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Synergy of inverse problems and data
assimilation techniques

Melina A. Freitag and Roland W. E. Potthast

Abstract. This review article aims to provide a theoretical frameworkfor data assimilation,
a specific type of an inverse problem arising for example in numerical weather prediction,
hydrology and geology.

We consider the general mathematical theory for inverse problems and regularisation, before
we consider Tikhonov regularisation as one of the most popular methods for solving inverse
problems. We show that data assimilation techniques such asthree-dimensional and four-
dimensional variational data assimilation (3DVar and 4DVar) as well as the Kalman filter and
Bayes’ data assimilation are, in the linear case, a form of cycled Tikhonov regularisation. We
give an introduction to key data assimilation methods as currently used in practice, link them
and show their similarities. We also give an overview of ensemble methods. Furthermore,
we provide an error analysis for the data assimilation process in general, show research prob-
lems and give numerical examples for simple data assimilation problems. An extensive list of
references is given for further reading.
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1 Introduction

Inverse problems appear in many applications and have received a great deal of atten-
tion from applied mathematicians, engineers and statisticians. They occur, for exam-
ple, in geophysics, medical imaging (such as ultrasound, computerised tomography
and electrical impedance tomography), computer vision, machine learning, statistical
inference, geology, hydrology, atmospheric dynamics and many other important areas
of physics and industrial mathematics.

This article aims to provide a theoretical framework for data assimilation, a specific
inverse problem arising for example in numerical weather prediction (NWP) and hy-
drology [48, 57, 58, 70, 83]. A few introductory articles on data assimilation in the
atmospheric and ocean sciences are available, mainly from the engineering and me-
teorological point of view, see, for example [20, 44, 48, 66,51, 63, 71], however, a
comprehensive mathematical analysis in the light of the theory of inverse problem is
missing. This expository article aims to achieve this.
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An inverse problem is a problem, which is posed in a way that isinverse to most di-
rect problems. The so-called direct problem we have in mind is that of determining the
effectf from given causes and conditionsϕ, when a definite physical or mathematical
modelH in form of a relation

H(ϕ) = f (1.1)

is given. In general, the operatorH is nonlinear and describes the governing equations
that relate the model parameters to the observed data. Hence, in an inverse problem we
are looking forϕ, that is a special cause, state, parameter or condition of a mathemat-
ical model. The solution of an inverse problem can be described as the construction
of ϕ from dataf (see, for example [22, 49]). We now consider the specific inverse
problem arising in data assimilation, which usually contains also a dynamic aspect.

Data assimilation is, loosely speaking, a method for combining observations of the
state of a complex system with predictions from a computer model output of that same
state, where both the observations and the model output datacontain errors and (in case
of the observations) are often incomplete. The task in data assimilation (and hence the
inverse problem) is seeking the best state estimate with theavailable information about
the physical model and observations.

LetX be the state space. For the remainder of this article we generally assume that
X (and alsoY ) are Hilbert spaces unless otherwise stated. Letϕ ∈ X, whereϕ is the
state (of the atmosphere, for example), that is, a vector containing all state variables.
Furthermore, letϕk ∈ X be the state at timetk andMk : X → X the (generally
nonlinear) model operator at timetk which describes the evolution of the states from
time tk to time tk+1, that isϕk+1 = Mk(ϕk). For the moment we consider a perfect
model, that is, the true system dynamics are assumed to be known. We also use the
notation

Mk,ℓ =Mk−1Mk−2 · · ·Mℓ+1Mℓ, k > ℓ ∈ N0, (1.2)

to describe the evolution of the system dynamics from timetℓ to timetk.
Let Yk be the observation space at timetk andfk ∈ Yk be the observation vector,

collecting all the observations at timetk. Finally, letHk : X → Yk be the (generally
nonlinear) observation operator at timetk, mapping variables in the state space to
variables in the observation space. The data assimilation problem can then be defined
as follows.

Definition 1.1 (Data assimilation problem). Given observationsfk ∈ Yk at time tk,
determine the statesϕk ∈ X from the operator equations

Hk(ϕk) = fk, k = 0,1,2, . . . , (1.3)

subject to the model dynamicsMk : X → X given byϕk+1 = Mk(ϕk), where
k = 0,1,2, . . ..

In numerical weather prediction the operatorMk involves the solution of a time-
dependent nonlinear partial differential equation. Usually the observation operator
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Hk is dynamic, that is, it changes at every time step, but for simplicity we often let
Hk := H. Both the operatorHk and the datafk contain errors. Also, in practice,
the dynamical modelMk involves errors, that is,Mk does not represent the true sys-
tem dynamics because of model errors. For a detailed accounton errors occurring in
the data assimilation problem we refer to Section 4. Moreover, the model dynamics
represented by the nonlinear operatorsMk are usually chaotic. In the context of data
assimilation, additional information might be given through known prior information
(background information) about the state variable, denoted byϕ(b)

k ∈ X.
The operator equation (1.3) (see also (1.1)) is usually ill-posed, that is, at least one of

the following well-posedness conditions according to Hadamard [33] is not satisfied.

Definition 1.2 (Well-Posedness [49, 82]). LetX, Y be normed spaces andH : X →
Y be a nonlinear mapping. Then the operator equationH(ϕ) = f from (1.1) is called
well-posed if the following holds:

• Existence: For everyf ∈ Y there exists at least oneϕ ∈ X such thatH(ϕ) = f ,
that is, the operatorH is surjective.

• Uniqueness: The solutionϕ fromH(ϕ) = f is unique, that is, the operatorH is
injective.

• Stability: The solutionϕ depends continuously on the dataf , that is, it is stable
with respect to perturbations inf .

Equation (1.1) is ill-posed if it is not well-posed.

Note that for a general nonlinear operatorH both existence and uniqueness of the
operator equation need not be satisfied. If the existence condition in Definition 1.2 is
not satisfied then it is possible thatf ∈ R(H) but for a perturbed right hand sidefδ

we havefδ 6∈ R(H), whereR(H) = {f ∈ Y, f = H(ϕ), ϕ ∈ X} is the range
of H. Existence of a generalised solution can sometimes (for instance in the finite-
dimensional case) be ensured by solving the minimisation problem

min‖f −H(ϕ)‖2
Y , (1.4)

which is equivalent to (1.1) iff ∈ R(H). The norm‖ ·‖Y is a generic norm inY . The
second condition in Definition 1.2 implies that an inverse operatorH−1 : R(H) ⊆
Y → X with H−1(f) = ϕ exists. If the uniqueness condition is not satisfied then it is
possible to ensure uniqueness by looking for special solutions, for example solutions
that are closest to a reference elementϕ∗ ∈ X, or, solutions with a minimum norm.
Hence, at least in the linear case, uniqueness can be ensuredif

‖f −H(ϕuni)‖Y = min
ϕ∈X

‖f −H(ϕ)‖Y , (1.5)

where‖ϕuni−ϕ∗‖X = min{‖ϕ−ϕ∗‖X , ϕ ∈ X, ϕ is a minimiser in (1.5)}. The third
condition in Definition 1.2 implies that the inverse operator H−1 : R(H) ⊆ Y → X
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is continuous. Usually this problem is the most severe one assmall perturbations in
the right hand sidef ∈ Y lead to large errors in the solutionϕ ∈ X and the problem
needs to be regularised. We will look at this aspect in Section 2.

From the above discussion it follows that the operator equation (1.3) is well-posed
if the operatorHk is bijective and has a well-defined inverse operatorH−1

k which is
continuous. A least squares solution can be found by solvingthe minimisation problem

min
ϕk∈X

‖fk −Hk(ϕk)‖2
Y , k = 0,1,2, . . . . (1.6)

We can solve (1.6) at every time stepk, which is a sequential data assimilation prob-
lem. If we include the nonlinear model dynamics constraintMk : X → X given by
ϕk+1 = Mk(ϕk), over the time stepstk, k = 0, . . . ,K, and take the sum of the least
squares problem in every time step, the minimisation problem becomes

min
ϕk∈X

K∑

k=0

‖fk −Hk(ϕk)‖2
Y = min

ϕ0∈X

K∑

k=0

‖fk −HkMk,0(ϕ0)‖2
Y , (1.7)

whereMk,0 denotes the evolution of the model operator from timet0 to timetk, that is,
Mk,0 =Mk−1Mk−2 · · ·M0, using the system dynamics (1.2), andMk,k = I. Both the
sequential data assimilation system (1.6) and the consecutive data assimilation system
(1.7) can be written in the form

min
ϕ∈X

‖f̄ − H̄(ϕ)‖2
Y , (1.8)

with an appropriate operator̄H. Problem (1.8) is equivalent tōH(ϕ) = f̄ (cf. (1.1)) if
f̄ ∈ R(H̄). For the sequential assimilation system (1.6) we haveH̄ := Hk, f̄ := fk
andϕ := ϕk at every stepk = 0,1, . . .. For the consecutive system (1.7) we have
ϕ := ϕ0,

H̄ :=












H0

H1M1,0

H2M2,0
...

HKMK,0












and f̄ :=












f0

f1

f2
...

fK












.

In generalH̄ is a nonlinear operator, since both the model dynamicsMk and the
observation operatorsHk are nonlinear. If the equation̄H(ϕ) = f̄ is well-posed, then
H̄ has a well-defined continuous inverse operatorH̄−1 andR(H̄) = Y .

Now, if H̄ is a linear operator in Banach spaces, then well-posedness follows from
the first two conditions in Definition 1.2, which are equivalent to R(H̄) = Y and
N (H̄) = {0}, whereN (H̄) is the null space of̄H. Moreover, ifH̄ is a linear opera-
tor on a finite dimensional Hilbert space (in particular, ifR(H̄) is of finite dimension)
then the stability condition in Definition 1.2 holds automatically and well-posedness
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follows from either one of the first two conditions in 1.2. (The last condition in Defi-
nition 1.2 follows from the compactness of the unit ball in finite dimensions [49].) For
linearH̄ the uniqueness conditionN (H̄) = {0} is clearly satisfied if theobservability
matrix H̄ has full row rank. In this case the system is observable, thatis, it is possible
to determine the behaviour of the entire system from the systems output, see [47, 73].

The remaining question is the stability of the (injective) operator equation̄H(ϕ) =
f̄ (or Hϕ = H(ϕ) = f , a notation which we are going to use from now on) for a
compact linear operatorH : X → Y in infinite dimensions. As a compact linear
operator is always ill-posed in an infinite dimensional space (asR(H) is not closed)
we need some form of regularisation.

Note that the discretisation of an infinite dimensional unstable ill-posed problem
naturally leads to a finite dimensional problem which is well-posed, according to Defi-
nition 1.2. However, the discrete problem will be ill-conditioned, that is, an error in the
input data will still lead to large errors in the solution. Hence some form of regulari-
sation is also needed for finite dimensional problems arising from infinite dimensional
ill-posed operators.

In the following we consider compact linear operatorsH for which a singular value
decomposition exists (see, for example [49]).

Lemma 1.3 (Singular system of compact linear operators).Let H : X → Y be
a compact linear operator. Then there exist sets of indicesJ = {1, . . . ,m} for
dim(R(H)) = m andJ = N for dim(R(H)) = ∞, orthonormal systems{uj}j∈J
in X and {vj}j∈J in Y and a sequence{σj}j∈J of positive real numbers with the
following properties:

{σj}j∈J is non-increasing and lim
j→∞

σj = 0 for J = N, (1.9)

Huj = σjvj , (j ∈ J) and H∗vj = σjuj , (j ∈ J). (1.10)

For all ϕ ∈ X there exists an elementϕ0 ∈ N (H) with

ϕ = ϕ0 +
∑

j∈J

〈ϕ, uj〉Xuj and Hϕ =
∑

j∈J

σj〈ϕ, uj〉Xvj. (1.11)

Furthermore
H∗f =

∑

j∈J

σj〈f, vj〉Y uj. (1.12)

holds for all f ∈ Y . The countable set of triples{σj , uj , vj}j∈J is called singular
system,{σj}j∈J are called singular values,{uj}j∈J are right singular vectors and
form an orthonormal basis forN (H)⊥ and {vj}j∈J are left singular vectors and
form an orthonormal basis forR(H).

In the following we mostly consider compact linear operators although the concept
of ill-posedness can be extended to nonlinear operators [49, 82, 40, 23] by considering
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linearisations of the nonlinear problem using, for example, the Fréchet derivative of
the nonlinear operator. One can show that for compact nonlinear operators the Fréchet
derivative is compact, too, leading to the concept of locally ill-posed problems for
nonlinear operator equations. For solving nonlinear problems computationally usually
some form of linearisation is required. Hence, most of our results for linear problems
can be extended to the case of iterative solutions to nonlinear problems (where a linear
problem needs to be solved at each iteration).

2 Regularisation theory

Problems of the formHϕ = f with a compact operatorH are ill-posed in infinite
dimensions since the inverse ofH is not uniformly bounded and hence in order to solve
Hϕ = f (or, for f 6∈ R(H) its equivalent minimisation problem min‖Hϕ − f‖2),
regularisation is needed.

