , A = Aj and C = Cj used in (3.22) and (3.28) gives, after some
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manipulations

Ej =





ej κej

1
κ
(1 + ej) 1 + ej



 , (6.22)

where κ = 2θλ and ej is given by the recurrence

ej = −
1
2
[κ2(c2 − v2) + 2vκ]ej−1 − 1

2

[κ2(c2 − v2) + 2vκ]ej−1 − κ2

2
(c2 − v2) + vκ − 1

2

. (6.23)

If κ2(c2 − v2) + 2vκ = 0 then

ej = − 1

1 + 2κ2(c2 − v2)
. (6.24)

Otherwise the recurrence has two fixed points,

e = − vκ − 1
4

κ2(c2 − v2) + 2vκ
±
√

(vκ + 1
4
)2 + 1

2
κ2(c2 − v2)

(κ2(c2 − v2) + 2vκ)2
. (6.25)

We can check that only the negative root is attractive and therefore

Ej →





φ κφ

1
κ
(1 + φ) 1 + φ



 , (6.26)

where

φ =

1
4
− vκ −

√

(vκ + 1
4
)2 + 1

2
κ2(c2 − v2)

κ2(c2 − v2) + 2vκ
. (6.27)

If the flow is transcritical, then v = c and it is easy to check that φ = −1 and

‖Ej‖∞ = 1 + κ as j → ∞ and condition (3.31) is not satisfied for any values of λ and

θ. Therefore, using the Thomas Algorithm, the solution procedure is ill-conditioned

and oscillations will be amplified. In fact, (3.31) is not even satisfied near transcrit-

ical flow. For subcritical flow in contrast condition (3.31) is valid. The same results

are obtained by sweeping from the left to the right first or by interchanging the order

of the equation pairs A and Q, as it was done in [20].
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6.5 Time-step Constraint

As we have observed in the previous section, Newton’s Method only converges, if

there is a restriction on the time step ∆t. In order to explain this behaviour, we use

the Newton-Kantorovich Theorem, stated in [2].

Theorem 1 (Newton-Kantorovich) Let x0 ∈ D ⊂ R
n, F : D ⊂ R

n → R
n and as-

sume that F is continuously differentiable in D. Furthermore assume that the Jacobian J is

Lipschitz continuous, i.e.

‖J(x) − J(y)‖ ≤ γ‖x − y‖, ∀x,y ∈ D, (6.28)

with J(x0) non-singular and that there exist constants β, η ≥ 0 such that

‖J(x0)
−1‖ ≤ β, ‖J(x0)

−1F(x0)‖ ≤ η, (6.29)

with

α := βγη <
1

2
. (6.30)

Furthermore

S := {x ∈ Rn : ‖x − x0‖ < t∗} ⊂ D, (6.31)

where

t∗ =
1

βγ
(1 −

√
1 − 2α). (6.32)

Then the sequence

xk+1 = xk − J(xk)
−1F(xk), k = 0, 1, . . . (6.33)

is well defined and converges to a unique zero of F in D.

If the Jacobian J is non-singular at x0, the constants β and η may be determined.

Since the Jacobian depends on θ and λ (from (3.14) and (3.15)), detailed analysis

shows that the Lipschitz constant is γ = f(θλ), for some monotone increasing func-

tion f . We have to satisfy constraint (6.30) for convergence, i.e.

ηβf(θλ) <
1

2
. (6.34)
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Also, the initial guess x0 has to be close to the solution, from (6.29) and (6.32). This

is why we did not get any convergence for too large ∆t in the previous model cases.

Another issue is that of transcritical flow. We have seen, that small oscillations occur

near transcritical and even worse ones at supercritical flow. Therefore the stopping

criterion for the iteration (3.21),

‖u(k+1) − u(k)‖1

‖u(k)‖1
< tol, (6.35)

cannot be satisfied. Newton’s Method converges more slowly. This is the reason,

why we observe more iterations, when the flow is close to being transcritical.

38



MELINA FREITAG MSc Project: Transcritical flow modelling with the Box Scheme

7 Extension of the Box Scheme to Transcritical Flow

In this section we will describe, how to overcome the limitation of the Box Scheme

using the results of Morton et al. [25] for the steady Euler equations. First we sum-

marise the problems that arise, when the Box Scheme is applied to transcritical flow.

7.1 Invalidity of the Box Scheme for Transcritical Flow

We have discussed the Box Scheme for non-critical flow and seen some computa-

tional examples for its invalidity for transcritical flow. In [17] we will find some

explanation from an engineering view point, why the Box Scheme in its usual im-

plementation is unsuitable to model transcritical flow.

The first problem is that as the critical limit is approached, one of the eigenvalues

becomes small and spurious Fourier modes are allowed to propagate uninhibited.

The Preissmann Scheme becomes marginally stable if critical flow is encountered.

Hence, any error (e.g. arbitrary initial conditions) will not be damped. In other

words the unconditional stability of the Box Scheme will no longer be valid. This

leads to a highly oscillatory solution as we have seen in section 6.

