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Synergy of inverse problems and data
assimilation techniques

Melina A. Freitag and Roland W. E. Potthast

Abstract. This review article aims to provide a theoretical framewfwok data assimilation,
a specific type of an inverse problem arising for example imewcal weather prediction,
hydrology and geology.

We consider the general mathematical theory for inversielenos and regularisation, before
we consider Tikhonov regularisation as one of the most mpukthods for solving inverse
problems. We show that data assimilation techniques sudhras-dimensional and four-
dimensional variational data assimilation (3DVar and 4ip\s well as the Kalman filter and
Bayes’ data assimilation are, in the linear case, a form olecly Tikhonov regularisation. We
give an introduction to key data assimilation methods aeeatiy used in practice, link them
and show their similarities. We also give an overview of emsie methods. Furthermore,
we provide an error analysis for the data assimilation pe@e general, show research prob-
lems and give numerical examples for simple data assimilgiroblems. An extensive list of
references is given for further reading.
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1 Introduction

Inverse problems appear in many applications and haveveztaigreat deal of atten-
tion from applied mathematicians, engineers and staasisc They occur, for exam-
ple, in geophysics, medical imaging (such as ultrasounthpeerised tomography
and electrical impedance tomography), computer visiorghime learning, statistical
inference, geology, hydrology, atmospheric dynamics aadynother important areas
of physics and industrial mathematics.

This article aims to provide a theoretical framework foredassimilation, a specific
inverse problem arising for example in numerical weathedjmtion (NWP) and hy-
drology [48, 57, 58, 70, 83]. A few introductory articles oata assimilation in the
atmospheric and ocean sciences are available, mainly fnenerigineering and me-
teorological point of view, see, for example [20, 44, 48, 66, 63, 71], however, a
comprehensive mathematical analysis in the light of therthef inverse problem is
missing. This expository article aims to achieve this.
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An inverse problem is a problem, which is posed in a way thiawisrse to most di-
rect problems. The so-called direct problem we have in nsribdat of determining the
effectf from given causes and conditiopswhen a definite physical or mathematical
model H in form of a relation

H(p)=f (1.1)
is given. In general, the operatéris nonlinear and describes the governing equations
that relate the model parameters to the observed data. Harareinverse problem we
are looking foryp, that is a special cause, state, parameter or condition @themat-
ical model. The solution of an inverse problem can be desdrds the construction
of ¢ from dataf (see, for example [22, 49]). We now consider the specificrswe
problem arising in data assimilation, which usually camsaalso a dynamic aspect.

Data assimilation is, loosely speaking, a method for copgimbservations of the
state of a complex system with predictions from a computedehoutput of that same
state, where both the observations and the model outputdatain errors and (in case
of the observations) are often incomplete. The task in dederalation (and hence the
inverse problem) is seeking the best state estimate withvaigable information about
the physical model and observations.

Let X be the state space. For the remainder of this article we giypassume that
X (and alsaY’) are Hilbert spaces unless otherwise stated.d et X, wherey is the
state (of the atmosphere, for example), that is, a vectaiagung all state variables.
Furthermore, letp, € X be the state at timg, and M, : X — X the (generally
nonlinear) model operator at tinig which describes the evolution of the states from
time ¢, to timety 1, that ispr11 = My (¢x). For the moment we consider a perfect
model, that is, the true system dynamics are assumed to lvenkriée also use the
notation

My = My_1My_2--- Mg 1My, k> € N, (1.2)

to describe the evolution of the system dynamics from tiprte timety,.

Let Y, be the observation space at timeand f;, € Y}, be the observation vector,
collecting all the observations at timg. Finally, letH, : X — Y}, be the (generally
nonlinear) observation operator at timg mapping variables in the state space to
variables in the observation space. The data assimilatimslgm can then be defined
as follows.

Definition 1.1 (Data assimilation problem). Given observatigfise Y}, at timet,
determine the states, € X from the operator equations

Hk(@k) :fka ]{ZO, 1723"'3 (13)

subject to the model dynamid¥/;, : X — X given by yr1 = Mi(vr), where
k=012....

In numerical weather prediction the operafdy, involves the solution of a time-
dependent nonlinear partial differential equation. Ulgutile observation operator
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H,. is dynamic, that is, it changes at every time step, but fophaity we often let
H, := H. Both the operato;, and the dataf;, contain errors. Also, in practice,
the dynamical modeM,, involves errors, that is)/;,, does not represent the true sys-
tem dynamics because of model errors. For a detailed acoousirors occurring in
the data assimilation problem we refer to Section 4. Morede model dynamics
represented by the nonlinear operatdfs are usually chaotic. In the context of data
assimilation, additional information might be given thgbuknown prior information
(background information) about the state variable, dehb;epg’) e X.