LetH : X → Y and denote its adjoint operator byH∗ : Y → X. Furthermore let
ϕ be the unique solution to the least squares minimisation problem min‖Hϕ − f‖2.
Then the solution to the minimisation problem is equivalentto the solution of the
normal equations

H∗Hϕ = H∗f. (2.1)

Clearly, ifH : X → Y is compact thenH∗H is compact and the normal equations
(2.1) remain ill-posed. However, if we replace (2.1) by

(αI +H∗H)ϕα = αϕα +H∗Hϕα = H∗f, (2.2)

with α > 0, then the operator(αI +H∗H) has a bounded inverse. The equation (2.2)
is typically referred to as Tikhonov regularisation andα is a regularisation parameter.
We have the following theorem (see for example [40, 17, 82, 78, 62]).

Theorem 2.1(Tikhonov regularisation).LetH : X → Y be a compact linear opera-
tor. Then the operator(αI + H∗H) has a bounded inverse and the problem (2.2) is
well-posed forα > 0 andϕα = (αI +H∗H)−1H∗f is the Tikhonov approximation
of a minimum-norm least squares solutionϕ of (2.1). Furthermore, the solutionϕα is
equivalent to the unique solution of the minimisation problem

min
ϕ∈X

Tα(ϕ) := min
ϕ∈X

{‖f −Hϕ‖2
Y + α‖ϕ‖2

X}, (2.3)

whereTα(ϕ) is the so-called Tikhonov functional.

In general, Tikhonov regularisation can be used with a knownreference element
ϕ(b), that is, the term‖ϕ‖2

X in (2.3) is replaced by‖ϕ − ϕ(b)‖2
X , and the problem is

often refereed to as generalised Tikhonov regularisation.We consider this problem in
Section 3.

We have the following definition for a general linear regularisation scheme.
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Definition 2.2 (Regularisation scheme). A family of bounded linear operators{Rα}α>0,
Rα : Y → X is a linear regularisation scheme for the compact bounded linear injec-
tive operatorH if

lim
α→0

RαHϕ = ϕ ∀ϕ ∈ X. (2.4)

Clearly the family of approximate inversesRα = (αI +H∗H)−1H∗ : Y → X is a
linear regularisation scheme forH. If the range ofH, R(H) is not closed then

lim
α→0

‖Rα‖ = ∞. (2.5)

If we apply the regularisation operatorRα to noisy datafδ with noise levelδ, that is,
‖fδ − f‖Y ≤ δ we get regularised solutions

ϕδ
α = Rαf

δ .

Using the singular system of a compact operator from Lemma 1.3 we may also write
the regularised solution arising from Tikhonov regularisation via the minimisation
problem in (2.3) as

ϕδ
α =

∑

j∈J

σj

σ2
j + α

〈fδ , vj〉Y uj . (2.6)

We observe that, forα = 0, the solutionϕδ
α amplifies the noise infδ as for compact

operators we have limj→∞ σj = 0.
Furthermore, for the exact unique solution we haveϕ = H†f , whereH† : R(H)+

R(H)⊥ → X denotes the Moore-Penrose pseudo-inverse ofH (see [82]) and it is
continuous ifR(H) is closed. Therefore we may estimate the total regularisation
error

‖ϕδ
α − ϕ‖X ≤ ‖Rα‖δ + ‖Rαf −H†f‖X ,

or, forN (H) = {0},

‖ϕδ
α − ϕ‖X ≤ ‖Rα‖δ + ‖RαHϕ− ϕ‖X , (2.7)

Hence, the total regularisation error consists of a stability component‖Rα‖δ which
represents the influence of the data errorδ and a component‖RαHϕ − ϕ‖X which
represents the approximation error of the regularisation scheme. For smallα the sec-
ond component will be small (see (2.4)), but the first component will be large (see
(2.5)), whereas for large values ofα the first term will be small and the second one
large. We will see this in the examples in Section 9. Hence, finding a good value for
the regularisation parameterα is important. Techniques for regularisation parameter
estimation aim to find a reasonably good value forα (see, for example [82, 37, 38]).
The most prominent ones are the L-curve method, generalisedcross-validation and the
discrepancy principle.

A regularisation scheme is called convergent, if from the convergence of the data
error to zero, it follows that the regularised solution converges to the exact solution.
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One can show that a regularisation schemeRα = (αI+H∗H)−1H∗ : Y → X arising
in Tikhonov regularisation is a convergent regularisationif α(δ) → 0 and δ2

α(δ) → 0 as
δ → 0 (see [22]). For Tikhonov regularisation one may chooseα = O(δ) such that
this holds [82].

Other regularisation schemes for inverse problems are alsopossible, some of the
most well known ones are the truncated singular value decomposition (TSVD) and
the Landweber iteration (see, for example, [22, 35, 34]). Moreover, it is possible
to change the penalty term‖ϕ‖2

X in (2.3). Other penalty functionals can be used to
incorporate a priori information about the solutionϕ. Prominent methods are Total
Variation regularisation or the use of sparsity promoting norms (like theL1-norm, for
example) in the penalty functional. There is a fast growing literature on this topic, see,
for example [82, 13, 7, 86, 1] and the articles by Burger et al.[10] and van den Doel
et al. [81] in this book.

In the following we use the results from inverse problems andregularisation theory
to develop a coherent mathematical framework for several data assimilation techniques
used in practice.

3 Cycling, Tikhonov regularisation and 3DVar

Data assimilation aims to solve a dynamic inverse problem which includes measure-
ment dataf1, f2, f3, . . . , fk, . . . at various timest1 < t2 < t3 < . . . < tk < . . . . At
every timetk the inversion problem is given by (1.3). However, usually the datafk do
not contain enough information to recover the stateϕk at timetk completely. Thus, it
is crucial to take the dynamical evolution of the states intoaccount.

Assume that we are given some reconstructionϕ
(a)
k at time tk for somek ∈ N.

Then, we expect that

ϕ
(b)
k+1 :=Mk(ϕ

(a)
k ) (3.1)

is a reasonable first guess for the system state at timetk+1, whereMk describes the
model dynamics and is given in Definition 1.1. In data assimilation,ϕ(b) is called the
backgroundor first guess. At time tk+1 we would like to assimilate the datafk+1 to

calculate a reconstructionϕ(a)
k+1, which is also called theanalysisin data assimilation.

Then, the backgroundϕ(b)
k+2 at timetk+2 can be calculated using (3.1) withk replaced

by k + 1 and another reconstruction can be carried out at timetk+2. This approach is
calledcyclingof reconstruction and dynamics.

Definition 3.1 (Cycling for data assimilation). Start with some initial stateϕ(a)
0 at time

t0. Fork = 0,1,2, ... carry out the cycling steps:

(i) Propagation Step.Use the system dynamicsMk to calculate abackgroundϕ(b)
k+1

at timetk+1 using (3.1).
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(ii) Analysis Step.With the datafk+1 at timetk+1 (and the knowledge of the back-
groundϕ(b)

k+1) calculate a reconstruction oranalysisϕ(a)
k+1.

Increase the indexk to k + 1 and go to Step i.

A key characteristic of a data assimilation system is its Analysis Step (ii). Here,
for any stepk, the task is to calculate a reconstructionϕ(a)

k using the datafk and the

knowledge of the backgroundϕ(b)
k . We need to choose or develop a reconstruction

method which optimally combines the given information.
To carry out the analysis we will study two basic approaches,one coming from opti-

misation andoptimal control theory, the other arising fromstochastics and probability
theory. In this section we focus on theoptimisationapproach, Section 5 will provide
an introduction to the stochastic approach using Bayes’ formula. The relationship be-
tween the two approaches will be discussed in detail in Section 5.

With a norm||·||X in the state spaceX and a norm||·||Y in the data (or observation)
spaceY we can combine the given information at stepk, namely the observation data
fk ∈ Y and the backgroundϕ(b)

k ∈ X by minimising theinhomogeneous Tikhonov
functional

Jk(ϕ) := α||ϕ − ϕ
(b)
k ||2X + ||fk −Hϕ||2Y (3.2)

at time tk. H : X → Y is the observation operator defined in Section 1. With
ϕ̃k := ϕ− ϕ

(b)
k this is transformed into the Tikhonov functional (2.3) in the formula

J̃k(ϕ̃k) := α||ϕ̃k||2X + ||(fk −Hϕ
(b)
k )−Hϕ̃k||2Y , (3.3)

which according to Theorem 2.1 is minimised by

ϕ̃
(a)
k := (αI +H∗H)−1H∗(fk −Hϕ

(b)
k ), (3.4)

leading to the minimiser

ϕ
(a)
k = ϕ

(b)
k + (αI +H∗H)−1H∗(fk −Hϕ

(b)
k ) (3.5)

of the functional (3.2). We denote the cycling of Definition 3.1 with an analysis calcu-
lated by (3.5) ascycled Tikhonov regularisation.

Often, data assimilation works in spacesX = R
n andY = R

m of dimensions
n ∈ N andm ∈ N. The norms in the spacesX andY are given explicitly using
the standardL2-norms and some weighting matricesB ∈ R

n×n andR ∈ R
m×m. In

Section 5, these matrices will be chosen to coincide with theerror covariance matrices
of the state distributions inX and the error covariance matrices of the observation
distributions inY . For the moment we assume the matrices to be symmetric, positive
definite and invertible. Then, we define a weighted scalar product inX = R

n by

〈ϕ,ψ〉B−1 := ϕTB−1ψ, ϕ, ψ ∈ X = R
n, (3.6)
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and a weighted scalar product inY = R
m by

〈f, g〉R−1 := fTR−1g, f, g ∈ Y = R
m. (3.7)

With the corresponding norms|| · ||B−1 in X and || · ||R−1 in Y we can rewrite the
functional (3.2) into the form

Jk(ϕ) = α(ϕ − ϕ
(b)
k )TB−1(ϕ− ϕ

(b)
k ) + (fk −Hϕ)TR−1(fk −Hϕ). (3.8)

In the framework of the cycling given by Definition 3.1, this functional is known as
thethree-dimensional variational data assimilation scheme(3DVar), see, for example
[20, 51]. Often, the notationx andx(b) for the state and the background, as well
asy for the observations is used in the meteorological literature of data assimilation.
Here, building a bridge to the functional analytic framework, we will useϕ ∈ X for
the states andf ∈ Y for the observations.x, y will be points in the physical space
R

3, respectively. This is also advantageous when we employ ensemble methods and
analyse localisation techniques.

The functional (3.8) can easily be transformed into the general Tikhonov regulari-
sation form. ByH ′ we denote the adjoint operator ofH with respect to the standard
L2 scalar products inX = R

n andY = R
m. The notationH∗ is used for the adjoint

operator with respect to the weighted scalar products〈·, ·〉B−1 and〈·, ·〉R−1. Then, we
calculate

〈ϕ ,Hψ〉R−1 =
〈
ϕ ,R−1Hψ

〉

=
〈
H ′R−1ϕ ,ψ

〉

=
〈
H ′R−1ϕ ,BB−1ψ

〉

=
〈
BH ′R−1ϕ ,B−1ψ

〉

=
〈
BH ′R−1ϕ ,ψ

〉

B−1

= 〈H∗ϕ ,ψ〉B−1 ,

leading to
H∗ = BH ′R−1.

This means that the minimiser (3.5) of (3.2) with the norms based on the scalar prod-
ucts (3.6) and (3.7) is given by

ϕ
(a)
k = ϕ

(b)
k + (αI +H∗H)−1H∗(fk −Hϕ

(b)
k )

= ϕ
(b)
k + (αI +BH ′R−1H)−1BH ′R−1(fk −Hϕ

(b)
k ). (3.9)

The operatorαI + H∗H maps the state spaceX into itself. In large-scale data
assimilation problems the dimensionn of the state space is often much larger than
the dimensionm of the data spaceY . In this case the inversion ofαI +H∗H is not



Inverse problems and data assimilation. 11

feasible, and it is advantageous to derive a different form of the update formula, known
asmeasurement space inversion. Using the invertibility of the operatorsαI +H∗H in
X andαI +HH∗ in Y we start from

(αI +H∗H)H∗ = H∗(αI +HH∗).

We multiply with the inverse(αI + H∗H)−1 from the left and by(αI + HH∗)−1

from the right to obtain

H∗(αI +HH∗)−1 = (αI +H∗H)−1H∗. (3.10)

With the help of (3.10) we transform (3.9) into

ϕ
(a)
k = ϕ

(b)
k +H∗(αI +HH∗)−1(fk −Hϕ

(b)
k )

= ϕ
(b)
k +BH ′R−1(αI +HBH ′R−1)−1(fk −Hϕ

(b)
k ).

= ϕ
(b)
k +BH ′(αR+HBH ′)−1(fk −Hϕ

(b)
k ). (3.11)

Here, the inversion of(αI +HH∗) or (αR+HBH ′), respectively, takes place in the
spaceY = R

m. The solution is then projected into the state space by the application
ofBH ′. In the meteorological literature of data assimilation, the solution (3.9) is often
referred to as the solution arising from Optimal Interpolation (OI) [68, 29]. It refers
to a direct method being used to solve the 3DVar minimisationproblem (3.8) rather
than an iterative optimisation technique. In the linear case Optimal Interpolation and
3DVar are equivalent. Method (3.11) is often called PSAS (physical space statistical
analysis) scheme in the literature on meteorology and oceanography [18, 16].

We summarise our results in the following theorem.