Another problem we have with transcritical flow is a counting problem. For purely

subcritical or supercritical flow there are exactly two boundary conditions required

and the Preissmann scheme can be directly applied. However, for transcritical flow

the number of boundary conditions may differ from two. Suppose that flow in a

channel starts subcritical at the upstream boundary and at some point the flow be-

comes supercritical. Then, to ensure well-posedness, exactly one boundary con-

ditions is required, to be imposed at the upstream boundary. However, the Box

Scheme needs two boundary conditions as stated in section 3. More examples are

illustrated in [17] and [18]. There may be either too few or too many boundary con-

ditions and the problem will be ill-posed.

A third issue is that if the boundary conditions do not correspond to the type of

flow present, the solution becomes unstable. For transcritical flow it is obviously not
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possible to choose boundary conditions which are suitable for both subcritical and

supercritical flow. This is because we are unable to ensure that each of the residuals

(3.8) is zero. For each cell residual Rj+ 1

2

we have to calculate two unknowns, Aj and

Qj. For subcritical flow the eigenvalues of the flux Jacobian A have opposite sign,

subcritical region supercritical region subcritical region 

sonic point shock 

R
j+1/2
sonic R

j+k+1/2
shock  

Figure 23: Cell residuals and transcritical flow

hence the characteristics are ingoing and outgoing, and therefore it is possible to set

all the cell residuals to zero by the double sweep algorithm described above. Now,

at a sonic point one eigenvalue of the Jacobian matrix A passes through zero and the

flow becomes supercritical, i.e. both eigenvalues of the Jacobian have the same sign.

This situation is illustrated in Figure 23. The cell j + 1
2

contains a sonic point. The

result is a locally underdeterminded system, since there is just one ingoing characteristic

for this cell. There are not enough equations to determine the nodal value uj+1 to

the right. Therefore the cell residual has to be split there. At supercritical flow

both characteristics point downstream and it is possible to set both cell residuals to

zero, using a single sweep method. When the flow becomes subcritical again, which

corresponds to the existence of a shock in cell j + k + 1
2
, another problem occurs.

One eigenvalue of the flux Jacobian A passes through zero again, and characteristics

switch back to pointing one upstream and one downstream. At the shock the system

is now locally overdetermined because of three ingoing characteristics. Therefore the

cell residuals have to be combined in some way in this case.

7.2 Cell and Nodal Residuals

We have seen, that both residuals will be set to zero if the flow is wholly subcritical

by using the double sweep algorithm described in [25]. From the previous section it
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also follows, that for wholly supercritical flow both residuals will be set to zero on

the sweep from inflow to outflow. A single sweep algorithm is sufficient in this case,

but the algorithm structure depends upon the flow direction. We use flow from left

to right, further details on different flow directions may be found in [1]. We need to

switch between those two cases for the transcritical flow.

7.2.1 Re-formulation of the Problem

To understand the mixed type flows we introduce a mapping between the cell resid-

uals and nodal unknowns and the notation of distribution matrices, as it has been

done in Morton et al. [25]: For each cell we can define matrices D±

j− 1

2

. Then we

can think of our Box Scheme implementation (3.8) in terms of these distributions

matrices. At each interior point, we apply Newton’s Method to

Nj = D+
j− 1

2

Rj− 1

2

+ D−

j+ 1

2

Rj+ 1

2

+ Bj = 0, (7.1)

where Bj accounts for the boundary conditions. With equation (7.1), we have in-

droduced a mapping between the cell residuals and the nodal unknowns . If we

define D+
−

1

2

and D−

N+ 1

2

to be zero, then equation (7.1) is valid for all N + 1 nodes

j = 0, . . . , N . There are certain requirements for the distribution matrices in or-

der to set up a well-posed system which are stated in Morton et. al [25]. Now, to

demonstrate this approach, we first consider the case of subcritical flow, for which

discharge is imposed upstream and height is imposed downstream. The distribu-

tion matrices are then

D−

j+ 1

2

=





1 0

0 0



 and D+
j− 1

2

=





0 0

0 1



 . (7.2)

according to the sweep direction. For supercritical flow these matrices become

D−

j+ 1

2

=





0 0

0 0



 and D+
j− 1

2

=





1 0

0 1



 . (7.3)

Note, that Morton et al. [24] use distribution matrices which are interchanged from

those used here. The reason is that we use Newton’s Method whereas Morton et
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al.[24] use a general update algorithm. The choice of our distribution matrices ties

up with our ordering of the matrix used for the Thomas Algorithm (3.15): We start

with calculating E0 from the boundary condition plus the mass residual from its

right. If we reordered our equation in (3.15), we would get the same distribution

matrices as in [24].

Clearly, there is a problem in the switch from subcritical to supercritical flow, since

the condition

rank(D−

j+ 1

2

+ D+
j− 1

2

) = 2, (7.4)

stated in [25], is not satisfied, if a transcritical expansion fan occurs. We will describe

an algorithm, by which this problem can be overcome.