The operator equation (1.3) (see also (1.1)) is usuallydied, that is, at least one of
the following well-posedness conditions according to Haaded [33] is not satisfied.

Definition 1.2 (Well-Posedness [49, 82]). Léf, Y be normed spaces atd : X —
Y be a nonlinear mapping. Then the operator equatidn) = f from (1.1) is called
well-posed if the following holds:

- Existence: For every € Y there exists at least onec X such that (¢) = f,
that is, the operatall is surjective.

 Uniqueness: The solutiop from H () = f is unique, that is, the operatéf is
injective.

- Stability: The solutionp depends continuously on the dgtathat is, it is stable
with respect to perturbations ifi

Equation (1.1) is ill-posed if it is not well-posed.

Note that for a general nonlinear operatérboth existence and uniqueness of the
operator equation need not be satisfied. If the existencditomm in Definition 1.2 is
not satisfied then it is possible thate R(H) but for a perturbed right hand sigé
we havef® ¢ R(H), whereR(H) = {f € Y, f = H(p), p € X} is the range
of H. Existence of a generalised solution can sometimes (féamee in the finite-
dimensional case) be ensured by solving the minimisatioblpm

min | f — H(o)II$, (1.4)

which is equivalent to (1.1) if € R(H). The norm|| - ||y is a generic norm i’". The
second condition in Definition 1.2 implies that an inverserapor — : R(H) C

Y — X with H=1(f) = p exists. If the uniqueness condition is not satisfied thes it i
possible to ensure uniqueness by looking for special swistifor example solutions
that are closest to a reference elemehte X, or, solutions with a minimum norm.
Hence, at least in the linear case, uniqueness can be erisured

Hf - H(‘Puni)HY = gy)r} Hf - H(‘P)HYa (1.5)

where|| @y —¢* || x = min{|je—¢*||x,¢ € X, ¢ is a minimiser in (1.5). The third
condition in Definition 1.2 implies that the inverse operatb ™ : R(H) C Y — X
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is continuous. Usually this problem is the most severe orsveal perturbations in
the right hand sidg € Y lead to large errors in the solutigne X and the problem
needs to be regularised. We will look at this aspect in Se@&io

From the above discussion it follows that the operator equdf.3) is well-posed
if the operatorH, is bijective and has a well-defined inverse operﬂgrl which is
continuous. A least squares solution can be found by sothi@gninimisation problem

min || fi — Hi(er)?, k=0,12,.... (1.6)
prEX
We can solve (1.6) at every time stepwhich is a sequential data assimilation prob-
lem. If we include the nonlinear model dynamics constrdifit: X — X given by
vr+1 = Mi(pr), over the time stepg;, k = 0,..., K, and take the sum of the least
squares problem in every time step, the minimisation pralidecomes

K K

min > |1 £ — Hi(en) |5 = wTelr)](Z £ — HiMj.0(0) I3, 1.7
k=0

exX
Pk =0

wherel}, o denotes the evolution of the model operator from tigi® timet,,, that is,
My 0 = My_1Mj,_5 - - - Mo, using the system dynamics (1.2), alg ,, = 1. Both the
sequential data assimilation system (1.6) and the coriged#ta assimilation system
(1.7) can be written in the form

min |f = H() (1.8)

with an appropriate operatdf. Problem (1.8) is equivalent tH () = f (cf. (1.1)) if
f € R(H). For the sequential assimilation system (1.6) we hdve= Hy, f = fx

andy = p at every stegc = 0,1,.... For the consecutive system (1.7) we have
¥ = 0, _ - _ -
Ho Jo
Hy M 1
H:= | HyMpg and f:=| f
| HxMkp | | Sk

In generalH is anonlinear operator, since both the model dynamits and the
observation operatotd;, are nonlinear. If the equatiali (¢) = f is well-posed, then
H has a well-defined continuous inverse operdfort andR (H) =Y.

Now, if H is alinear operator in Banach spaces, then well-posedness follows fro
the first two conditions in Definition 1.2, which are equivaléo R(H) = Y and
N(H) = {0}, whereN (H) is the null space off. Moreover, ifH is alinear opera-
tor on a finite dimensional Hilbert space (in particulafRifH ) is of finite dimension)
then the stability condition in Definition 1.2 holds autoroally and well-posedness
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follows from either one of the first two conditions in 1.2. @'ast condition in Defi-
nition 1.2 follows from the compactness of the unit ball intérdimensions [49].) For
linear H the uniqueness conditiok( (H) = {0} is clearly satisfied if thebservability
matrix H has full row rank. In this case the system is observable,shitis possible

to determine the behaviour of the entire system from theesysoutput, see [47, 73].