Theorem 3.2(Equivalence of cycled Tikhonov regularisation and 3DVar). 3DVar or
three-dimensional variational data assimilation (3.9) or(3.11) is equivalent to cycled
Tikhonov regularisation (3.5) when the norms are arising from the weighted inner
products (3.6) and (3.7).

Theorem 3.2 shows that 3DVar is merely a cycled Tikhonov regularisation in an
appropriately chosen norm.

4 Error analysis

In this part we investigate the error arising in data assimilation, that is, we consider
the error between the true solution and the solution obtained from a data assimila-
tion scheme. The solution obtained from solving a data assimilation problem is often
referred to as “analysis” in the data assimilation literature. As a generic method we
will study cycled Tikhonov regularisation, which according to Theorem 3.2 includes
three-dimensional variational assimilation. We will later see that this also carries over
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to cycled four-dimensional variational data assimilation, which we will discuss in Sec-
tion 6.

We need to take into account errors which can arise when we cycle the update
formula (3.5) according to Definition 3.1. Assume thatϕ

(true)
k is the true state at time

tk, k = 0,1,2, ... andf (true)k are the true values of the data. The errors we need to take
into account include

(i) Measurement error: Errors in the datafk, that is, we measurefδk with a data

error dδk := fδk − f
(true)
k of size||dδk|| ≤ δ. This error was discussed in Section 2

and arises through errors in the measurements and noisy data.

(ii) Observation operator error: Errors in themeasurement operatorH, that is, we
use a measurement operatorH which is different from the true mappingH(true)

of the stateϕ to the dataf .

(iii) Reconstruction/approximation error: Reconstruction errors by using the in-
verseRα = (αI + H∗H)−1H∗ as an approximation to the inverseH−1 of H.
This error was discussed in Section 2.

(iv) Model error: The model operator which we defined in Section 1 is usually only
an approximationM to the true system dynamicsM (true). Model error arises as
the dynamical model does not usually describe the system behaviour exactly. It
incorporates numerical error arising from discretisationof the partial differential
equations that need to be solved and includes inaccuracies in the physical param-
eters, forcing terms and as well as in the model itself which is usually merely a
simplification of the reality.

(v) Accumulated errors: There will beaccumulated errorsin the background in
the sense that the analysis error from the previous step leads to an error in the
background of the next step in contrast to the background which would be arising
from the true stateϕ(true).

In every analysis step of the assimilation, we obtain an error contribution by the mea-
surement error, by the error in the observation operatorH and by the regularisation
operatorRα approximating the inversion ofH. For the propagation step we obtain an
error caused by the modelM approximating the true dynamicsM (true). Moreover the
errors may accumulate over time.

Theorem 4.1.The evolution of the analysis errorek := ϕ
(a)
k − ϕ

(true)
k for cycled

Tikhonov regularisation and three-dimensional variational assimilation is given by

ek+1 =

reconstruction error
︷ ︸︸ ︷

(I −RαH)

propagation of previous error and model error
︷ ︸︸ ︷{

Mkek +
(

Mk −M
(true)
k

)

ϕ
(true)
k

}

(4.1)

+

data error influence
︷ ︸︸ ︷

Rαd
δ
k+1 +

observation operator error
︷ ︸︸ ︷

Rα

(

(H(true) −H)ϕ
(true)
k+1

)
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Proof. We know from Theorem 3.2 that 3DVar and Tikhonov regularisation are
equivalent. We use the update formula (3.5) and the Tikhonovregularisation operator
Rα := (αI +H∗H)−1H∗. With (3.1) as well as

ϕ
(true)
k+1 =M

(true)
k ϕ

(true)
k and f

(true)
k = H(true)ϕ

(true)
k ,

and subtractingϕ(true)
k+1 fromϕ

(a)
k+1 we calculate

ek+1 := ϕ
(a)
k+1 − ϕ

(true)
k+1

= ϕ
(b)
k+1 − ϕ

(true)
k+1 +Rα

(

fk+1 − f
(true)
k+1

)

+Rα

(

f
(true)
k+1 −Hϕ

(b)
k+1

)

(4.2)

= Mkϕ
(a)
k −M

(true)
k ϕ

(true)
k +Rαd

δ
k+1

+Rα

(

H(true)ϕ
(true)
k+1 −Hϕ

(b)
k+1

)

= Mk

(

ϕ
(a)
k − ϕ

(true)
k

)

+
(

Mk −M
(true)
k

)

ϕ
(true)
k +Rαd

δ
k+1

+Rα

(

(H(true) −H)ϕ
(true)
k+1 +H

(

ϕ
(true)
k+1 − ϕ

(b)
k+1

))

. (4.3)

We treat the last term in (4.3) similarly to the first term in (4.2). Then, collecting all
parts, we derive (4.1). ✷

If the model error and the error in the observation operator in Theorem 4.1 is ex-
cluded we obtain

ek+1 = Rαd
δ
k+1 + (I −RαH)Mkek,

and, taking norms and using||dδk|| ≤ δ, this is precisely the regularisation error arising
in Tikhonov regularisation (2.7). If we select an appropriate value forα this error can
be made very small.

However, in many (practical) cases the errors arising from the model and the obser-
vation operator are much bigger than the regularisation error. Model errorin particular
can be very large due to insufficient resolution and inaccuracies in the physical model
dynamics. This is specifically the case for a chaotic behaviour of the system. The
model error is a very important part of the total error and a very active area of current
research (see, for example [52, 27, 80, 87, 14]).

We also notice that, even if there is no model error, no observation error and no data
error, thenek+1 = (I −RαH)Mkek, and the errors can accumulate ifα is chosen too
large, in particular if‖(I − RαH)Mk‖ > 1 (see also [67], [60]). Note that for any
regularisation scheme condition (2.4) holds and therefore, α needs to be chosen small
enough.

We have shown that within cycled data assimilation schemes various forms of errors
occur and influence each other which is important to considerwhen applying data
assimilation methods in practice.
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We will see in Section 6 that cycled four-dimensional variational data assimilation
can be covered by the same framework of error analysis since cycled 4DVar is a form
of cycled nonlinear Tikhonov regularisation.

In the remainder of this article we assume that no model erroris present, that is the
model operatorMk represents the perfect model dynamics.

5 Bayesian approach to inverse problems

Probability theory provides a wide set of tools which can be used to solve inverse
problems. In particular, the Bayesian theory has become quite popular as a generic
approach which can be applied to inverse and ill-posed problems as well (see, for
example [85, 5, 75, 12]).

Bayesian theory has the potential to provide a stochastic background for many ideas
which might appearad-hocin the area of deterministic inverse problems and functional
analysis. Also, Bayesian theory provides much more than just a solution to the inverse
or data assimilation problem, but a full-grown theory to calculate estimates for the
uncertainty as well.

However, we will see that all algorithms which can be formulated on a Bayesian
background have their deterministic counterpart and, alternatively, can be studied purely
within the framework of functional analysis and optimisation. In this section we apply
Bayesian ideas to the observation and background errors.

Let us consider the equation
H(ϕ) = f, (5.1)

as introduced in (1.1) as a starting point, where in this section we assume thatX = R
n

andY = R
m,m,n ∈ N. The more general case with probability measures on infinite

dimensional spaces can be done formally in a similar way, butinvolves some non-
trivial technicalities.

In the stochastic framework the task of inverting equation (5.1) given some mea-
surementf does not ask foronespecial solution. Sincef is just one draw from some
random distributionπY , any particular solution is of limited value and significance, but
we want to know theconditional probability distributionof ϕ given some information
about the error distribution off . This conditional distribution can then be used either
to calculate anexpectation valuefor ϕ given f or to evaluate theuncertaintyof this
estimate measured for example by itsvariance.

We need to formulate our setup in more detail and with well-defined spaces and
operators. Stochastic theory assumes that the quantityϕ is arandom variableon some
probability space(Ω,Σ, P ) with values inX. Here,Σ denotes someσ-algebra andP is
a probability measure, which maps any subsetA ⊂ Ω for whichA ∈ Σ into a number
P (A) ∈ [0,1]. P (A) is the probability of the setA. We then obtain a probabilityPX

of the values ofϕ to be in some setC ⊂ X by

PX(ϕ ∈ C) := P ({ω : ϕ(ω) ∈ C}). (5.2)
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We also assume that the measurementf is a random variable with some probabil-
ity distributionPY on Y . This probability distribution will depend on the true value
f (true) and is our model for measurement error during the process of measuringf .
Here, we assume that the probability distribution (5.2) onX has a probability density
πX : X → [0,1], such that

PX(C) =

∫

C

πX(ϕ)dϕ, (5.3)

for every open subsetC ⊂ X. In the same way we assume thatPY has a probability
densityπY onY such that

PY (U) =

∫

U

πY (f)df,

for every open subsetU ⊂ Y . Usually for simplicity we drop the lettersX andY .
Clearly, since the conditional probability of some eventC ⊂ X given some event

C̃ ⊂ X is defined byP (C|C̃) := P (C ∩ C̃)/P (C̃) we have that the conditional
probability of eventC givenU is

P (C|U) = P ({ω : ϕ(ω) ∈ C andf(ω) ∈ U})
P ({ω : f(ω) ∈ U}) ,

whereP ({ω : f(ω) ∈ U}) > 0. In terms of theprobability density functions(PDFs)
conditional probability is formulated by

π(ϕ|f) = π(ϕ, f)

π(f)
, (5.4)

whereπ(ϕ, f) is the joint probability density ofϕ andf living on the spaceX × Y
andπ(f) 6= 0 is the probability density off in X. Equation (5.4) also holds with the
role ofϕ andf exchanged, i.e. we have

π(f |ϕ) = π(ϕ, f)

π(ϕ)
, (5.5)

assuming thatπ(ϕ) 6= 0. Now, from equations (5.4) and (5.5) we get the famous
Bayes’ formulafor conditional probability densities,

π(ϕ|f) = π(ϕ)π(f |ϕ)
π(f)

. (5.6)

Note that the value ofπ(f) can be obtained by the knowledge that the integral of
π(ϕ|f) over the whole spaceX should be equal to one, i.e. it is not necessary to know
π(f) (it is merely a normalising constant).

Bayes’ formula now provides a ’simple’ solution to the stochastic inverse problem
of inverting equation (5.1). Given a probability densityπ(ϕ) on X and some error
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densityπ on Y which can be used to calculate the density of the data distribution
(often called the “measurement model” in statistics),

π(f |ϕ) = π(f −H(ϕ)). (5.7)

We employ (5.6) to calculate the conditional probability density functionπ(ϕ|f). This
probability density is also known asposterior densityor analysis density function. It
is the density of the unobservableϕ ∈ X given the dataf ∈ Y , that is, the probability
of observing the dataf as a function ofϕ. The density functionπ(ϕ) onX is denoted
as prior density. The posterior density is considered as the solution to the inverse
problem.

Remark 5.1.Note that Bayes’ formula seems to provide a very easy and stable ap-
proach to solving the inverse problem. The calculation of the posterior densityπ(ϕ|f)
is obtained by amultiplicationof two given distributionsπ(ϕ) andπ(f −H(ϕ)). But
the calculation of the mean of the posterior distribution involves the solution of an ill-
posed equation. In general, the full ill-posedness of the task is implicitly involved in
Bayes’ data assimilation as it is in all other schemes as well.

We can now formulate a general approach to data assimilationbased on Bayes’
formula.

Definition 5.2 (Bayes’ data assimilation). Bayes’ data assimilation determines proba-
bility density functionsπ(a)k at timetk for the statesϕ ∈ X given datafk ∈ Y at time
tk by cycling the following propagation and analysis steps:

(i) Propagation Step.Calculate the prior densityπ(b)k (ϕ) at timetk by propagating

the analysis densityπ(a)k−1 from timetk−1 to tk based on the (linear or nonlinear)
model dynamicsMk−1.

(ii) Analysis Step.Calculate the posterior oranalysis densityπ(a)k (ϕ|fk) at timetk
by Bayes’ formula (5.6) using the measurement model (5.7).

An important special case of Bayes’ formula is the setup where all densities are
normal or Gaussiandistributions. For the prior distribution we assume that itis a
multivariate Gaussian distribution, that is, the probability density function is given by

π(ϕ) =
1

√

(2π)n det(B)
e−

1
2(ϕ−µ)TB−1(ϕ−µ), ϕ ∈ R

n, (5.8)

around some stateµ := ϕ(b) ∈ X = R
n with some symmetric positive define matrix

B. Gaussian densities are completely determined by their mean valueµ = E(ϕ) ∈ R
n

and the matrixB, which is well-known to be the covariance matrix,

B = E((ϕ− µ)(ϕ− µ)T ), (5.9)
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of the Gaussian distribution (5.8). We writeϕ ∼ N (µ,B). The normalisation is based
on the integral formula

∫

Rn

e−
1
2ϕ

TB−1ϕdϕ =

√

(2π)n

det(B−1)
=
√

(2π)n det(B).

Let us study the case where also the probability densityπ(f |ϕ) of the measurements
f is given by a Gaussian distribution with probability density function

π(f |ϕ) = 1
√

(2π)m det(R)
e−

1
2(f−H(ϕ))TR−1(f−H(ϕ)), f ∈ R

m, (5.10)

around the valuesH(ϕ) ∈ Y = R
m with the symmetric positive definite covariance

matrixR ∈ R
m×m of the observation error. Then, according to Bayes’ formula(5.6)

we obtain

π(ϕ|f) ∝ exp

{

−1
2

(

(ϕ− µ)TB−1(ϕ− µ) + (f −H(ϕ))TR−1(f −H(ϕ)
)}

for the probability density function of the posterior distribution. If H is linear, this is
again a normal distribution with probability density

π(ϕ|f) ∝ exp

{

−1
2
(ϕ− µ̃)T B̃−1(ϕ− µ̃)

}

.