The nodal residual mapping (7.1) has been used first by Morton et al. [24] and later

in Johnson et al. [10]. It follows, that the matrix D− represents the component of the

cell residual to be distributed to the node to its left and D+ represents the component

of the cell residual to be distributed to the node to its right. For subcritical flow

with depth DR (or cross-sectional area AR) imposed downstream and discharge QL

imposed upstream, the coefficients in (7.1) become

B0 =





0

Qn+1
0 − QL



 , BN =





An+1
N − AR

0



 , (7.5)

and distribution matrices as in (7.2). For supercritical flow with discharge QL and

cross-sectional area AL both imposed upstream we have

B0 =





An+1
0 − AL

Qn+1
0 − QL



 , BN =





0

0



 , (7.6)

and distribution matrices as in (7.3).

We introduce a more sophisticated alternative to calculate the distribution matrices

in (7.1) by proposing to choose the distribution matrices as a natural generalisation

of those used in upwinding schemes. This is equivalent to applying a local charac-
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teristic decomposition and then assigning the residual components accordingly. To

this end the Jacobian matrix A is decomposed as A = V ΛV −1 where V −1 denotes

the row matrix of left eigenvectors and Λ is the matrix containing the eigenvalues of

A. Then the upwinding is applied to the diagonalised system. By splitting into left-

and right-moving wave components, we see that this approach leads to the upwind

distribution matrices

D−

j+ 1

2

= Ṽj+ 1

2

diag

{

1

2
− 1

2
sign(ã

(k)

j+ 1

2

) : k = 1, 2

}

Ṽ −1
j+ 1

2

, (7.7)

D+
j− 1

2

= Ṽj− 1

2

diag

{

1

2
+

1

2
sign(ã

(k)

j− 1

2

) : k = 1, 2

}

Ṽ −1
j− 1

2

, (7.8)

where Ãj± 1

2

is an average value of A for the cell and ã
(k)

j± 1

2

, k = 1, 2, are its eigenval-

ues. The best choice of Ãj+ 1

2

is the Roe average matrix (see [4] or [10]), which may be

written as

Ãj+ 1

2

=





0 1

c̃2
j+ 1

2

− ṽ2
j+ 1

2

2ṽj+ 1

2



 , (7.9)

where

c̃j+ 1

2

=

√

c2
j + c2

j+1

2
and ṽj+ 1

2

=
vjcj + vj+1cj+1

cj + cj+1
, j = 0, . . . , N − 1. (7.10)

This choice of distribution matrices has a conservation property which is shown in

Morton et al. [25]. We should also note, that this choice of the distribution matrices

corresponds to the matrices used in Roe’s approximate Riemann solver, see [13, page

142] and [22, page 53], since we use a natural generalisation of the matrices used in

upwinding schemes.

7.2.2 Implementation

Suppose our flow is subcritical at inflow and outflow and there is an interior super-

critical region as in problems (P3) and (P4c). Then our Box Scheme algorithm may

be used in a modified version, which is a combination of that described in [25] and

the double sweep Thomas Algorithm. Note, that there might be no supercritical re-

gion in the first place. Since we consider the unsteady case the supercritical interior

region might occur after some time t > t0.
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First, we find the region of supercritical flow in the domain, by checking the Froude

Number.

The Subcritical Region In the subcritical region the nodal values are given from

two cell equations, one from either side. Therefore we start our algorithm as usual,

using sweeping from left to right, until the left of the sonic cell is reached.

Splitting at Sonic Point Suppose the cell j + 1
2
, contains the sonic point xs. At this

point, we have the momentum residual equation R
(2)

j+ 1

2

from the left, but no equation

from the right. Therefore the mass cell residual R
(1)

j+ 1

2

will be needed both to update

the subcritical node on its left and the supercritical node on its right. Hence, this

mass cell residual is split at the predicted sonic point xs. The sonic point position is

found by interpolation of the Froude Number. Finally, the subcritical partial resid-

ual R
(1)−

j+ 1

2

is used to update the last subcritical state vector uj and the supercritical

partial residual R
(1)+

j+ 1

2

may be taken as initial condition for the sweep through the

supercritical cell. The momentum cell residual keeps unchanged.

The Supercritical Region The supercritical cells use both components of the resid-

ual to determine the nodal value on the right. We continue this to the left of the

shock cell.

Treatment of the Shock At the shock cell, the nodal value on the left is already

determined, but that on the right would have to set both shock cell residual compo-

nents to zero, as well as the mass residual R(1) from the cell to the right. The node

on the right of the cell is determined from the momentum residual R(2) of the cell

and the combined mass residuals R(1) from the two cells either side of it. This ap-

proach satisfies the discrete conservation law for the box scheme. Again, we keep the

momentum cell residual unchanged.

The Subcritical region Finally we can continue the double sweep through the sub-

critical region.
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7.2.3 Solution Procedure

It is important to note, that we are using two different kinds of algorithms. For sub-

critical regions, where the system is block-tridiagonal, we use the efficient double

sweep method as it is described in section 3.4. The easier single sweeping is used

for the supercritical region, where the system is block-tridiagonal, but has only got

2 × 2 block entries on the diagonal and the subdiagonal.