_ The remaining question is the stability of the (injectivepaator equatiot! (¢) =

f (or Hp = H(p) = f, a notation which we are going to use from now on) for a
compact linear operatall : X — Y in infinite dimensions. As a compact linear
operator is always ill-posed in an infinite dimensional gpgsR(H ) is not closed)
we need some form of regularisation.

Note that the discretisation of an infinite dimensional ahkt ill-posed problem
naturally leads to a finite dimensional problem which is welsed, according to Defi-
nition 1.2. However, the discrete problem will be ill-cotidined, that is, an error in the
input data will still lead to large errors in the solution. mte some form of regulari-
sation is also needed for finite dimensional problems ayiiom infinite dimensional
ill-posed operators.

In the following we consider compact linear operatéi$or which a singular value
decomposition exists (see, for example [49]).

Lemma 1.3 (Singular system of compact linear operatot€t H : X — Y be
a compact linear operator. Then there exist sets of indi¢es= {1,...,m} for
dim(R(H)) = m andJ = N for dm(R(H)) = oo, orthonormal system§u;} ;e
in X and {v;};es In Y and a sequencéo;},c; of positive real numbers with the
following properties:

{oj}jes isnon-increasing and jli_)moo oj=0 for J=N, (2.9)
Huj = 0,vy, (j € J) and H*’Uj = 0jUuj, (] S J) (1.10)

For all ¢ € X there exists an elemepp € NV (H) with

© = o+ Z(go, uj)xu; and He = Z oj{p, uj) xv;. (1.11)
JjedJ jeJ
Furthermore
H*f = 0;(f 0)vu;. (1.12)
jeJ

holds for all f € Y. The countable set of tripler;, u;,v;};cs is called singular
systemfo;},c; are called singular values{u;};c; are right singular vectors and
form an orthonormal basis fo\'(H)* and {v;};c; are left singular vectors and
form an orthonormal basis foR (H).

In the following we mostly consider compact linear operat@ithough the concept
of ill-posedness can be extended to nonlinear operator8 210, 23] by considering
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linearisations of the nonlinear problem using, for examfte Fréchet derivative of
the nonlinear operator. One can show that for compact neealioperators the Fréchet
derivative is compact, too, leading to the concept of lgcdlposed problems for
nonlinear operator equations. For solving nonlinear @noisl computationally usually
some form of linearisation is required. Hence, most of osulits for linear problems
can be extended to the case of iterative solutions to nanlipeblems (where a linear
problem needs to be solved at each iteration).

2 Regularisation theory

Problems of the formi{ ¢ = f with a compact operatoH are ill-posed in infinite
dimensions since the inverseMfis not uniformly bounded and hence in order to solve
Hy = f (or, for f ¢ R(H) its equivalent minimisation problem mjii ¢ — £|?),
regularisation is needed.

Let H : X — Y and denote its adjoint operator BY* : Y — X. Furthermore let
¢ be the unique solution to the least squares minimisatioblgno min|| Hy — f|2.
Then the solution to the minimisation problem is equivalenthe solution of the
normal equations

H*"Hp=H"*f. (2.1)

Clearly, if H : X — Y is compact thert{*H is compact and the normal equations
(2.1) remain ill-posed. However, if we replace (2.1) by

(ol + H'H)po = apq + H*Hpo = H* f, (2.2)

with o > 0, then the operatdi/ + H* H) has a bounded inverse. The equation (2.2)
is typically referred to as Tikhonov regularisation anis a regularisation parameter.
We have the following theorem (see for example [40, 17, 82628.

Theorem 2.1(Tikhonov regularisation).et H : X — Y be a compact linear opera-
tor. Then the operatofal + H*H) has a bounded inverse and the problem (2.2) is
well-posed fore > 0 and ¢, = (ol + H*H)~*H* f is the Tikhonov approximation
of a minimum-norm least squares solutiprof (2.1). Furthermore, the solutiop,, is
equivalent to the unique solution of the minimisation peoil

min 7, ‘= min{||f — Ho|? 2 2.3
min a(p) gpeX{Hf elly +allellx s (2.3)

whereT,, () is the so-called Tikhonov functional.

In general, Tikhonov regularisation can be used with a knogfarence element
¢, that is, the term|p||% in (2.3) is replaced byy — ¢*)||%, and the problem is
often refereed to as generalised Tikhonov regularisatiém consider this problem in
Section 3.