Usingµ = ϕ(b), its mean ˜µ is given by

µ̃ = ϕ(b) +BH∗(R+HBH∗)−1(f −Hϕ(b)) = ϕ(b) +K(f −Hϕ(b)), (5.11)

and its covariance matrix̃B is given by

B̃ = (B−1 +H∗R−1H)−1 = (I −KH)B, (5.12)

whereK = BH∗(R + HBH∗)−1 is called the (Kalman) gain. The proof of (5.11)
and (5.12) will be worked out in detail in Section 7 on the Kalman filter, see equations
(7.6) and (7.8). The equivalence of the two different expressions in (5.12) can also be
obtained via the Sherman-Morrison-Woodbury formula (see,for example [31]), here
it is worked out elementarily in Lemma 7.3. We summarise the above arguments in
the following theorem.

Theorem 5.3(Bayes’ data assimilation for Gaussian probability densities).In the case
of a linear observation operatorH assume that the prior distribution is Gaussian
with probability density functionπ(ϕ) and the same is true for the distribution of the
measurements with probability density functionπ(f |ϕ) as given in (5.10). Then the
posterior distribution with density functionπ(ϕ|f) is Gaussian as well. Its mean is
calculated by the update formula (5.11), its covariance matrix is given by (5.12).
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Note that the update formula (5.11) for the mean of the posterior Gaussian distribu-
tion is the same as for the update vector (or reconstruction)ϕ

(a)
k obtained from (cycled)

Tikhonov regularisation (3.11), which is equivalent to 3DVar. In this respect we see
that Bayes’ data assimilation gives more information by calculating a whole prob-
ability distribution of a state estimate whereas Tikhonov regularisation/3DVar only
provides the mean of the estimate.

Further, when the dynamicsM of a dynamical system islinear, then it maps a
Gaussian distribution into a Gaussian distribution. The covariance matrixB in (5.11)
and (5.12) needs to be replaced by its transported versionB(b) calculated from the
matrix B at the previous assimilation step byB(b) := MBM∗. The propagation
B(b) arises from the definition of the covariance matrix (5.9) andthe linearity of the
expected value. In this case we can formulate the full cycling of the Bayesian approach
explicitly.

Definition 5.4 (Gaussian Bayes’ data assimilation for linear systems). For linear dy-
namical systemsMk and linear observation operatorsHk we start with some prior
distribution with probability density functionπ(a)0 (ϕ) given by its meanϕ(a)

0 and its

covariance matrixB(a)
0 . Then, fork = 1,2,3, ... we carry out Bayes’ data assimilation

by cycling the following propagation and analysis steps.

(i) Propagation Step.Calculate the mean stateϕ(b)
k and the covariance matrixB(b)

k

of the prior densityπ(b)k (ϕ) at timetk by

ϕ
(b)
k =Mk−1ϕ

(a)
k−1, B

(b)
k :=Mk−1B

(a)
k−1M

∗
k−1. (5.13)

(ii) Analysis Step. Calculate the Gaussian posterior oranalysis densityπ(a)k (ϕ|fk)
at timetk by its mean and covariance

ϕ
(a)
k := ϕ

(b)
k +B

(b)
k H∗

k(R+HkB
(b)
k H∗

k)
−1(fk −Hkϕ

(b)
k ), (5.14)

(B
(a)
k )−1 := (B

(b)
k )−1 +H∗

kR
−1Hk. (5.15)

The above calculations treat the case of linear systems. Of course, Bayes’ formula
also works for nonlinear dynamics and nonlinear observation operators, for which
the numerics is much more difficult to carry out efficiently. Anumerical method to
approximately calculate the densities byensemble approacheswill be introduced in
Section 8.

6 4DVar

A natural approach to the solution of a time-dependent stateestimation problem is to
put all available measurements into one big minimisation problem. Given measure-
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mentsfk+1, ..., fk+K ∈ Y this leads to

Jk(ϕ) := ||ϕ− ϕ
(b)
k ||2X +

K∑

j=1

||fk+j −HMk+j,k(ϕ)||2Y , (6.1)

whereMk+j,k is defined in (1.2) and for simplicity we use a fixed (possibly nonlin-
ear) observation operatorH. Similar to the approach in Section 1 we can rewrite
the problem (6.1) in a 3DVar type form like (3.2) by putting all the measurements
fk+1, ..., fk+K into one long vector and removing the sum and defining a new (possi-
bly nonlinear) operator̄Hk, that is,

Jk(ϕ) := ||ϕ− ϕ
(b)
k ||2X + ||f̄k − H̄k(ϕ)||2Y ,

where

f̄k =









fk+1

fk+2
...

fk+K









and H̄k =









HMk+1,k

HMk+2,k
...

HMk+K,k









.

The minimisation of (6.1) corresponds to the fit of the full dynamic trajectory of the
states to the given measurementsfk+j , j = 1, . . . ,K over the time window between
tk andtk+K . As in Section 3 we can transform the functional (6.1) into a (generally
nonlinear) Tikhonov functional of the form (2.3), see, for example [45, 28]. Note
that sometimes the observationfk at time steptk is included in the sum (here, in the
functional (6.1) it is not included).

Denote the minimum of (6.1) byϕ(a)
k . A cycling of the assimilation is then obtained

by using a new background at timetk+K defined by

ϕ
(b)
k+K :=Mk+K,k(ϕ

(a)
k ), (6.2)

for k = 0,K,2K,3K, . . . . The process of minimising the functional (6.1) and using
the minimisingφ as initial condition for the forecast is known as four-dimensional
variational data assimilation (4DVar) [51, 50, 72, 19, 6]. The repeated minimisation of
(6.1) combined with (6.2) is then a cycled 4DVar scheme. As wecan write 4DVar in
the form of 3DVar this is merely a form of (nonlinear) cycled Tikhonov regularisation
as shown in Section 3.

Usually, the minimisation of (6.1) is carried out by agradient method, that is, we
calculate the gradient∇ϕJk(ϕ)|ϕ(ℓ) at pointsϕ(ℓ) in the state space and update

ϕ(ℓ+1) := ϕ(ℓ) − h∇ϕJk(ϕ)|ϕ(ℓ) (6.3)

with some appropriately chosen step sizeh > 0 and starting guessϕ(0) (oftenϕ(0) :=
ϕ
(b)
k is used).
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For simplicity we consider the case whereX = R
n andY = R

m and the scalar
products are thel2 scalar products. Let us study terms of the form

g(ϕ) := ||f −HMϕ||2Y , (6.4)

with f ∈ Y and some linear operatorM : X → X. The gradient ofg(ϕ) with respect
toϕ is given by

∇ϕg(ϕ) = −2
(

M∗H∗(f −HMϕ)
)

. (6.5)

If M is a nonlinear operator, then we obtain the nonlinear version

∇ϕg(ϕ) = −2
(

(
dM(ϕ)

dϕ
)∗H∗(f −HM(ϕ))

)

(6.6)

of (6.5), wheredM(ϕ)/dϕ denotes the Fréchet derivative ofM(ϕ) with respect toϕ.
The derivative

M(ϕ) :=
dM(ϕ)

dϕ
(6.7)

is also known as thetangent linearmodel [26, 50].
For many applications, the dynamical model is given as a system of ordinary differ-

ential equations in the form

�

ϕ = F (ϕ), ϕ(0) = ϕ0. (6.8)

Since the model dynamics is given byϕ(t) =Mt,0(ϕ(0)) =Mt,0(ϕ0), this means that

F (ϕ) =
d

dt
Mt,0(ϕ0). (6.9)

We denote the derivative with respect to the initial stateϕ0 by

ϕ′(t) :=
dϕ

dϕ0
. (6.10)

Note thatϕ′ is a linear mapping fromX intoX; whenX = R
n it is then× n-matrix

with elements∂ϕj/∂ϕ0,i for i, j = 1, ..., n.
We assume that the solutionϕ = ϕ(t) is continuously differentiable with respect to

the initial stateϕ0 as well as with respect to the timet. In this case we can exchange
the differentiation with respect to timet and the initial stateϕ0 and, differentiating
(6.8) with respect toϕ0, we obtain

d
�

ϕ

dϕ0
=

d

dϕ0

d

dt
Mt,0(ϕ0) =

d

dt

d

dϕ0
Mt,0(ϕ0) =

d

dt
ϕ′(t). (6.11)
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This means that the time evolution of the derivativeϕ′ is given by

d

dt
ϕ′(t) =

d

dϕ0
F (ϕ(t)) = F ′(ϕ(t))

dϕ(t)

dϕ0
. (6.12)

At time t = 0 this is equal toF ′(ϕ0) = dF (ϕ)/dϕ0|ϕ=ϕ0, that is,

d

dt
ϕ′(t)|t=0 = F ′(ϕ0). (6.13)

This means that the tangent linear modelϕ′ can be calculated by solving the system

d

dt
ϕ′(t) = F ′(ϕ(t))ϕ′(t), t ≥ 0 (6.14)

of ordinary differential equations with initial conditionϕ′(0) = I and with the solution
ϕ of the original system of equations (6.8). Usingϕ(t) = Mt,0(ϕ0) andϕ′(t) =
dMt,0(ϕ0)/dϕ0 as well as (6.7) we obtain

ϕ′(t) =
dMt,0(ϕ0)

dϕ0
=: Mt,0(ϕ0)

for the tangent linear model.
We remark that the tangent linear adjoint is ann × n matrix, which might be huge

whenn is large. Thus, efficient methods for its evaluation need to be set-up. To
evaluate the adjoint in (6.5), we define a functionψ(t) ∈ X on the interval[tk+1, tk]
by

�

ψ= −F ′(ϕ(t))∗ψ(t), (6.15)

with final condition
ψ(tk+1) = H∗(fk+1 −HM(ϕk)). (6.16)

Lemma 6.1.For t ∈ [tk, tk+1], the inner product

h(t) :=
〈

ϕ′(t)(δϕ0), ψ(t)
〉

is constant over time for anyδϕ0 ∈ X.

Proof.We differentiateh(t) with respect tot and calculate

dh(t)

dt
=

d

dt

〈

ϕ′(t)(δϕ0), ψ(t)
〉

(6.17)

=
〈 d

dt
ϕ′(t)(δϕ0), ψ(t)

〉

+
〈

ϕ′(t)(δϕ0),
d

dt
ψ(t)

〉

=
〈

F ′(ϕ(t))ϕ′(t)(δϕ0), ψ(t)
〉

+
〈

ϕ′(t)(δϕ0),−F ′(ϕ(t))∗ψ(t)
〉

=
〈

ϕ′(t)(δϕ0), F
′(ϕ(t))∗ψ(t)

〉

−
〈

ϕ′(t)(δϕ0), F
′(ϕ(t))∗ψ(t)

〉

= 0,
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where we have used (6.14) and (6.15). Since the derivative ofh(t) is zero by (6.17),
we obtain the statement of the lemma. ✷

Let ej , j = 1, ..., n be the canonical basis ofRn. We can now calculate the gradient
∇g of (6.5) by

∇gj(ϕk) = −2
〈

ϕ′(tk+1)ej ,H
∗(fk+1 −HM(ϕk))

〉

= −2
〈

ϕ′(tk+1)ej , ψ(tk+1)
〉

= −2
〈

ϕ′(tk)ej , ψ(tk)
〉

= −2
〈

ej , ψ(tk)
〉

= −2ψ(tk)j (6.18)

for j = 1, ..., n. Thus, the gradient is calculated by propagating the field forward
in time by (6.8), then propagating the observation error back by (6.15), (6.16) and
calculating the gradient using (6.18).

In general we consider the time steptk as the initial time step or, subsequently, the
intermediate time step, so that (6.8) becomes

�

ϕ = F (ϕ), ϕ(0) = ϕk, where ϕk := ϕ(tk), (6.19)

and the derivative′ with respect to the initial stateϕk is given byϕ′(t) := dϕ
dϕk

. Hence,
discretising (6.19) using, for example, a simple finite difference between time stepstk
andtk+1 leads to

ϕk+1 − ϕk

∆t
= F (ϕk), (6.20)

and therefore the discretised model operatorMk from time steptk to time steptk+1 is
given by

ϕk+1 = ϕk + ∆tF (ϕk) =Mk(ϕk) =Mk+1,k(ϕk).