For transcritical flow with an interior supercritical region as described above, the

modified Newton matrix from (3.15) still has banded structure and may be writ-

ten in the tridiagonal form (3.22). Due to the splitting of the mass residual at the

sonic cell, we introduce one more equation. Assume the sonic point lies in the cell

[xj , xj+1]. We interpolate the sonic point by either interpolating the Froude Number,

xsonic = (1 − Fj)
xj+1 − xj

Fj+1 − Fj

+ xj , (7.11)

or by linear interpolation of the wave speed a = v − c, where aj < 0 < aj+1,

xsonic = −aj
xj+1 − xj

aj+1 − aj
+ xj . (7.12)

It is obvious, that both approaches give the same result. Splitting the residual and

setting both parts to zero,

R
(1)−

j+ 1

2

= 0 and R
(1)+

j+ 1

2

= 0, (7.13)

is consistent with taking the derivative of the equilibrium equation (see Morton et

al. [25, page 223]). Hence, the solution is smoothed at the sonic point and the oscilla-

tions observed in section 5 should vanish. The following matrix shows the structure

of the matrix used for the Thomas Algorithm at the interface from subcritical to
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supercritical flow, i.e. at the sonic point.

M1 =















































x x

x x x x

x x x x

x− x− x− x−

x+ x+ x+ x+

x x x x

x x x x

x x x x

· · ·















































R(1)

R(2)

R(1)−

R(1)+

R(2)

R(1)

R(2)

(7.14)

From (7.14) we see, that Cj, the superdiagonal block entries, become zero in the su-

percritical region, due to the residual splitting at the sonic point.

At the shock we have to combine two cells, since we have a locally overdetermined

system. In order to find out, which cells we need to combine, we identify a cell

as subcritical or supercritical by averaging the Froude Number. Assume we have

found that the node uj is supercritical and the node uj+1 is subcritical. We need

to find out if the cell is sub- or supercritical. To this end we calculate the Froude

Number for the cell j + 1
2

by

Fj+ 1

2

=
1

2
(Fj + Fj+1). (7.15)

If Fj+ 1

2

> 1 we set the cell to be supercritical and we combine cells j + 1
2

and j + 3
2

by

R
(1)

j+ 1

2

+ R
(1)

j+ 3

2

= 0. (7.16)

Similarly, if Fj+ 1

2

< 1 we set the cell to be subcritical and we have to combine the

cells j − 1
2

and j + 1
2

by

R
(1)

j− 1

2

+ R
(1)

j+ 1

2

= 0. (7.17)

Another possibility to determine, if a cell is sub- or supercritical, is to calculate the

Roe matrix (7.9) for this cell and to check the sign of its eigenvalues. The following
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matrix shows the structure of the Newton matrix at the interface from supercritical

to subcritical flow, i.e. at the shock.

M2 =



































































· · ·
x x

x x

x x x x

x x x x

x1 x1 x1 + x2 x1 + x2 x2 x2

x x x x

x x x x

x x x x

x x x x

x x

· · ·



































































R(1)

R(2)

R(1)

R(2)

R
(1)
1 + R

(1)
2

R(2)

R(2)

R(1)

R(2)

R(1)

(7.18)

From (7.18) we see, that Cj , the superdiagonal block entries, only equal zero for the

supercritical region. Due to the combination of the cell residuals at the shock cell we

have Cj 6= 0 for the subcritical flow region.

We sweep from left to right and calculate Ej and Fj successively by the forward

recursions (3.29) and (3.30). E0 is calculated from the boundary condition plus the

first mass residual R
(1)
1

2

from its right. For the supercritical region Cj and therefore

Ej equals zero, and we can omit the forward recursion. We sweep back in order to

calculate Wj by (3.27) and (3.28). Since Ej = 0 for the supercritical region we only

have to compute a back substitution in this case.

7.2.4 Overall Algorithm Description

We now summarise the overall algorithm. The setup is done as in the subcritical

case (see section 3.5). Then, for each time step we perform the following algorithm,

until the steady state is reached.

1. check if there is a supercritical region, i.e. if F > 1. If so, go to 2., otherwise
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use the unmodified Thomas Algorithm, described in section 3.5;

2. find the region of supercritical flow, i.e. the indices j with Fj > 1;

3. find the location of the sonic point by interpolation using (7.11) or (7.12);

4. find the cell with Fj > 1 at the node to its left and Fj+1 < 1 at the node to

its right, i.e. the shock cell and determine the shock cell to be subcritical or

supercritical by (7.15);

5. set up the Aj, Cj, Dj and Zj for all j = 0, . . . , N similar to the subcritical case

(see section 3.5), but split the residuals at the sonic cell using (7.13) and com-

bine the residuals at the shock cell using (7.16) or (7.17);

6. calculate Ej and Fj by the forward recursions (3.29) and (3.30), note that Ej = 0

for the supercritical region;

7. solve the system by the Thomas Algorithm (3.27) and (3.28);

8. calculate the new iterate using (3.20);

9. check, if stopping criterion (3.21) is satisfied. If so, then move on to the next

time level, otherwise start with 1. again.

Since we use Newton’s Method, the number of iterations for each time step should

be small.

7.3 Numerical Results

We consider the transcritical problems (P3) and (P4c) of section 5, again and apply

them to our modified Box Scheme. Clearly, our modified scheme still works for the

subcritical and near-critical problems (P1), (P2), (P4a) and (P4b).

7.3.1 Transcritical Problem involving a Hydraulic Jump (P3)

We recall problem (P3) and take exactly the same setup as described in section 5.