We have the following definition for a general linear regidation scheme.
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Definition 2.2 (Regularisation scheme). A family of bounded linear opEstR,, } >0,
R, 1Y — X is alinear regularisation scheme for the compact bouncdegtiinjec-
tive operatorH if
Iim RoHp=¢ VyeX. (2.4)
a—0

Clearly the family of approximate invers&s, = (ol + H*H)'H*:Y — X isa
linear regularisation scheme féf. If the range ofH, R(H) is not closed then

lim [|Ra ]| = oo. (2.5)
a—0

If we apply the regularisation operat®, to noisy dataf® with noise level, that is,
/2 = flly < 6 we get regularised solutions

906a = Rafé-

Using the singular system of a compact operator from LemiBavé. may also write
the regularised solution arising from Tikhonov regulaita via the minimisation
problemin (2.3) as .
5 _ J [ .
2 —jeZJ v (26)
We observe that, far: = 0, the solutions? amplifies the noise irf® as for compact
operators we have lim,, o; = 0.

Furthermore, for the exact unique solution we have H' f, whereH : R(H) +
R(H)*+ — X denotes the Moore-Penrose pseudo-invers# dgee [82]) and it is
continuous ifR(H) is closed. Therefore we may estimate the total regulaoisati
error

ot = @llx < [Ralld + || Raf — H flx,

or, for N (H) = {0},
It = #llx < [Ralld + | BaHe - ¢llx, (2.7)

Hence, the total regularisation error consists of a stghilbmponent| R, ||d which
represents the influence of the data er@nd a componentR,Hy — ¢| x which
represents the approximation error of the regularisatibreme. For smalk the sec-
ond component will be small (see (2.4)), but the first compbnell be large (see
(2.5)), whereas for large values afthe first term will be small and the second one
large. We will see this in the examples in Section 9. Hencdijrfipa good value for
the regularisation parametaris important. Techniques for regularisation parameter
estimation aim to find a reasonably good valuedafsee, for example [82, 37, 38]).
The most prominent ones are the L-curve method, generalissd-validation and the
discrepancy principle.

A regularisation scheme is called convergent, if from theveogence of the data
error to zero, it follows that the regularised solution cemges to the exact solution.
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One can show that a regularisation schepe= (ol + H*H)"1H* : Y — X arising
in Tikhonov regularisation is a convergent regularisatfam(é) — 0 and% — 0as
0 — 0 (see [22]). For Tikhonov regularisation one may choese O(4) such that
this holds [82].

Other regularisation schemes for inverse problems arepassible, some of the
most well known ones are the truncated singular value deositipn (TSVD) and
the Landweber iteration (see, for example, [22, 35, 34]). rddwer, it is possible
to change the penalty terfjp|% in (2.3). Other penalty functionals can be used to
incorporate a priori information about the solutign Prominent methods are Total
Variation regularisation or the use of sparsity promotiognms (like theL1-norm, for
example) in the penalty functional. There is a fast growitegature on this topic, see,
for example [82, 13, 7, 86, 1] and the articles by Burger ef#0] and van den Doel
et al. [81] in this book.

In the following we use the results from inverse problems r@gllarisation theory
to develop a coherent mathematical framework for sevetalaksimilation techniques
used in practice.

3 Cycling, Tikhonov regularisation and 3DVar

Data assimilation aims to solve a dynamic inverse problenchvincludes measure-
ment datafy, f2, f3,..., fk,... atvarious times; < t, < t3 < ... <t < .... At
every timet;, the inversion problem is given by (1.3). However, usually dataf; do
not contain enough information to recover the stateat timet; completely. Thus, it
is crucial to take the dynamical evolution of the states attoount.

Assume that we are given some reconstruc&éﬁ at timet;, for somek € N.
Then, we expect that

b
o) = My (o) 3.1)

is a reasonable first guess for the system state attime where M, describes the
model dynamics and is given in Definition 1.1. In data assititih, ¢*) is called the
backgroundor first guess At time ¢, 1 we would like to assimilate the daja., to

calculate a reconstructiqn,gfgl, which is also called thanalysisin data assimilation.

Then, the backgrounqzl,(fl2 at timet. » can be calculated using (3.1) withreplaced
by k£ + 1 and another reconstruction can be carried out at tjmg This approach is
calledcyclingof reconstruction and dynamics.

)

Definition 3.1 (Cycling for data assimilation). Start with some initiadtmsoEf attime

to. Fork = 0,1, 2, ... carry out the cycling steps:

(i) Propagation Step.Use the system dynamia@d), to calculate d)ackgroundpébll
at timety, 1 using (3.1).
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(ii) Analysis Step.With the dataf;,; at timet,; (and the knowledge of the back-
groundgo,(ﬂl) calculate a reconstruction analysiSLpgﬁgl.
Increase the indek to k£ + 1 and go to Step i.