Moreover discretising (6.14) leads to

ϕ′
k+1 − ϕ′

k

∆t
= F ′(ϕk). (6.21)

Hence, usingϕ′
k = dϕ′

k/dϕ
′
k = I the (discretised) tangent linear model is given by

ϕ′
k+1 = I + ∆tF ′(ϕk) = Mk(ϕk) = Mk+1,k(ϕk) :=

dMk

dϕ
|ϕk

=
dMk+1,k

dϕ
|ϕk
,

which can also be obtained by differentiating (6.20) with respect toϕk. Note, that
we can similarly find the (nonlinear) operatorsMk+j,k and their tangent linear models

Mk+j,k(ϕk) := dMk+j,k

dϕ
|ϕk

for any j = 1, . . . ,K, and, by the chain rule applied to
(1.2) it follows that

Mk+j,k(ϕk) = Mk+j,k+j−1 · · ·Mk+2,k+1Mk+1,k(ϕk).
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Studying the caseX = R
n andY = R

m and using the weighted scalar product
(3.6) and (3.7) we may compute the gradient∇ϕJk(ϕ) of the full functionalJk(ϕ)
given in (6.1) by

∇ϕJk(ϕ) := 2B−1(ϕ− ϕ
(b)
k )− 2

K∑

j=1

(Mk+j,k(ϕ)
∗H∗R−1(fk+j −HMk+j,k(ϕ)).

(6.22)
A gradient method like (6.3) can then be used to obtain a localminimiser for the
functionalJk(ϕ) in (6.1). Another method which may be used to find a local minimum
of Jk(ϕ) in (6.1) is the Gauß-Newton method [21]. We solve∇ϕJk(ϕ) = 0 in order
to find the minimum of (6.1) using Newton’s method, that is,

ϕ(ℓ+1) := ϕ(ℓ) −
(

∇∇ϕJk(ϕ)|ϕ(ℓ)

)−1
∇ϕJk(ϕ)|ϕ(ℓ) ,

with some starting guessϕ(0), where∇∇ϕJk(ϕ)|ϕ(ℓ) is the Jacobian of∇ϕJk(ϕ) at

ϕ(ℓ), that is, the Hessian. Usually the starting guessϕ(0) = ϕ
(b)
k is taken. Often

instead of the correct Hessian∇∇ϕJk(ϕ)|ϕ(ℓ), an approximate version is used, ne-
glecting terms involving the gradient of the tangent linearmodel, thereby leading to
a quasi-Newton method. The gradient method usually only gives linear convergence.
The Gauß-Newton method with approximate Hessian convergessuperlinearly for well-
posed problems and a sufficiently close starting guess. For linear observation operators
H and linear model dynamicsMk the Newton and Gauß-Newton method are the same
and any local minimiser of (6.1) is clearly also a global minimiser (see, for example
[32]) and the convergence speed to the global minimum is quadratic.

7 Kalman filter and Kalman smoother

The Kalman filter is a method to solve the data assimilation problem (1.3) similarly to
the cycled Tikhonov regularisation, 3DVar or 4DVar. But in addition to calculating an
analysis in every step, it also iteratively updates the normof the state space to include
the knowledge from previous assimilation cycles.

We can introduce the Kalman filter using deterministic and stochastic arguments.
Here, we will start with a deterministic approach, which also proves equivalence of
the Kalman filter and Kalman smoother to the four-dimensional variational data as-
similation for linear model dynamicsMk : X → X and linear observation operators
H : X → Y . Then, we discuss a stochastic approach to the Kalman filter.

Let us study assimilation for alinear model dynamicsMk, a linear observation
operatorH and measurementsf1 andf2 at timest1 andt2. Then, four-dimensional
variational data assimilation with weighted norms as in Section 3 minimises the func-
tional (see (6.1))

J4DV ar(ϕ) := ||ϕ− ϕ
(b)
0 ||2B−1 + ||f1 −HM0ϕ||2R−1 + ||f2 −HM1M0ϕ||2R−1, (7.1)
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with B ∈ R
n×n andR ∈ R

m×m. Alternatively, we study the assimilation of the data
f1 in a first step by minimisation of

J1(ϕ) := ||ϕ− ϕ
(b)
0 ||2B−1 + ||f1 −HM0ϕ||2R−1, (7.2)

with minimiserϕ̃(a) and the assimilation off2 in asecond stepby minimising

J2(ϕ) := ||ϕ− ϕ̃(a)||2
B̃−1 + ||f2 −HM1M0ϕ||2R−1, (7.3)

with a weight matrixB̃. The key question here is to determine the new weightB̃
such that the minimiser ofJ2 is equal to the minimiser of the full functionalJ4DV ar in
(7.1). This is the case if we can chooseB̃ such thatJ2(ϕ) = J4DV ar(ϕ)+c with some
constantc, whereJ1 is implicitly used via ˜ϕ(a) in (7.3). The problem is solved if we
can determine ˜ϕ(a) andB̃ such thatJ1 and the first term ofJ2 are identical. Starting
with J1 we obtain

J1(ϕ) =
〈

ϕ− ϕ
(b)
0 , B−1(ϕ− ϕ

(b)
0

〉

+
〈

f1 −HM0ϕ,R
−1(f1 −HM0ϕ)

〉

=
〈

ϕ, (B−1 +M∗
0H

∗R−1HM0)ϕ
〉

(7.4)

−2
〈

ϕ,B−1ϕ
(b)
0 +M∗

0H
∗R−1f1

〉

+ c,

with some constantc independent ofϕ. The first term ofJ2 is given by

||ϕ− ϕ̃(a)||2
B̃−1 =

〈

ϕ, B̃−1ϕ
〉

− 2
〈

ϕ, B̃−1ϕ̃(a)
〉

+ c̃, (7.5)

with some constant ˜c not depending onϕ. A comparison of the coefficients of the
quadratic and linear terms in (7.4) and (7.5) immediately shows that with

B̃−1 := B−1 +M∗
0H

∗R−1HM0 (7.6)

and
B̃−1ϕ̃(a) := B−1ϕ

(b)
0 +M∗

0H
∗, R−1f1 (7.7)

the functionalJ1 given by (7.4) and the first term of the functionalJ2 given by (7.5)
are the same up to some constant not depending onϕ. Finally, from (7.7) using (7.6)
we derive

ϕ̃(a) = B̃
(

B−1ϕ
(b)
0 +M∗

0H
∗R−1f1

)

= (I +BM∗
0H

∗R−1HM0)
−1
(

ϕ
(b)
0 +BM∗

0H
∗R−1f1

)

. (7.8)

After some algebraic manipulations inserting

I = (I +BM∗
0H

∗R−1HM0)−BM∗
0H

∗R−1HM0
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we obtain

ϕ̃(a) = ϕ
(b)
0 + (I +BM∗

0H
∗R−1HM0)

−1BM∗
0H

∗R−1(f1 −HM0ϕ
(b)
0 )

= ϕ
(b)
0 +BM∗

0H
∗(R+HM0BM

∗
0H

∗)−1
(

f1 −HM0ϕ
(b)
0

)

,

which is the minimiser ofJ1 as in (3.9) or (3.11) when the propagationM0 from ϕ0

at timet0 to ϕ1 at timet1, that is,ϕ1 = M0ϕ0 is used. The above approach can be
carried out successively for the measurementsf1, f2, f3 etc. This sequential approach
leads to the Kalman smoother (see, for example, [59, 53, 27]). We will see later in
Theorem 7.5 that the Kalman smoother is equivalent to the Kalman filter at the final
time.

Definition 7.1 (Kalman smoother (KS)). LetHk : X → Y andMk : X → X,
k = 0,1,2, ... given in Definition 1.1 be linear and assume that measurementsf1, f2, ...
at timest1, t2, ... are given. Then, we calculate weight matrices

B̃−1
k := B̃−1

k−1 +M∗
k,0H

∗
kR

−1HkMk,0, k = 1,2, ..., (7.9)

with B̃0 := B, whereMk,0 is defined in (1.2), and analysis states ˜ϕ
(a)
k at time tk

defined by

ϕ̃
(a)
k := ϕ̃

(a)
k−1 (7.10)

+B̃k−1M
∗
k,0H

∗
k(R+HkMk,0B̃k−1M

∗
k,0H

∗
k)

−1
(

fk −HkMk,0ϕ̃
(a)
k−1

)

for k = 1,2, ... with ϕ̃(a)
0 := ϕ

(b)
0 .

From our derivation it is clear that the following theorem holds.

Theorem 7.2(Equivalence of 4DVar and Kalman smoother).LetHk andMk for k =
0,1,2, ... be linear operators and dataf1, f2, ... be given. Then, 4DVar carried out
with dataf1, ..., fk is equivalent to the Kalman smoother given in Definition 7.1 in the
sense that the minimum of the 4DVar functional (6.1) is givenby the analysis̃ϕ(a)

k for
k = 1,2, ...,K according to (7.10).

Proof. The proof fork = 1 is given in equations (7.1) to (7.8). The general case is
directly obtained by iterating the arguments. ✷

In Definition 7.1 we worked with states at timet0. Usually, the states of the Kalman
filter are calculated at timest1, t2 etc. We need to propagate the states ˜ϕ

(a)
k from time

t0 to tk by
ϕ
(b)
k =Mk,0ϕ̃

(a)
k−1, and ϕ

(a)
k =Mk,0ϕ̃

(a)
k , (7.11)

for k = 1,2,3, ..., which means that

ϕ
(b)
k =Mk−1(ϕ

(a)
k−1) (7.12)
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propagates the state fromtk−1 to tk (see also (3.1)). The matrices̃B are propagated
from t0 to tk by

B
(b)
k =Mk,0B̃k−1M

∗
k,0, and B

(a)
k =Mk,0B̃kM

∗
k,0, (7.13)

for k = 1,2,3, ..., where thebackground matrixat timetk is obtained by propagating
theanalysis matrixfrom timetk−1 to tk by

B
(b)
k =Mk−1B

(a)
k−1M

∗
k−1. (7.14)

Note that the propagation of the state (7.12) and the propagation of the weight matrix
(7.14) are equivalent to the propagation step in Bayes’ dataassimilation for Gaussian
probability densities and linear systems, see (5.13).

Using (7.11) and (7.13) the iterative version of (7.10) is then given by

ϕ
(a)
k = ϕ

(b)
k +B

(b)
k H∗

k(R+HkB
(b)
k H∗

k)
−1(fk −Hkϕ

(b)
k ) (7.15)

for k ∈ N, often written in the form

ϕ
(a)
k = ϕ

(b)
k +Kk(fk −Hkϕ

(b)
k ) (7.16)

with theKalman gain matrix

Kk := B
(b)
k H∗

k(R+HkB
(b)
k H∗

k)
−1. (7.17)

Note that the Kalman gain matrix is identical to the Tikhonovregularisation matrix
(3.11). Using (7.14) and (7.9) we readily verify that the analysis matrixB(a)

k at time

tk is obtained from thebackground matrixB(b)
k at timetk by

(B
(a)
k )−1 = (B

(b)
k )−1 +H∗

kR
−1Hk, (7.18)

for k ∈ N. Note that the analysis matrixB(a)
k in (7.18) and the analysis stateϕ(a)

k

in (7.15) is equivalent to the updated covariance matrix andthe updated state in the
analysis step in Bayes’ data assimilation for Gaussian probability densities and linear
systems, see (5.14 and (5.15)).

Often, another version of (7.18) is used, where the matricesappear without their
inverse (see also (5.12)).

Lemma 7.3.For k ∈ N andB(a)
k in (7.18) we have

B
(a)
k = (I −KkHk)B

(b)
k , (7.19)

whereKk is given by (7.17).
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Proof.We start from (7.18) in the form

B
(a)
k =

(

I +B
(b)
k H∗

kR
−1Hk

)−1
B

(b)
k . (7.20)

We expand

T :=
(

I +B
(b)
k H∗

kR
−1Hk

)

(I −KkHk)

=
(

I +B
(b)
k H∗

kR
−1Hk

)(

I −B
(b)
k H∗

k(R+HkB
(b)
k H∗

k)
−1Hk

)

= I +B
(b)
k H∗

kR
−1Hk

︸ ︷︷ ︸

=:S

−B(b)
k H∗

k(R+HkB
(b)
k H∗

k)
−1Hk

︸ ︷︷ ︸

=:S1

−B(b)
k H∗

kR
−1HkB

(b)
k H∗

k(R+HkB
(b)
k H∗

k)
−1Hk

︸ ︷︷ ︸

:=S2

. (7.21)

and remark that

S = B
(b)
k H∗

kR
−1(R+HkB

(b)
k H∗

k)(R+HkB
(b)
k H∗

k)
−1Hk = S1 + S2,

which yieldsT = I. Thus

(

I +B
(b)
k H∗

kR
−1Hk

)−1
= (I −KkHk)

and the proof is complete. ✷

We are now ready to define the Kalman filter (see, for example [2, 53, 39]).

Definition 7.4 (Kalman filter). Starting with an initial stateϕ(b)
0 and an initial weight

matrixB(a)
0 := B, for k ∈ N the Kalman filter iteratively calculates an analysisϕ(a)

k

at timetk for k = 1,2, . . . by

(i) propagating the stateϕ(a)
k−1 from tk−1 to tk via (7.12):

ϕ
(b)
k =Mk−1(ϕ

(a)
k−1),

(ii) propagatingB(a)
k−1 from tk−1 to tk following (7.14):

B
(b)
k =Mk−1B

(a)
k−1M

∗
k−1,

(iii) calculate the Kalman gain by (7.17):

Kk = B
(b)
k H∗

k(R+HkB
(b)
k H∗

k)
−1,
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(iv) calculating an analysis state by (7.15):

ϕ
(a)
k = ϕ

(b)
k +Kk(fk −Hkϕ

(b)
k ),

(v) calculating an analysis weight by (7.19):

B
(a)
k = (I −KkHk)B

(b)
k .