The scheme broke down after t = 51.
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We also want to compare our results with the scheme used by Johnson et al. [10].

They propose to overcome the lack of equations that arises at the sonic point, i.e.

rank(D−

j+ 1

2

+ D+
j− 1

2

) ≤ 1, (7.19)

by introducing an extra linearly independent equation. They suggest to impose a

so-called internal boundary condition Bj ,

Bj = (I − D−

j+ 1

2

− D+
j− 1

2

)∆uj , (7.20)

which clearly provides the missing extra linearly independent equation. They also

show, that the choice of this boundary condition does not contradict the discrete

conservation law of the original Box Scheme. If we implement this scheme for our

problem (P3) we obtain the steady state solution in Figure 24. Oscillations occur
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Figure 24: Transcritical Problem (P3) with internal boundary conditions

at the sonic point, which are clearly not right and which we want to avoid. Fur-

thermore, the convergence is very slow, as soon as the Froude Number approaches

unity. We want to avoid that.

Therefore, we test our modified Box Scheme algorithm which satisfies the discrete

conservation law and compare it to Johnson’s results. We use a time step of ∆t = 1.

The maximum Froude Number for the initial state is 0.3749 again, and it increases

with time. We have just about 3 − 5 iterations for convergence at each time step,

even when the Froude Number is equal to or larger than one. Period 2∆x oscilla-
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tions occur in the supercritical region. But it is important to note, that the scheme

does not break down this time. The reasons for the oscillations, which may be seen

in Figures 25 and 26 have been explained in section 6: We can switch between the

subcritical and supercritical flow regions, but the Froude Number has to pass unity,

which entails that one of the eigenvalues of the Jacobian passes through zero and

the CFL number is very small.

In Figure 27 we can see the analytic and numeric solution for the depth of the water

at steady state, which is indeed very adequate and better than Johnson’s solution.

We can also see that any oscillations have died out. The maximum Froude Number

for that state is 1.2988 and the maximum CFL number is νmax = 0.7102. A plot of the

Froude Numbers for the steady state can be seen in Figure 28. We should also note,
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Figure 25: Transcritical problem approaching
Froude Number F = 1 after time
t = 75 (P3)
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Figure 26: Approximation to Froude Number
for transcritical problem after time
t = 75 (P3)

that we cannot choose the time step ∆t too large. As long as the flow is subcritical

large time steps are fine, but as the critical region with Froude Number F ≈ 1 is

approached with large ∆t, occurring oscillations are too large, so that Newton’s

Method fails to converge. This problem suggests the use of adaptive time steps,

according to the size of the Froude Number.

7.3.2 Transcritical Problem with Changing Channel Width (P4c)

We recall problem (P4c) and take exactly the same setup as described in section 5.

The scheme broke down for our original Box Scheme implementation. We use a
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Figure 27: Transcritical problem at steady
state (P3)
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Figure 28: Approximation to Froude Number
at steady state (P3)

time step of ∆t = 2 for our modified code. The maximum Froude Number for the

initial state is 0.8616 again, and it increases with time. We have just about 2−5 itera-

tions for convergence at each time step, even when the Froude Number approaches

unity. Period 2∆x oscillations occur in the supercritical region, but the scheme does

not break down this time. The reasons for the oscillations, which may be seen in

Figure 29 have been explained in section 6: We can switch between the subcritical

and supercritical flow regions, but the Froude Number passes unity, which entails

that one of the eigenvalues of the Jacobian passes through zero and the CFL number

is very small.

In Figure 29 we can see the numeric solution for the steady state. There are still

oscillations at the steady state, due to the discontinuity of the solution. The max-

imum Froude Number for that state is 2.0616 and the maximum CFL number is

νmax = 0.1947. As in the previous problem we cannot choose the time step ∆t too

large. As long as the flow is subcritical large time steps are fine, but as the critical

region with Froude Number F ≈ 1 is approached with a large value of ∆t, occurring

oscillations are too large, so that Newton’s Method fails to converge. This problem

suggests the use of adaptive time steps, according to the size of the Froude Number.

Figure 30 shows approximations to the Froude number for the steady state.
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Figure 29: Transcritical problem at steady
state (P4c)
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Figure 30: Approximation to Froude Number
at steady state (P4c)

7.4 Local Post Processing and Shock Fitting

The Box Scheme is inadequate for computing discontinuous solutions of nonlinear

conservation laws as stated and explained in Mitchell’s thesis [19]. We consider

again the numerical results for the depth D and the discharge Q for the application

of our modified Box Scheme to the transcritical problem (P3). The results for the steady

state are shown in Figure 31. Clearly the isolated point at the shock does not satisfy
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Figure 31: Depth D and discharge Q at steady state (P3)

the mass conservation law and therefore is incorrect. We can explain the position

of the isolated point in the discharge Q by selecting a variable that has an interme-

diate value, e.g. if the velocity should have a viscous term in its equation and we

compute the limit as it goes to zero, the velocity should have an intermediate value.

If we compute the velocity v = Q
A

at each point, we will see that the velocity has
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indeed got an intermediate value at the shock.