A key characteristic of a data assimilation system is itslygia Step (ii). Here,
for any stepk, the task is to calculate a reconstructi,oi’?) using the datg; and the

knowledge of the backgroundg’). We need to choose or develop a reconstruction
method which optimally combines the given information.

To carry out the analysis we will study two basic approacbes,coming from opti-
misation andbptimal control theorythe other arising frorstochastics and probability
theory: In this section we focus on thaptimisationapproach, Section 5 will provide
an introduction to the stochastic approach using Bayegititai. The relationship be-
tween the two approaches will be discussed in detail in Seé&ti

With a norm||- || x in the state spac& and a norn|- ||y in the data (or observation)
spaceY” we can combine the given information at sigmamely the observation data
frx € Y and the backgrountﬁ,&b) € X by minimising theinhomogeneous Tikhonov
functional

Te(p) == alle — o1& + [1fx — Hol 3 (3.2)

attimet,. H : X — Y is the observation operator defined in Section 1. With

Op =@ — @Eﬂw this is transformed into the Tikhonov functional (2.3) ie lormula

~ ~ ~ b ~
Ju(@r) = oll@nlk + 110 — Hel) — Bl (3.3)
which according to Theorem 2.1 is minimised by
P = (ol + H*H) ' H*(f, — H\"), (3.4)
leading to the minimiser
o\ = oY)+ (ol + H*H)XH* (i, — Hp\?) (3.5)

of the functional (3.2). We denote the cycling of Definitiod 8vith an analysis calcu-
lated by (3.5) asycled Tikhonov regularisation

Often, data assimilation works in spacE&s= R™ andY = R™ of dimensions
n € Nandm € N. The norms in the space’s andY are given explicitly using
the standard.?-norms and some weighting matricBsc R™*™ andR € R™*™, In
Section 5, these matrices will be chosen to coincide witlether covariance matrices
of the state distributions X' and the error covariance matrices of the observation
distributions inY". For the moment we assume the matrices to be symmetricjvgosit
definite and invertible. Then, we define a weighted scaladymrbin X = R"™ by

(o, V) g1 =" BN, o, € X =R", (3.6)
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and a weighted scalar product¥h= R™ by
(f.9)p-1:=f"Rg, fLgeY =R™ (3.7)

With the corresponding norms$- ||z-1 in X and|| - ||z-1 in Y we can rewrite the
functional (3.2) into the form

Te(9) = ale — oNTB Yo — o) + (fs — Ho)'R7M(fr, — Hy).  (3.8)

In the framework of the cycling given by Definition 3.1, thisttional is known as
thethree-dimensional variational data assimilation schg@@Var), see, for example
[20, 51]. Often, the notation: and (%) for the state and the background, as well
asy for the observations is used in the meteorological litambf data assimilation.
Here, building a bridge to the functional analytic framekyore will usep € X for
the states ang € Y for the observationsz, y will be points in the physical space
RR3, respectively. This is also advantageous when we emplogneile methods and
analyse localisation techniques.

The functional (3.8) can easily be transformed into the ganEkhonov regulari-
sation form. ByH’ we denote the adjoint operator &f with respect to the standard
L? scalar products ik = R” andY = R™. The notation* is used for the adjoint
operator with respect to the weighted scalar prodycts; . and(,-) ... Then, we
calculate

(o, HY) g = (o, RTTHY)
= (H'R¢,4)
= (H'R % ,BB™ ')
= (BH'R™'¢,B™'y)
— (BH'R %0,
= (H'¢,¢)p-1,

leading to
H* = BH'R™.

This means that the minimiser (3.5) of (3.2) with the normselobon the scalar prod-
ucts (3.6) and (3.7) is given by
o) = @)+ (al + H'H) ' H' (f — Hp))
= o 4 (aI + BH'RH)*BH'R™(fy — Hy"). (3.9)

The operaton/ + H*H maps the state spack€ into itself. In large-scale data
assimilation problems the dimensienof the state space is often much larger than
the dimensionm of the data spack¥. In this case the inversion ofl + H*H is not
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feasible, and it is advantageous to derive a different fdrtheupdate formula, known
asmeasurement space inversidsing the invertibility of the operators/ + H*H in
X andal + HH* in Y we start from

(al + H*H)H* = H* (ol + HH*).