The first two steps of the Kalman filter are often referred to asthe predictor steps
as they predict a state and a covariance estimate by propagating them forward via the
model dynamics. The last two steps are called analysis stepsto update the state and
covariance estimate.

The relationship between the Kalman filter, the Kalman smoother and 4DVar is
summarised in the following theorem.

Theorem 7.5(Equivalence of 4DVar, Kalman filter and Kalman smoother).Let the

operatorsHk : X → Y for k ∈ N andMk : X → X for k ∈ N0 be linear. Letϕ(a)
k be

the analysis of the Kalman filter at timetk, ϕ̃(a)
k the analysis of the Kalman smoother

with dataf1, ..., fk at timet0, ϕ̃(a)
4DV ar,k the minimiser of the 4DVar functional (6.1) at

timet0 and define

ϕ
(a)
4DV ar,k :=Mk,0ϕ̃

(a)
4DV ar,k, k = 1,2,3, ... (7.22)

Then 4DVar is equivalent to the Kalman filter and to the Kalmansmoother in the sense
that

ϕ
(a)
4DV ar,k = ϕ

(a)
k =Mk,0ϕ̃

(a)
k , (7.23)

if we start the iterations with the same initial background stateϕ(b)
0 and the same initial

error covariance matrixB(a)
0 := B.

Proof. The equivalence of the Kalman smoother with the Kalman filteris obtained
by our reformulation based on (7.11) worked out in equations(7.14) to (7.19). The
equivalence to 4DVar is then a consequence of Theorem 7.2. ✷

Theorem 7.5 states that the Kalman smoother is equivalent tothe Kalman filter (and
4DVar) at the end of some time window for linear operators.

We finally consider the stochastic approach to the Kalman filter, which we formulate
as a basic theorem. Observing that the formulas for Bayes’ data assimilation with
Gaussian densities as given in Definition 5.4 are identical to the update formulas for
the Kalman filter according to Definition 7.4, the proof of this result is straightforward.

Theorem 7.6(Equivalence of Kalman filter and Bayes’ data assimilation). For linear
systemsMk : X → X, linear observation operatorsHk : X → Y , and Gaussian
probability densities, theKalman filteras given in Definition 7.4 is identical toBayes’
data assimilationgiven by Definition 5.4.
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For nonlinear system dynamicsMk : X → X, and nonlinear observation operators
Hk : X → Y the above equivalences do not hold any more. However, we may still
apply the Kalman filter if we linearise both the modelMk and the observation operator
Hk about the considered state. This leads to the Extended Kalman filter (EKF) ([46, 2].
The linearisations of the model operatorMk and the observation operatorHk, which
are used within the Kalman filter (7.4) are given by

Mk(ϕk) :=
dMk

dϕ
|ϕk

and Mk(ϕk) :=
dHk

dϕ
|ϕk
,

whereMk is the tangent linear model (see (6.7)).
We have introduced several data assimilation methods and shown that, for linear

systems, they are all essentially equivalent to cycled Tikhonov regularisation with a
weighted norm. In the next section we consider ensemble methods, which provide
a way of (approximately) updating probability distributions and covariance matrices
within the assimilation schemes.

8 Ensemble methods

We have introduced several methods for data assimilation inthe previous sections,
including Tikhonov data assimilation, 3DVar, 4DVar, Bayes’ data assimilation and the
Kalman filter.

Evaluating the different approaches, we note that 3DVar or Tikhonov data assimila-
tion work with fixed norms at every time-step and do not fully include all the dynamic
information which is available from previous assimilations. Since 4DVar uses full tra-
jectories over some time window, it implicitly includes such information and we can
expect it to be superior to the simple 3DVar. However, Bayes’data assimilation or
the Kalman filter are equivalent to 4DVar for linear systems and include all available
information by updating the weight matrices and propagating them through time. This
is essentially done implicitly in 4DVar. In general, we can expect them to yield results
comparable to those of 4DVar.

The need to propagate some probability distribution is a characteristic feature of the
Bayes’ data assimilation and the Kalman filter. It is also their main challenge, since the
matricesB(a)

k orB(b)
k have dimensionn× n, which for largen is usually not feasible

in terms of computation time or storage, even when supercomputers are employed
for the calculation as in most operational centres for atmospheric data assimilation.
Thus, a key need for these methods is to formulate algorithmswhich give a reasonable
approximation to the weight matricesB(b)

k with less computational costs than by the
use of (7.14) and (7.18) or (7.19).

Often, the approach to ensemble methods is carried out via stochastic estimators.
Here, we want to stay within the framework of the previous sections and study the
ensemble approach from the viewpoint of applied mathematics. The stochastic view
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will be discussed in a second step. One of the most popular ensemble filter techniques
is the Ensemble Kalman filter (see [25, 41, 42, 84, 65, 3, 43, 77, 11, 24, 70]).

Definition 8.1 (Ensemble). Anensemblewith N members is any finite set of vectors
ϕ(ℓ) ∈ X for ℓ = 1, ...,N . We can propagate the ensemble through time by applying
our model dynamicsM : X → X or Mk : X → X, respectively. Starting with an
initial ensembleϕ(ℓ)

0 , ℓ = 1, ...,N , this leads to ensemble members

ϕ
(ℓ)
k =Mk−1ϕ

(ℓ)
k−1, k = 1,2,3, ... (8.1)

for ℓ = 1, ...,N .

We will start with the construction of a particular family ofensembles generated by
the eigenvalue decomposition of the weight matrixB := B(b) defined in Section 7 with
X = R

n. B is a self-adjoint and positive definite matrix, hence, thereis a complete
set of eigenvectors ofB, i.e. we have vectorsψ(1), ..., ψ(n) ∈ X and eigenvalues
λ(1), ..., λ(n) such that

Bψ(ℓ) = λ(ℓ)ψ(ℓ), ℓ = 1, ..., n. (8.2)

The eigenvalues are real valued and positive and we will always assume that they are
ordered according to their sizeλ(1) ≥ λ(2) ≥ ... ≥ λ(n). With the matrixΛ :=
diag[

√
λ(1), ...,

√
λ(n)] and the orthogonal matrixU := [ψ(1), ..., ψ(n)] we obtain

B = UΛ2U∗ = (UΛ)(UΛ)∗, (8.3)

where we note thatU∗ = U−1. This representation corresponds to the well-known
principle component analysisof thequadratic formdefined by

E(ϕ,ψ) := ϕTBψ, ϕ,ψ ∈ X. (8.4)

Geometrically,B defines a hypersurface of second order with positive eigenvalues,
whose level curves form a family ofn − 1-dimensional ellipses inX. The principal
axis of this ellipse are given by the eigenvectorsψ(l), ℓ = 1, ..., n.

The application ofB to some vectorϕ ∈ X according to (8.3) is carried out by
a projection ofϕ onto the principle axisψ(ℓ) of B, followed by the multiplication
with λ(ℓ). This setup can be a basis for further insight to construct a low-dimensional
approximation ofB.

Before we continue the ensemble construction we first need todiscuss themetric in
which we want an approximation of theB-matrix. We remark that the role ofB in the
Kalman filter is mainly in the update formulas (7.14), (7.15)and (7.19). Here, to obtain
a good approximation of the vector updates inL2, we needB to be approximated in
the operator norm based onL2 onX = R

n. That is what we will use as our basis for
the following arguments.
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Lemma 8.2.We construct an ensemble of vectors by choosing theN − 1 maximal
eigenvalues ofB and its corresponding eigenvectorsψ(1), ...,ψ(N−1). We define

Q := [
√

λ(1)ψ(1), ...,
√

λ(N−1)ψ(N−1)]. (8.5)

Then, we have the error estimate

||B −QQ∗|| = sup
j=N,...,n

|λ(j)| = |λ(N)| = λ(N). (8.6)

Proof.The proof is obtained from

B −QQ∗ = UΛ̃2U∗, (8.7)

with Λ̃2 = diag[0, ...,0, λ(N), λ(N+1), ..., λ(n)], where there areN − 1 zeros on the
diagonal ofΛ̃. SinceU is an orthogonal matrix, the norm estimate (8.6) is straightfor-
ward. ✷

We are now going to use arbitrary ensemblesϕ(1), ..., ϕ(N) and construct approx-
imate weight matrices. From the Courant Minimum-Maximum Principle we know
that

λ(ℓ) = min
dimU=ℓ−1

max
ϕ∈U⊥,||ϕ||=1

〈ϕ,Bϕ〉 . (8.8)

For an arbitrary ensembleϕ(1), ..., ϕ(N) we use the mean

µ =
1
N

N∑

ℓ=1

ϕ(ℓ) (8.9)

to define theensemble matrix

Q := [ϕ(1) − µ, ..., ϕ(N) − µ], (8.10)

and we define theensemble subspaceUQ by

UQ = span{ϕ(1) − µ, ..., ϕ(N) − µ}. (8.11)

We call the vectorsϕ(ℓ) − µ, ℓ = 1, ...,N the centered ensemble. We remark that
dimUQ = N − 1. Then, we have

||B −QQ∗|| ≥ sup
Bϕ⊥UQ,||ϕ||=1

||(B −QQ∗)ϕ||

≥ sup
Bϕ⊥UQ,||ϕ||=1

||Bϕ||

≥ sup
Bϕ⊥UQ,||ϕ||=1

〈ϕ,Bϕ〉

≥ min
dimU=N−1

sup
ϕ⊥U,||ϕ||=1

〈ϕ,Bϕ〉

= λ(N). (8.12)

The above results are summarised in the following theorem.
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Theorem 8.3.Let the eigenvaluesλ(1) ≥ λ(2) ≥ · · · ≥ λ(n) of the self-adjoint weight
matrix B be ordered according to its size and letϕ(1), ..., ϕ(N) with N ∈ N be an
arbitrary ensemble of states inX. Then, the error for the approximation of the weight
matrixB byQQ∗ withQ defined in (8.10) is estimated by

||B −QQ∗||2 ≥ λ(N) (8.13)

Remark 8.4.The optimal errorλ(N) can be achieved if the centred ensemble spans
the space of theN − 1 eigenvectorsψ(1), ..., ψ(N−1) of B corresponding to the largest
eigenvaluesλ(1), ..., λ(N−1) with appropriate coefficients as in (8.5).

Ensembles can be used to approximate the weight matrixB
(b)
k+1 when the weight ma-

trix B(a)
k is given (see (7.15)). IfB(a)

k is approximated by the ensembleϕ(1)
k , ..., ϕ

(N)
k

in the form
B

(a)
k ≈ Q

(a)
k (Q

(a)
k )∗, (8.14)

with Q(a)
k := [(ϕ(1))(a) − µ(a), ..., (ϕ(N))(a) − µ(a)], then by (7.14) we derive an ap-

proximation forB(b)
k+1 by

B
(b)
k+1 = MkB

(a)
k M∗

k

≈ MkQ
(a)
k (Q

(a)
k )∗M∗

k

= MkQ
(a)
k (MkQ

(a)
k )∗

= Q
(b)
k+1(Q

(b)
k+1)

∗, (8.15)

whereQ(b)
k+1 =MkQ

(a)
k .

Lemma 8.5.Consider the approximation ofB(a)
k by an ensembleϕ(1)

k , ..., ϕ
(N)
k with

ensemble matrixQ(a)
k . If the error satisfies

||B(a)
k −Q

(a)
k (Q

(a)
k )∗|| ≤ ǫ, (8.16)

for someǫ > 0 then, the error estimate for the propagated ensemble at timetk+1 is
given by

||B(b)
k+1 −Q

(b)
k+1(Q

(b)
k+1)

∗|| ≤ ||Mk||||M∗
k ||ǫ. (8.17)

Proof.Based on (8.15) the proof is straightforward. ✷

A key question of ensemble methods is how to update the ensemble in the data
assimilation step. Given the datafk at time tk, how do we get an ensemble which
approximates the analysis covariance matrixB

(a)
k given an ensemble which approx-

imates the background error covariance matrixB
(b)
k . We know that for the Kalman
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filter the analysis covariance matrixB(a)
k is calculated fromB(b)

k by (7.19). In terms
of the ensemble approximations this means

Q
(a)
k (Q

(a)
k )∗ = (I −KkHk)Q

(b)
k (Q

(b)
k )∗ (8.18)

with theensemble Kalman matrix

Kk := Q
(b)
k (Q

(b)
k )∗H∗

k(R+HkQ
(b)
k (Q

(b)
k )∗H∗

k)
−1, (8.19)

leading to

Q
(a)
k (Q

(a)
k )∗ = Q

(b)
k

{

I − (Q
(b)
k )∗H∗

k

(

R+HkQ
(b)
k (Q

(b)
k )∗H∗

k

)−1
HkQ

(b)
k

︸ ︷︷ ︸

=:T

}

(Q
(b)
k )∗.

(8.20)
The matrixT in the curly brackets is self-adjoint and positive semi-definite, hence
there exists a matrixL such thatT = LL∗. This finally leads to

Q
(a)
k = Q

(b)
k L, (8.21)

which we denote assquare root filter[4, 8, 65, 79].