In order to suppress the isolated point, we use shock fitting and introduce a discon-

tinuity in the shock cell. It is for this reason we look closer at the shock region, see

Figure 32. Suppose the shock is between the nodes k − 1 and k + 1 with the nodal

value Qk out of line. We assume that all other values for the depth Dj and the dis-

charge Qj , j = 1, . . . , k − 1, k + 1, . . . , N, are computed correctly.

x
k−1

 

Depth D

x
k
 x

k+1
 x 

h
k−1

h
k

Figure 32: Diagram showing depth function
at the shock before introducing a
discontinuity

Figure 33: Diagram showing depth function
and shock location xs after intro-
ducing a discontinuity

We use equations (2.33)-(2.36), which simplify for the steady state, since ut = 0.

Then we apply mass conservation, which implies Qx = 0 for the steady state, over

the cells [xk−1, xk] and [xk, xk+1], i.e.

Qk − Qk−1

∆x
= 0 and

Qk+1 − Qk

∆x
= 0. (7.21)

This approach gives Qk = Q, the constant value for the discharge in the steady case.

Furthermore we consider the depth D and introduce a discontinuity at the shock xs,

see Figure 33. We call xs the shock position, which is unknown. We may write

xs = xk−1 + θ(hk−1 + hk), (7.22)

where hk−1 and hk are the sizes of the cells left and right of the shock (see Figure 32)

and θ ∈ [0, 1]. Now, we apply momentum conservation over the cells [xk−1, xs] and

[xs, xk+1]. Using (2.33)-(2.36), and the simplifications (3.11), which are valid for our
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problem (P3), the momentum conservation law for the steady state is

[

Q2

A
+ g

(

D2B

2
+

D3ST

3

)]

x

= gA(S0 − Sf). (7.23)

Applying this momentum conservation law over both the cells [xk−1, xs] and [xs, xk+1]

we get

F−

s − Fk−1

θ(hk−1 + hk)
=

Sk−1 + S−

s

2
, (7.24)

Fk+1 − F+
s

(1 − θ)(hk−1 + hk)
=

S+
s + Sk+1

2
, (7.25)

where

Fk±1 =
Q2

Ak±1

+ g

(

D2
k±1B

2
+

D3
k±1ST

3

)

, (7.26)

Sk±1 = gA(S0 − Sf), (7.27)

with S0 and Sf evaluated at xk±1 using formula (2.25). Clearly, the values of Fk±1

and Sk±1 are known from the assumption that all values except the ones at the node

xk are computed correctly. Furthermore we have

F−

s =
Q2

AL
+ g

(

D2
LB

2
+

D3
LST

3

)

and F+
s =

Q2

AR
+ g

(

D2
RB

2
+

D3
RST

3

)

, (7.28)

where DL (AL, respectively) is the depth (cross-sectional area, respectively) left of

the shock and DR (AR, respectively) is the depth (cross-sectional area, respectively)

right of the shock, as can be seen in Figure 33. With equations (7.24) and (7.25) for

the momentum conservation over the two cells, we have got 2 equations to satisfy

for our problem. But with θ, DL and DR (or AL and AR respectively, since depth and

cross-sectional area can be determined from each other, see equation (2.31)) we get

3 unknowns. Therefore we need one more equation, which is given by the Rankine-

Hugoniot jump condition (see [13],[12]) for the shock speed. It is the speed at which a

discontinuity must move in order to be a weak solution [22]. For scalar problems, it

is simply

s =
f(uL) − f(uR)

uL − uR
=

[f ]

[u]
, (7.29)
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where uL and uR are the states left and right of the shock, s is the shock speed and

f(u) is the flux function. Since we only consider the momentum conservation law,

we deal with a scalar problem. Furthermore our problem is steady, i.e. the shock

does not move and therefore we have

s = [f ] = 0. (7.30)

Applied to our problem, the Rankine-Hugoniot jump condition becomes

Q2

AL

+ g

(

D2
LB

2
+

D3
LST

3

)

=
Q2

AR

+ g

(

D2
RB

2
+

D3
RST

3

)

. (7.31)

With equations (7.24), (7.25) and (7.31), we now have 3 equations, which we may

write in the form

H(DL, DR, θ) = 0, (7.32)

for our 3 unknowns DL, DR and θ. We will use Newton’s Method in order to solve

the nonlinear system (7.32). If we write y = (DL, DR, θ)T , then Newton’s Method

for the given starting guess y0 is

yk+1 = yk + dk, where Hy(y
k)dk = −H(yk), k ≥ 0, (7.33)

as stated in [30]. As initial guesses we take θ0 = 1
2

and the computed values left and

right of the shock, i.e. D0
L = Dk−1 and D0

R = Dk+1. As stopping criterion we use

‖dk‖∞ < tol, (7.34)

where tol = 10−8. With our initial guess, we indeed get very good results for the

INITIAL GUESS RESULT

DL 0.61 0.609281
DR 0.96 0.850282
θ 0.5 0.476177

Table 2: Results of the shock fitting

depths left and right of the shock DL and DR and the shock position θ. They may be

seen in table 2. We need only 5 iterations for convergence with Newton’s method,
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which is known to converge quadratically. In Figure 34 the results that we obtained
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Figure 34: Depth D and discharge Q at steady state (P3) after shock fitting

by shock fitting are compared to the ones without shock fitting. We can see that our

shock recovery procedure indeed works very well. The final solution that we get for

the steady state is very satisfactory and adequate. Of course we can apply the same

shock fitting procedure to problem (P4c).
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8 Conclusions and Future Work

In this report we have investigated the Box Scheme applied to both non-critical and

transcritical flow.