We multiply with the invers€al + H*H)~! from the left and by(al + HH*)™1
from the right to obtain

H*(al + HH*) ™t = (ol + H*H)*H*. (3.10)
With the help of (3.10) we transform (3.9) into

o = o+ H (al + HI) M (f - He)
= oV + BH'R Yol + HBH'R™Y)™Y(fi — Hol).
= o+ BH'(aR + HBH')(fi — Hp{). (311)

Here, the inversion ofal + HH*) or («R + HBH'), respectively, takes place in the
spaceY = R™. The solution is then projected into the state space by thkcapion
of BH'. In the meteorological literature of data assimilatiom, solution (3.9) is often
referred to as the solution arising from Optimal Interpiolat(Ol) [68, 29]. It refers
to a direct method being used to solve the 3DVar minimisapimblem (3.8) rather
than an iterative optimisation technique. In the linearec@gptimal Interpolation and
3DVar are equivalent. Method (3.11) is often called PSAS/¢jidal space statistical
analysis) scheme in the literature on meteorology and @zgaphy [18, 16].

We summarise our results in the following theorem.

Theorem 3.2(Equivalence of cycled Tikhonov regularisation and 3DVapVar or
three-dimensional variational data assimilation (3.9)(8c11) is equivalent to cycled
Tikhonov regularisation (3.5) when the norms are arisingnirthe weighted inner
products (3.6) and (3.7).

Theorem 3.2 shows that 3DVar is merely a cycled Tikhonov leggation in an
appropriately chosen norm.

4 Error analysis

In this part we investigate the error arising in data assitiaih, that is, we consider
the error between the true solution and the solution obtiafmrem a data assimila-
tion scheme. The solution obtained from solving a data aksion problem is often
referred to as “analysis” in the data assimilation literatuAs a generic method we
will study cycled Tikhonov regularisation, which accorgito Theorem 3.2 includes
three-dimensional variational assimilation. We will lasee that this also carries over
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to cycled four-dimensional variational data assimilatiwhich we will discuss in Sec-
tion 6.

We need to take into account errors which can arise when wie tige update
formula (3.5) according to Definition 3.1. Assume tbé’irue) is the true state at time

tr,k=0,1,2,... andf,i"“e) are the true values of the data. The errors we need to take
into account include

(i) Measurement error: Errors in the datgy, that is, we measurﬁ;j with a data

error df := f9 — f,it"“e) of size||d || < 6. This error was discussed in Section 2
and arises through errors in the measurements and noisy data

(i) Observation operator error: Errors in themeasurement operatdf, that is, we
use a measurement operafdiwhich is different from the true mapping (7€)
of the statep to the dataf.

(i) Reconstruction/approximation error: Reconstruction errors by using the in-
verseR, = (al + H*H)~1H* as an approximation to the inverge ! of H.
This error was discussed in Section 2.

(iv) Model error: The model operator which we defined in Section 1 is usually onl
an approximation\/ to the true system dynamiadd (“"“¢). Model error arises as
the dynamical model does not usually describe the systemvimir exactly. It
incorporates numerical error arising from discretisatbthe partial differential
equations that need to be solved and includes inaccuradies physical param-
eters, forcing terms and as well as in the model itself whichsually merely a
simplification of the reality.

(v) Accumulated errors: There will beaccumulated errorsn the background in
the sense that the analysis error from the previous step leadn error in the
background of the next step in contrast to the backgroundiwliould be arising
from the true state (1),

In every analysis step of the assimilation, we obtain anrewatribution by the mea-
surement error, by the error in the observation operatand by the regularisation
operatorR,, approximating the inversion dff. For the propagation step we obtain an
error caused by the mod&l approximating the true dynamidg "“). Moreover the
errors may accumulate over time.

Theorem 4.1.The evolution of the analysis erref, = <p§f> — gogfme) for cycled
Tikhonov regularisation and three-dimensional variaabassimilation is given by

. ropagation of previous error and model error
reconstruction e7'7'orp pag fp

/—_ .
evin = U= RaH)  {Myep+ (Me— 1" )pl™} (@)

data error influence observation operator error

5} . (true)
+ Radj + Rq ((HWW) —H)ppq )
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Proof. We know from Theorem 3.2 that 3DVar and Tikhonov regulaiisagare
equivalent. We use the update formula (3.5) and the Tikh@agularisation operator
Ry = (al + H*H)~1H*. With (3.1) as well as

@;f_t?_E) _ M]Etrue)(pétrue) and flgtrue) _ H(true)s&;{true)

)

and subtracting}7+ from ¢\"); we calculate

. (a) (true)
€k+l = Pri1— Pra
b
= eih el + Ra(fia - 1)

b
+Ra (1)~ Hly) 4.2)
_ Mk@gga) . M]Etrue)(p(true +R dk+1

R (15— )

_ Mk ((10](€ a) @]&true)) + (Mk . M]itrue))(p(true) + R dk+1

rue TUue rue b
+Ra ((H) — D)3+ H (T3 = o)) )- (4.3)
We treat the last term in (4.3) similarly to the first term in2¥ Then, collecting all
parts, we derive (4.1). O

If the model error and the error in the observation operatorheorem 4.1 is ex-
cluded we obtain
exi1 = Rad) 1 + (I — RoH)Myey,

and, taking norms and usinig || < ¢, this is precisely the regularisation error arising
in Tikhonov regularisation (2.7). If we select an approf@iealue fora this error can
be made very small.