Lemma 8.6.Assume thatϕ(1)
k , ..., ϕ

(N)
k is an ensemble which satisfies

||B(b)
k −Q

(b)
k (Q

(b)
k )∗|| ≤ ǫ, (8.22)

with someǫ < ||B(b)
k ||. Then, for the analysis ensemble defined by (8.21) we have

||B(a)
k −Q

(a)
k (Q

(a)
k )∗|| ≤ Cǫ, (8.23)

with some constantC not depending onQ(a)
k .

Proof. Using the notationK(true)
k for the Kalman gain matrix in the general case

(see (7.17) and (7.19)), andQ(a)
k (Q

(a)
k )∗ from (8.18) we write

B
(a)
k −Q

(a)
k (Q

(a)
k )∗ = (I −K

(true)
k Hk)(B

(b)
k −Q

(b)
k (Q

(b)
k )∗)

+(Kk −K
(true)
k )HkQ

(b)
k (Q

(b)
k )∗, (8.24)

with Kk defined by (8.19). We remark that due to its special structurethe norm of
the inverse(R+HkQ

(b)
k (Q

(b)
k )∗H∗

k)
−1 in (8.19) is bounded uniformly independent of

Q
(b)
k . Furthermore, usingǫ < ||B(b)

k ||, the norm

||Q(b)
k (Q

(b)
k )∗|| = ||B(b)

k +
(

Q
(b)
k (Q

(b)
k )∗ −B

(b)
k

)

||

≤ ||B(b)
k ||+ ǫ

≤ 2||B(b)
k ||
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is bounded uniformly, leading to

||K(true)
k −Kk|| ≤ cǫ, (8.25)

with a constantc not depending onQ(b)
k . Finally, a similar estimate applied to (8.24)

yields the desired result (8.23), and the proof is complete. ✷

For further insight into ensemble methods we refer to the article [69] in this book.

9 Numerical examples

We examine data assimilation techniques discussed in this article, and their relation to
inverse problem theory, for simple model problems. First weconsider an advection-
diffusion equation in Section 9.1 and then the Lorenz-95 system in Section 9.2.

9.1 Data assimilation for an advection-diffusion system

Consider the following linear (one-dimensional) advection-diffusion problem (see, for
example [15]). The system dynamics are described by

∂

∂t
ϕ(x, t) = ν

∂2

∂x2ϕ(x, t)− a
∂

∂x
ϕ(x, t), (9.1)

for x ∈ (0,1) andt ∈ (0, T ). As boundary and initial conditions we have

ϕ(0, t) = 0, t ∈ (0, T ),

ϕ(1, t) = 0, t ∈ (0, T ),

ϕ(x,0) = ϕ0(x), x ∈ (0,1).

Hereν > 0 is the diffusion coefficient anda is the advection parameter. We want
to determine the initial conditionϕ0 from the measurements of the solutionϕ(x, t)
at certain points in space and time. Let 0= x0 < x1... < xn = 1 andxi = ih,
i = 0, . . . , n+ 1 andh = 1

n+1. With the discretisations of the spatial derivatives

∂2

∂x2ϕ ≈ ϕi+1 − 2ϕi + ϕi−1

h2 , and
∂

∂x
ϕ ≈ ϕi − ϕi−1

h
,

for i = 0, . . . , n, we obtain a system of ordinary differential equations of the form

ϕ̇(t) = F (ϕ), t ∈ (0, T ], ϕ(0) = ϕ0, (9.2)
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where, in this caseF (ϕ) = Kϕ(t), that is,F is linear, with

K =














−2 ν
h2 − a

h
ν
h2

ν
h2 +

a
h

−2 ν
h2 − a

h
ν
h2

ν
h2 +

a
h

−2 ν
h2 − a

h
ν
h2

... .. . . ..
ν
h2 +

a
h

−2 ν
h2 − a

h
ν
h2

ν
h2 +

a
h

−2 ν
h2 − a

h














∈ R
n+2×n+2,

andϕ(t) = [ϕ0(t), . . . , ϕn+1(t)]T ∈ R
n+2. To satisfy the boundary conditions we set

ϕ0(t) = ϕn+1(t) = 0 throughout. As initial condition we chooseϕi(0) = ϕ0(xi),
i = 0 . . . , n. The solution to the linear system of ordinary differentialequations with

Figure 1: Solution ofϕ(t) = (expKt)ϕ0, t ∈ [0,0.5] (discretised advection-diffusion
equation (9.1)) for initial conditionϕ0(x) = sin(πx).

constant coefficients (9.2) is given by

ϕ(t) = (expKt)ϕ0, t ∈ [0, T ], (9.3)

where expKt ∈ R
n+2×n+2, or, using an explicit first order Euler scheme we obtain

the discrete linear model

ϕk+1 = ϕk + ∆tKϕk, k = 0, . . . ,
T

∆t
, (9.4)
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whereϕk = [ϕ0
k, . . . , ϕ

n+1
k ]T ∈ R

n+2 andϕ0
k = ϕn+1

k = 0 throughout. Note that
we use a lower index to describe the time steps and an upper index to describe points
in space/components ofϕk. The approach (9.4) is a more practical implementation as
the analytical solution (9.3) would only be available for certain problems. We solve
the advection-diffusion problem (9.1) (using the Forward Euler method) witha = 1,
ν = 0.01, n = 100, final timeT = 0.5, time step∆t = 0.001 and initial condition
ϕ0(xi) = sin(πxi). The solution is shown in Figure 1.

For the inverse problem (data assimilation problem), we suppose we do not know
the initial conditionϕ0(x). We want to estimateϕ0(x) from measurements ofr com-
ponentsϕ

n
r (t), ϕ2n

r (t), . . . , ϕn(t) of the solutionϕ(t) at timest1 = 0.002, t2 =
0.004, . . . , tm = 0.5. For our experiment we user = 5, hence, we observe 5 out
of n = 100 components. Take noisy measurements ofHϕ(t1),Hϕ(t2), . . . ,Hϕ(tm),
whereH ∈ R

r×n+2 is the observation operator matrix (which is linear in this case)
given byHij = 1 if j = n

r
i andHij = 0 otherwise. We obtain the (linear) least

squares problem
min

ϕ0∈Rn+2
‖H̄ϕ0 − f‖2

2, (9.5)

with H̄ andf for the forward Euler method and observations every second time step
given by

H̄ =









H(I + 2∆tK)

H(I + 2∆tK)2

...

H(I + 2∆tK)m









∈ R
rm×n+2 and f =









f1

f2
...

fm









∈ R
rm.

The observations are obtained using the output from the exact initial condition and
the measurements usually contain noise (see Section 4 for detailed description of the
errors), that isf = fδ = f (true) + dδ, where the noise is usually normally distributed,
that isdδ ∼ N (0, ρ2I), whereρ is the standard deviation. If we solve the problem
using a naive approach with a standard least squares implementation [74] we obtain
the result in Figure 2a.

Using the singular value decomposition given in Lemma 1.3 wehaveH̄ = V ΣU∗

and, withf = f (true) + dδ we obtain

ϕδ
0 =

n+2∑

j=1

〈fδ, vj〉Y
σj

uj =
n+2∑

j=1

(

vTj f
(true)

σj
+
vTj d

δ

σj

)

uj,

and clearly for small singular valuesσj the noise is magnified, hence the naive solution
in Figure 2a. Figure 2b shows what happens for this particular example. The singular
valuesσj decay rapidly and only the coefficients|vTj f | = |vTj fδ | above the noise level
(here we chosedδ ∼ N (0, ρ2I) with ρ = 0.1) are useful and carry clear information
about the data.



Inverse problems and data assimilation. 37

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

−4

−3

−2

−1

0

1

2

3

4

5
x 10

6

x

φ 0

 

 
exact initial condition
least squares problem

(a) Exact initial conditionϕ0 and
naive solution to the least squares
problem.

0 20 40 60 80 100 120

10
−15

10
−10

10
−5

10
0

Index j
 

 

singular values σ
j

coefficients v
j
T f

(b) Plots of the singular valuesσj
and the coefficients|vTj f |, for j =
1, . . . , n + 2.

Figure 2: Naive solution to the least squares problem (9.5) and singular values of̄H .

In order to compute a better solutionϕ0 for the initial condition than the one given
in Figure 2a we apply Tikhonov regularisation. From (3.11) the Tikhonov regularised
solution is given by

ϕ
(a)
0 = ϕ

(b)
0 +BH̄∗(αR+ H̄BH̄∗)−1(f − H̄∗ϕ

(b)
0 ).

For our problem we use the observation error covariance matrix R = 0.01I (in line
with the noise on the observations). For this particular problem we we choseϕ(b)

0 =
1− 0.5π2(x− 0.5)2 for the background estimate, which is the truncated Taylor series
expansion of the true initial conditionϕ0. For the background error covariance ma-

0 0.005 0.01 0.015

10
−1

Regularisation parameter α

er
ro

r

 

 
Regularisation/reconstruction
Perturbation/data error

Figure 3: Regularisation/reconstruction and data/measurement error for different val-
ues ofα between 0 and 0.015. The optimalα in this case is found to beα = 0.00359.

trix we takeB with entriesBij = 0.01 exp
(
−|i−j|

50

)

and forα we choose the value

α = 0.00359 which minimises both the total error consisting of perturbation error
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‖Rαd
δ‖ whereRα = BH̄∗(αR+H̄BH̄∗)−1 and regularisation error‖RαH̄ϕ0−ϕ0‖,

see (2.7). The plots in Figure 3 show both the regularisationand perturbation error for
this problem. For the valueα = 0.00359 the reconstruction of the initial condition
is plotted in Figure 4a and the initial condition error is displayed in Figure 4b. Note
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(b) Error between exact initial condi-
tion and regularised solution.

Figure 4: Exact initial condition and regularised solutionfor the regularisation param-
eterα = 0.00359 and thel2-norm error between exact and regularised solution for the
linear advection equation (9.1).

that similar computations can be done using no backgroundϕ
(b)
0 , the standard situa-

tion in Tikhonov regularisation, different background estimates, as well as different
choices for the background error covariance matricesB. For the choice ofα which
corresponds to the choice of Tikhonov regularisation parameter several heuristics are
available, such as the L-curve criterion [36], generalisedcross-validation [30] and the
discrepancy principle [61], where the latter is most appropriate for large scale compu-
tations.

We have essentially solved a 4DVar data assimilation problem, as we have shown in
Section 6 that 4DVar can be written in the form of 3DVar which is merely a Tikhonov
regularisation, discussed in Section 3.

The situation described above was an ideal situation. In reality models are nonlinear
and imperfect, that is, they include model error. We give examples for these situations.
First, consider a nonlinear problem. Instead of (9.1) consider

∂

∂t
ϕ(x, t) = ν

∂2

∂x2ϕ(x, t)− a
∂

∂x
ϕ(x, t) + ϕ(x, t)3,

and the discrete nonlinear problem becomes

ϕk+1 = ϕk + ∆tKϕk + ϕ3
k =Mk(ϕk), k = 0, . . . ,

T

∆t
. (9.6)
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(b) Error between exact initial condi-
tion and regularised solution.

Figure 5: Exact initial condition and regularised solutionfor the regularisation pa-
rameterα = 1 and thel2-norm error between exact and regularised solution for the
nonlinear advection equation.

We set up the nonlinear least squares problem

min
ϕ0∈Rn+2

‖H̄(ϕ0)− f‖2
2,

where hereH̄ is a nonlinear operator. The minimisation problem can be solved using
the Gauss-Newton method [21, 64]. The results for the reconstructed initial condition
for the same data as for the linear problem are displayed in Figure 5a and the initial
condition error is displayed in Figure 5b.

Finally, consider the case where some model error is present. To this end, we assume
the observations are created by the true model for the nonlinear advection-diffusion
equation (9.1) witha = 1, ν = 0.01. The model used in the data assimilation process
uses perturbed parametersapert = 1.1, νpert = 0.009. The results for the reconstructed
initial condition are shown in Figure 6a and the initial condition error is displayed in
Figure 6b. As the model contains an error we are trying to fit aninitial condition for
the wrong model and hence the error for this problem is ratherlarge as seen in Figures
6b and 6b.

However, in Figures 7a and 7b we see that this relatively large error in the initial
condition does not lead to large errors in the solution. Figure 7a shows the solution
to the nonlinear advection equation with exact initial condition and Figure 7b shows
the solution with the perturbed initial condition obtainedafter solving the inverse (data
assimilation) problem. We see that, as the solution is propagated forward in time, the
error in the initial condition is smoothed. The reason is thesmoothing property of the
forward operator. We haveϕk+1 = Mk(ϕk) whereMk is a linear (that is,I + ∆tK)
or a nonlinear (see (9.6)) operator. If the initial condition is perturbed byζk, then we



40 M. A. Freitag and R. W. E. Potthast

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

x

φ 0

α  = 1

 

 

Tikhonov regularised initial condition
exact initial condition

(a) Exact initial condition and
Tikhonov regularised solution.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

error=1.1066

x

e
rr

o
r

(b) Error between exact initial condi-
tion and regularised solution.

Figure 6: Exact initial condition and regularised solutionfor the regularisation pa-
rameterα = 1 and thel2-norm error between exact and regularised solution for the
nonlinear advection equation when a model error is present.

(a) Solution to nonlinear discretised
advection-diffusion equation for ini-
tial conditionϕ0(x) = sin(πx).

(b) Solution to nonlinear discretised
advection-diffusion equation for per-
turbed initial condition computed
from data assimilation problem.