We gave a detailed derivation of the unsteady St Venant equations for open chan-

nel flow and explained how to apply the Box Scheme to that system of equations.

Special model problems were created, including both entirely subcritical and trans-

critical flow. By applying the Box Scheme to those test problems, we found that the

scheme in its original implementation works very adequate for both wholly sub-

critical and supercritical problems, but breaks down for transcritical flow. We did

extensive analysis on the method and found explanations for its breakdown in the

transcritical case.

From those results we were able to modify the scheme, such that it could then be

applied to transcritical flow. The modification of the Box Scheme was based on the

work done by Morton et al. [25] for the case of the steady Euler equation. We ap-

plied this modified Box Scheme to the unsteady St Venant equations. Since we used

Newton’s Method in order to solve the nonlinear system that arised from the Box

Scheme at each time step, we observed very fast convergence. We also found that

the solution of the linear system at each Newton iteration was very efficient, since

we were able to use the Thomas Algorithm for block-tridiagonal matrices, even in

the case of transcritical flow. The code is fast and easily adaptable. The results that

we obtained indeed were very accurate, see Figures 27 and 29. Finally, we have

shown, that the method of shock fitting works particularly successful in the recovery

of the shock discontinuity, see Figure 34.

Overall, the developed methods worked very well for both non-critical and trans-

critical unsteady flow.

Further work includes the introduction of more than one supercritical interior re-

gion in the problem. The analysis and implementation so far suggests that the mod-
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ified Box Scheme will still work satisfactorily. We also propose to do further inves-

tigations on other nonlinear iteration techniques than Newton’s Method in order to

compare the results. Furthermore, it should be very interesting to see the shock fit-

ting, that was done in section 7.4 for the steady state applied to the result after each

time step, i.e. to the unsteady problem. We therefore should adapt the methods

developed for the scalar case in [19] and apply them to our system of equations. In

addition, we could extend our results to two-dimensional flows.
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A MATLAB Code for Creating Model Problems

In section 4 we explained how to create steady state problems in order to test our

algorithms. By using equation (4.3) we can calculate the bed slope function S0(x).

We have to integrate this function numerically, in order to get the function for the

channel bed itself. The MATLAB-code for the test problems may be found in

/home/mamamf/Project/work/testproblems.

We briefly describe the programs.

model1.m creates test problem (P1) using the algorithm stated in section 4.1 and

visualises depth and bed slope

integrate1.m integrates the bed slope function numerically in order to the function

for the height of the channel bed find

model2.m creates test problem (P2) using the algorithm stated in section 4.1 and

visualises depth and bed slope

integrate2.m see integrate1.m

model3.m creates test problem (P3) using the algorithm stated in section 4.1 and

visualises depth and bed slope

integrate3.m see integrate1.m

critical.m function which calculates the critical depth for test problems, i.e. the

depth with Froude Number Fr = 1
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B MATLAB Code for Solving Non-critical Problems with

the Box Scheme

In section 5 we found the solutions to our steady state test problems and we got

indeed very good results for subcritical flows, but problems with the Box Scheme

for transcritical flows. The MATLAB-code for these Box Scheme implementations

may be found in

/home/mamamf/Project/work/cell.

We briefly describe the programs.

svcellfull.m solves the unsteady inhomogeneous St Venant equations with bed slope

function given in (P1) or (P2) with Newton’s Method by setting the cell resid-

uals to zero, the Thomas Algorithm is used to solve the system, works only for

subcritical problems as (P1) and (P2)

svcell.m similar to svcellfull.m, but omits source term in the Jacobian for Newton’s

Method and is therefore only a Quasi-Newton Method

svcelltransfull.m solves the unsteady inhomogeneous St Venant equations with

bed slope function given in (P3) with Newton’s Method by setting the cell

residuals to zero, the Thomas Algorithm is used to solve the system, breaks

down, as soon as problem becomes transcritical

svcelltrans.m similar to svcelltransfull.m, but omits source term in the Jacobian for

Newton’s Method and is therefore only a Quasi-Newton Method

chwidthfull.m solves the unsteady inhomogeneous St Venant equations with chang-

ing channel width and bed slope function given in (P4) with Newton’s Method

by setting the cell residuals to zero, the Thomas Algorithm is used to solve the

system, works fine for gentle bed slope, breaks down, as soon as problem be-

comes transcritical for steep bed slope

chwidth.m similar to chwidthfullfull.m, but omits source term in the Jacobian for

Newton’s Method and is therefore only a Quasi-Newton Method
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dambreakfull.m solves the dam-break problem (unsteady) for the (in)homogeneous

St Venant equations with Newton’s Method by setting the cell residuals to

zero, the Thomas Algorithm is used to solve the system, if the dam height is

too large the problem becomes transcritical and the computation breaks down

dambreak.m similar to dambreakfull.m, but omits source term in the Jacobian for

Newton’s Method and is therefore only a Quasi-Newton Method

getjac.m function which calculates the local Jacobian for each cell (without includ-

ing the source term)

getsjac.m function which calculates the local source term Jacobian

getres.m function which calculates the local cell residual

gj.m similar to getjac.m, but includes the derivative of the function for the channel

width

gs.m similar to getsjac.m, but includes the derivative of the function for the channel

width

gr.m similar to getres.m, but includes the derivative of the function for the channel

width
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C MATLAB Code for Solving Transcritical Problems

with the Box Scheme using Cell Residuals

In section 7.2 we found the solutions to steady state test problems with the modified

Box Scheme for transcritical flows. The MATLAB-code for the modified Box Scheme

may be found in

/home/mamamf/Project/work/cell_trans.