However, in many (practical) cases the errors arising fleenhodel and the obser-
vation operator are much bigger than the regularisatiar.gvtodel errorin particular
can be very large due to insufficient resolution and inactasan the physical model
dynamics. This is specifically the case for a chaotic behavid the system. The
model error is a very important part of the total error and iy @etive area of current
research (see, for example [52, 27, 80, 87, 14]).

We also notice that, even if there is no model error, no olagEnv error and no data
error, therey, 11 = (I — Ry H)Mjyey, and the errors can accumulatedfs chosen too
large, in particular if|(I — R, H)Mj| > 1 (see also [67], [60]). Note that for any
regularisation scheme condition (2.4) holds and thereforeeds to be chosen small
enough.

We have shown that within cycled data assimilation scheragsws forms of errors
occur and influence each other which is important to considesn applying data
assimilation methods in practice.
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We will see in Section 6 that cycled four-dimensional vaoia&l data assimilation
can be covered by the same framework of error analysis syatedc4DVar is a form
of cycled nonlinear Tikhonov regularisation.

In the remainder of this article we assume that no model &naresent, that is the
model operato/;, represents the perfect model dynamics.

5 Bayesian approach to inverse problems

Probability theory provides a wide set of tools which can bBedito solve inverse
problems. In particular, the Bayesian theory has become guipular as a generic
approach which can be applied to inverse and ill-posed problas well (see, for
example [85, 5, 75, 12]).

Bayesian theory has the potential to provide a stochasticgsaund for many ideas
which might appeaad-hocin the area of deterministic inverse problems and functiona
analysis. Also, Bayesian theory provides much more tharajgslution to the inverse
or data assimilation problem, but a full-grown theory toccédte estimates for the
uncertainty as well.

However, we will see that all algorithms which can be fornedaon a Bayesian
background have their deterministic counterpart andiredtésely, can be studied purely
within the framework of functional analysis and optimisati In this section we apply
Bayesian ideas to the observation and background errors.

Let us consider the equation

as introduced in (1.1) as a starting point, where in thisiseete assume that = R"
andY = R™, m,n € N. The more general case with probability measures on infinite
dimensional spaces can be done formally in a similar way,ruaives some non-
trivial technicalities.

In the stochastic framework the task of inverting equat®i) given some mea-
surementf does not ask foonespecial solution. Sincé is just one draw from some
random distributionry, any particular solution is of limited value and significanbut
we want to know theonditional probability distributiorof ¢ given some information
about the error distribution of. This conditional distribution can then be used either
to calculate arexpectation valudor ¢ given f or to evaluate theincertaintyof this
estimate measured for example byiggiance

We need to formulate our setup in more detail and with welflréel spaces and
operators. Stochastic theory assumes that the quanistarandom variableon some
probability spacéQ, X, P) with values inX . Here X denotes some-algebra and® is
a probability measure, which maps any subset Q for which A € X into a number
P(A) € [0,1]. P(A) is the probability of the sefi. We then obtain a probabilityx
of the values ofp to be in some set’ C X by

Px(p € C):=P({w: p(w) € C}). (5.2)
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We also assume that the measuremgtig a random variable with some probabil-
ity distribution Py- on Y. This probability distribution will depend on the true valu
frue) and is our model for measurement error during the processeafsaringy.
Here, we assume that the probability distribution (5.2)%has a probability density
mx : X — [0,1], such that

Py(C) = /C mx (0)dep, (5.3)

for every open subsét C X. In the same way we assume that has a probability
densityry onY such that

Py(U) = /U v (F)df,

for every open subséf C Y. Usually for simplicity we drop the lettet® andY'.