Figure 7: Solution to nonlinear advection-diffusion problem with exact and perturbed
initial condition.

haveϕk+1 + ζk+1 =Mk(ϕk + ζk), and to leading order

ζk+1 = Mk(ϕk)ζk,

whereMk is the discretised tangent linear model. Assuming thatMk(ϕk) = M

(which holds for our linear example), then in the limit we have ζk = M
kζ0. From
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basic linear algebra (see [31]) we have thatζk → 0 if ρ(M) < 1, whereρ(M) =
max{|λ|, λ ∈ Λ(M)} is the spectral radius. In our example, both for the linear and
linearised nonlinear model dynamics the eigenvalues ofMk(ϕk) are within the unit
circle, explaining the smoothing of the error in the initialcondition as the solution
propagates in time.

In the next example we consider problems which are more sensitive to the initial
conditions, that is systems that exhibit chaotic dynamics (and hence more accurately
represent the effects in, say, weather forecasting). One such system is the Lorenz-
95 model. In reality we would expect a mix of situations arising from chaotic and
smoothing systems.

9.2 Data assimilation for the Lorenz-95 system

As a second example consider the Lorenz-95 system (see [55, 56]), a generalisation of
the well-known three-dimensional Lorenz-63 System [54]. The model is given by a
system ofN coupled nonlinear ordinary differential equations whose solutionϕ with
componentsϕ = [ϕ1, . . . , ϕN ] satisfies

dϕi

dt
= −ϕi−2ϕi−1 + ϕi−1ϕi+1 − ϕi + f, t ∈ (0, T ] ϕi(0) = ϕi

0, (9.7)

where i = 0, . . . ,N , with cyclic boundary conditionsϕ0 = ϕN , ϕ−1 = ϕN−1,
ϕN+1 = ϕ1 andf is a forcing term. For a forcing termf = 8 the system is chaotic (i.e.
it has positive Lyapunov exponents, see [76]). ForN = 40 the system has 13 positive
Lyapunov exponents. Lorenz [55] observed that this system has a similar error growth
characteristic as an operational numerical weather prediction system if a timeT = 1
is associated with 5 days.

We solve (9.7) using the classical 4th order explicit Runge-Kutta scheme, which
gives

ϕk+1 =Mk(ϕk), where ϕk = [ϕ1
k, . . . , ϕ

N
k ]T , (9.8)

andMk is the nonlinear model operator which propagatesϕk to ϕk+1. The solution
trajectory of two components ofϕ computed with the Runge-Kutta method and∆t =
0.01 andT = 21 is displayed in Figure 8. In order to illustrate the chaotic dynamics of
the Lorenz-95 model we run it with slightly perturbed initial conditions. Perturbing the
initial condition randomly with an error of about 10% gives the ensemble of forecasts
in Figure 9a, using a perturbation of about 0.1% gives the forecast ensemble in Figure
9b. We only show the trajectory of site 20. The figures show an unperturbed solution
trajectory and an ensemble where the initial conditions have been slightly perturbed. It
is easy to see that the larger the perturbation in the initialcondition the more the error
in the forecast grows. For this problem the eigenvalues of the matrixMk(ϕk) from
the linearisation of (9.8) are not necessarily within the unit disk.
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Figure 8: Components 1 and 20 of the solution to (9.7).
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condition error of 0.1%.

Figure 9: Trajectory of site 20 of Lorenz-95 system of size 40. Green thick line:
unperturbed forecast. Black lines: Ensemble of 20 perturbed forecasts.

We carry out some data assimilation experiments with this problem. First, consider
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the 4DVar minimisation problem (6.1). We need to minimise

J(ϕ0) := (ϕ0−ϕ(b)
0 )TB−1(ϕ0−ϕ(b)

0 )+
K∑

j=1

(fj−H(ϕj))
TR−1(fj−H(ϕj)), (9.9)

whereϕj =Mj−1(ϕj−1) is given by (9.8). We have

∇ϕ0J(ϕ0) = 2B−1(ϕ0 − ϕ
(b)
0 )− 2

K∑

j=1

(Mj,0(ϕ0)
THTR−1(fj −HMj,0(ϕ0)),

whereMj,0 is given by (1.2) andMj,0 is the tangent linear model. In order to minimise
the cost function we need∇ϕ0J(ϕ0) and in order to solve this problem we apply
Newton’s method. The Hessian (or the Jacobian for Newton’s method) is given by

∇∇ϕ0J(ϕ0) = 2B−1 + 2
K∑

j=1

(Mj,0(ϕ0)
THTR−1HMj,0(ϕ0)) +Q(ϕ0),

whereQ(ϕ0) involves terms including second derivatives of the system dynamics.
These are usually neglected as for large problems they are inefficient, impracticable
and often infeasible to calculate. Hence we solve

∇∇ϕ0J(ϕ0)∆ϕ
(ℓ)
0 = −∇ϕ0J(ϕ

(ℓ)
0 ),

ϕ
(ℓ+1)
0 = ϕ

(ℓ)
0 + ∆ϕ(ℓ)

0 ,

for ℓ = 0,1, . . ., whereϕ(ℓ)
0 is theℓth iterate of Newton’s method. As initial condition

usually the background state is chosen, that is,ϕ
(0)
0 = ϕ

(b)
0 . We perform data assimila-

tion for a single assimilation window of length 100 time steps, followed by a forecast
of 2000 time steps. First we carry out an experiment with perfect observations. For the
background estimate we choose a perturbed initial condition andB = 0.01I. Check-
ing the singular values of the observability matrix for thisproblem we obtain that the
singular values lie between 4 and 30 and the problem is not ill-conditioned. This is
in contrast to the problem in Section 9.1, where the forward operator has very small
singular values, which, however led to a smoothing propertyof the forecast. The prob-
lem here lies in the fact that the forecast error grows severely. The inverse problem
is not actually ill-conditioned as such but the forward problem exhibits severe error
growth for small perturbations! Figure 10 shows the 1st and 20th component ofϕ
before and after the data assimilation process. The error between the true solution and
the trajectory before and after the 4DVar data assimilationprocess is shown in Figure
11. We observe that the error in the analysis (thick line) is reduced significantly (com-
pared to the background) in the first 600 time steps (where theassimilation window
is of length 100 time steps). After that we see that the effectof the chaotic dynamics
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Figure 10: Components 1 and 20 of the solution to (9.7) for full and perfect observa-
tions. The plot shows the observations, the assimilation window, the exact trajectory,
the background trajectory and the final solution (analysis)after 4DVar.

emerges and the error grows since the initial condition of the analysis vector is per-
turbed from the true initial condition. The initial condition error is of orderO(10−3)
at each of the sites and from Figure 9b we cannot anticipate a better performance of
the forecast. We expect the results to be best for perfect andfull observations. Next,
we carry out an experiment with noisy observations. The observations are generated
from the truth with an error of mean zero and covarianceR = 0.01I. Moreover we
only take observations every 5 time steps and we only observe8 of the 40 variables
(precisely, we observe every 5th component). For the background state we use a per-
turbed initial condition but this time with background error covariance matrixB with
entriesBij = 0.01 exp(−|i−j|

50 ). We observe that the singular values of the observabil-
ity matrix for this problem lie between 0.02 and 7 and not surprisingly the problem is
slightly worse conditioned than the one for full observations.

Figure 12 shows the error between the true solution and the trajectory before and af-
ter the 4DVar data assimilation process. We observe that theerror in both components
is not reduced as much as the error in Figure 11 (for perfect and full observations)
which is to be expected as we observe fewer components and moreover the obser-
vations are noisy. Note that with our setup the 1st componentis an “observed site”,
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Figure 11: Error of components 1 and 20 of the solution to (9.7) for full and perfect
observations. The plot shows the error in the background trajectory and the error in
the final solution (analysis) after 4DVar.

where the 20th component is unobserved. We can therefore explain the slightly worse
assimilation results of the trajectory of the 20th component compared to the trajectory
of the 1st component in Figure 12.

To explore this relation further, Figure 13 shows the absolute value of the error in
the initial condition for this problem including the sites of the observations. Clearly,
at the observation sites the analysis error is generally smaller than at the unobserved
sites. However, this is not always true as information aboutthe true state from the
observations is spread to the unobserved sites through the coupling of the problem and
via the background error covariance matrixB.

We carried out tests with other data assimilation algorithms such as 3DVar and the
Extended Kalman filter. We do not report the results for 3DVarhere but mention that
for full perfect observations, 3DVar produces very small errors at the end of the as-
similation window as we have perfect observations which aresequentially assimilated
into the trajectory. Then the forecast is run from a very small error at the end of the
assimilation window. With fewer and noisy observations, 3DVar gives worse results
than 4DVar (as in 4DVar the missing information is assimilated via the system dynam-
ics). Also, if a model error is included in the system dynamics (that is the observations
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Figure 12: Error of components 1 and 20 of the solution to (9.7) for partial and noisy
observations. The plot shows the error in the background trajectory and the error in
the final solution (analysis) after 4DVar.
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Figure 13: Error in the initial condition and observed sitesfor the solution to (9.7) after
4DVar for partial and noisy observations.

are created from the true trajectory whereas in the data assimilation process we use a
different, perturbed model, replicating the practical situation) we obtain worse results
than for the perfect model, as would be expected (see Section9.1).

Finally, we apply the Extended Kalman filter (EKF) to the Lorenz-95 problem. If
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Figure 14: Error of components 1 and 20 of the solution to (9.7) for partial and noisy
observations. The plot shows the error in the background trajectory and the error in
the final solution (analysis) after applying the EKF.

we use the same background error covariance matrix and the same initial condition as
for 4DVar we obtain essentially the same results as for 4DVar(as would be expected
from Theorem 7.5). The results here are only approximately equivalent as Theorem
7.5 only holds for the Kalman filter applied to linear system dynamics. However, when
plotting the error we hardly observe any difference.

A better result as for 4DVar is obtained for the EKF if a betterbackground error
covariance matrix is chosen. To this end we use the covariance matrix produced by the
EKF (after one data assimilation cycle at time step 100) as the initial background error
covariance matrix for a new EKF experiment applied to the data assimilation problem
we consider. This should give a better (flow-dependent) background error covariance
matrix. This is indeed true as seen in Figure 14 compared to Figure 12. The new
(flow-dependent) background covariance matrix can also be used for 4DVar, resulting
in a hybrid method [9].
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10 Concluding remarks

Inverse problemsare an area of research dealing with the reconstruction of functions
or parameter distributions from measurements. It has evolved over nearly 100 years in
many applications, for example in electromagnetics and acoustics, in medical imaging
and elastography. Today, a growing community of researchers employs both a large
set of well-established methods for linear and nonlinear inverse problems as well as a
large variety of specific new methods for reconstructions and imaging.

Data assimilationhas evolved as a very important and popular research area from
specific applications such as weather prediction or hydrology. Using measurement
data to control the evolution of dynamical systems shares many of the features which
are integral parts of inverse problems. Since World War II data assimilation has fo-
cussed on the state estimation problem, that is, the reconstruction of the stateϕ ∈ X
of the dynamical system under consideration, whereX denotes the particular state
space. Often, parameter functions are also involved and lead to an extended state
space which includes unknown parameter functions as well. The algorithms which
have been introduced here can easily be applied to this most general situation.

Historically, the communities ofinverse problemsanddata assimilationhave evolved
independently, with particular notation and approaches which are similar in content,
but have been expressed in different type of notation or terminology. One main goal
of this article has been to describe key approaches to data assimilation in aninverse
problems terminology, such that thedynamic inverse problemscan be easily identified
by the inverse problems community. At the same time, we provide an introduction
into a functional analytic view for the data assimilation community, which is too often
second priority by those working on important applications.

Today, theconvergenceof inverse problemsanddata assimilationis driven by the
evolution of modern remote sensing measurement technologies. For example, there is
an increasing set of satellite infra-red and microwave sounders, such that their assim-
ilation into atmospheric models involves the use of ill-posed measurement operators.
New radar machines measure not only Doppler shift and reflectivity of atmospheric
meteors, but also polarisation. Ground-based LIDaRs involve further highly ill-posed
measurement operators. Further techniques, such as GPS/GNSS slant delay measure-
ments, lead to ill-posed tomographic problems, which become integral parts of opera-
tional data assimilation. We believe that the framework which we presented provides
an adequate approach to the further development of these systems.

There is aneed for convergencealso on the level ofassimilation algorithms. Clearly,
methods like 3DVar or 4DVar are basically a version of Tikhonov regularisation. But
also modern ensemble or particle methods increase the need for mathematical analysis
with tools from functional analysis and approximation theory, since for typical appli-
cations only a very limited number of ensembles or particlescan be used and we are in
the range of low-dimensional approximation theory rather than in the stochastic limit
of an infinite ensemble.
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Our article has aimed to contribute to the convergence by presenting a concise in-
troduction into key algorithms and results in a functional analytic language which has
the potential to be understood by a large range of mathematicians and build a basis
for further research and developments. We have included both the viewpoint of deter-
ministic mathematics, numerical analysis and functional analysis as well as stochastics
and Bayesian reasoning. Understanding important state-of-the-art algorithms within a
uniform framework is a key step today to further develop the tools which are known
to have the highest impact on society with respect to such crucial areas as high-impact
weather, logistics, travel and energy supply by renewable energy resources.
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