We briefly describe the programs.

svcelltransfull.m solves the unsteady inhomogeneous St Venant equations with

bed slope function given in (P3) with Newton’s Method by setting the cell

residuals to zero, the modified Box Scheme algorithm which is described in

section 7.2 is used to solve the system, works for transcritical flow

chwidthfull.m solves the unsteady inhomogeneous St Venant equations with chang-

ing channel width and bed slope function given in (P4) with Newton’s Method

by setting the cell residuals to zero, the modified Box Scheme algorithm which

is described in section 7.2 is used to solve the system, works for both gentle

and steep bed slope, i.e. transcritical flow

dambreakfull.m solves the dam-break problem (unsteady) for the (in)homogeneous

St Venant equations with Newton’s Method by setting the cell residuals to

zero, the Thomas Algorithm is used to solve the system, works for transcriti-

cal flow

getjac.m see appendix B

getsjac.m see appendix B

getres.m see appendix B

gj.m see appendix B

gs.m see appendix B

gr.m see appendix B
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roe.m function which calculates the Roe matrix and its eigenvalues and eigenvec-

tors

roewidth.m similar to roe.m, but includes the changing channel width in the Roe

matrix
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D MATLAB Code for Solving Transcritical Problems

with the Box Scheme using Nodal Residuals

In section 7.2 we described the solutions to steady state test problems using nodal

residuals and distribution matrices. In this section we include the MATLAB-code

for the nodal residuals with the “internal boundary conditions approach” used by

Johnson et al. (see [9],[10]). We have seen, that this approach gives undesirable

oscillations at the sonic point for transcritical flow. The code is available from

/home/mamamf/Project/work/node.

We briefly describe the programs.

svnodefull.m solves the unsteady inhomogeneous St Venant equations with bed

slope function given in (P1) or (P2) with Newton’s Method by setting the nodal

residuals (7.1) to zero, the Thomas algorithm is used to solve the system, works

only for subcritical problems as (P1) and (P2), this method gives exactly the

same results with the same number of iterations as svcellfull.m, see appendix B

svnode.m similar to svnodefull.m, but omits source term in the Jacobian for New-

ton’s Method and is therefore only a Quasi-Newton Method, this method gives

exactly the same results with the same number of iterations as svcell.m, see ap-

pendix B

nodetransinternal.m solves the unsteady inhomogeneous St Venant equations with

bed slope function given in (P3) with Newton’s method by setting the nodal

residuals (7.1) to zero, the Thomas Algorithm is used to solve the system, we

use internal boundary conditions as in Johnson [9] in order to overcome the

problems at the transcritical expansion fan, takes far more iterations as our

modified algorithm in svcelltransfull.m (see appendix C) and gives oscillations

at the sonic point (see Figure 24)

nodetransinternalwidth.m solves the unsteady inhomogeneous St Venant equa-

tions with bed slope function given in (P4) with Newton’s method by setting

the nodal residuals (7.1) to zero, the Thomas Algorithm is used to solve the
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system, we use internal boundary conditions as in Johnson [9] in order to over-

come the problems at the transcritical expansion fan, takes far more iterations

as our modified algorithm chwidthfull.m (see appendix C)

jac.m function which calculates the local Jacobian for each cell (without including

the source term)

sjac.m function which calculates the local source term Jacobian

res.m function which calculates the local cell residual

gj.m similar to jac.m, but includes the derivative of the function for the channel

width

gs.m similar to sjac.m, but includes the derivative of the function for the channel

width

gr.m similar to res.m, but includes the derivative of the function for the channel

width

meanjac.m function which calculates an average Jacobian for a cell taking the mean

values of its neighbouring nodes (similar to Roe matrix), eigenvalues and eigen-

vectors of this Jacobian are also computed

roe.m see appendix C

roewidth.m see appendix C
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E MATLAB Code for Shock Fitting

In section 7.4 we applied shock fitting to the steady state. We calculated the left and

right states of the shock and the shock position by applying Newton’s Method to a

nonlinear system of equations. The MATLAB-code for the Newton iteration may be

found in

/home/mamamf/Project/work/shockfitting.

We briefly describe the programs.

shockfitting.m main program, which does the set up and the actual Newton itera-

tion (7.33) until the stopping criterion (7.34) is satisfied.

rhsfun.m function, which determines the value of H(y) at each step of the iteration.

funjacobian.m function, which determines the Jacobian Hy(y) at each step of the

iteration
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