Clearly, since the conditional probability of some evéht X given some event
C' ¢ X is defined byP(C|C) := P(C'n()/P(C) we have that the conditional
probability of eventC givenU is

P{w:¢(w)eCandf(w) e U})
P({w: f(w) €U}) ’

whereP({w : f(w) € U}) > 0. In terms of theprobability density functionéPDFs)
conditional probability is formulated by

PCWU) =

(e, f)
m(f)
wherer(yp, f) is the joint probability density o and f living on the spaceX x Y

andx(f) # 0 is the probability density of in X. Equation (5.4) also holds with the
role of o and f exchanged, i.e. we have

_ (e f)
()

m(elf) = (5.4)

m(fle) ; (5.5)
assuming thatr(¢) # 0. Now, from equations (5.4) and (5.5) we get the famous
Bayes’ formuldor conditional probability densities,

(@) (fle)
(ol f) =R (5.6)
Note that the value ofr(f) can be obtained by the knowledge that the integral of
7(¢|f) over the whole spac¥& should be equal to one, i.e. it is not necessary to know
7(f) (itis merely a normalising constant).
Bayes’ formula now provides a 'simple’ solution to the stastic inverse problem
of inverting equation (5.1). Given a probability density,) on X and some error
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density7 on Y which can be used to calculate the density of the data disiwiip
(often called the “measurement model” in statistics),

m(fle) = 7(f — H(p)). (5.7

We employ (5.6) to calculate the conditional probabilitysiéy functions (¢ f). This
probability density is also known gmsterior densityor analysis density functiont
is the density of the unobservalfec X given the datg € Y/, that is, the probability
of observing the datg as a function ofp. The density functiomr(¢) on X is denoted
as prior density. The posterior density is considered as the solutiothe inverse
problem.

Remark 5.1.Note that Bayes’ formula seems to provide a very easy andestal
proach to solving the inverse problem. The calculation eftbsterior density (| f)
is obtained by anultiplication of two given distributionsr(y) andx(f — H(y)). But
the calculation of the mean of the posterior distributiorolaes the solution of an ill-
posed equation. In general, the full ill-posedness of tek mimplicitly involved in
Bayes’ data assimilation as it is in all other schemes as well

We can now formulate a general approach to data assimilateed on Bayes’
formula.

Definition 5.2 (Bayes’ data assimilation). Bayes’ data assimilation iheitges proba-
bility density functions;r,i@ at timety, for the statesp € X given dataf;, € Y attime

ti. by cycling the following propagation and analysis steps:

(i) Propagation Step.Calculate the prior densivy,ib)(ap) at timet;, by propagating

the analysis densit’y,(f_)l from timet;_, to t; based on the (linear or nonlinear)
model dynamics\fy,_ .

(i) Analysis Step.Calculate the posterior @nalysis densityr,ga)(go\fk) at timet,,
by Bayes’ formula (5.6) using the measurement model (5.7).

An important special case of Bayes’ formula is the setup wlar densities are
normal or Gaussiandistributions. For the prior distribution we assume thasit
multivariate Gaussian distribution, that is, the prokiabdensity function is given by

1

ot e T B e n
W((p) - (27r)"del(B)€ 2 y P ER ’ (58)

around some stafe := ¢®) ¢ X = R" with some symmetric positive define matrix
B. Gaussian densities are completely determined by theinwedaey = E(p) € R”
and the matrix3, which is well-known to be the covariance matrix,

B=E((¢—w(p—wb), (5.9)
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of the Gaussian distribution (5.8). We write~ N (u, B). The normalisation is based
on the integral formula

Let us study the case where also the probability densif}j¢) of the measurements
f is given by a Gaussian distribution with probability dep$itnction
1 1 Tp-1
_ —32(f=H(p))" R™(f—H(y)) m
s = e 2 , [ eR™ 5.10
(19) = et f (5.10)

around the value#l (¢) € Y = R™ with the symmetric positive definite covariance
matrix R € R™*™ of the observation error. Then, according to Bayes’ forn{gl&)
we obtain

el cexp{ =5 (0= B0 - ) + (7 = HET R - H(o)) }

for the probability density function of the posterior distition. If H is linear, this is
again a normal distribution with probability density

el x e =30 - BT E o)}

Usingu = ¢, its mean.is given by
ii=¢® + BH*(R+ HBH*) " Y(f — Ho®) = o® 1+ K(f — Hp®), (5.11)

and its covariance matri® is given by
B=BY+H'RH)'=(I-KH)B, (5.12)

whereK = BH*(R + HBH*) 1is called the (Kalman) gain. The proof of (5.11)
and (5.12) will be worked out in detail in Section 7 on the Kalnfilter, see equations
(7.6) and (7.8). The equivalence of the two different exgimss in (5.12) can also be
obtained via the Sherman-Morrison-Woodbury formula ($eeexample [31]), here
it is worked out elementarily in Lemma 7.3. We summarise theva arguments in
the following theorem.

Theorem 5.3(Bayes’ data assimilation for Gaussian probability déesjtin the case
of a linear observation operatofl assume that the prior distribution is Gaussian
with probability density functiom(¢) and the same is true for the distribution of the
measurements with probability density functiofy|¢) as given in (5.10). Then the
posterior distribution with density function(y|f) is Gaussian as well. Its mean is
calculated by the update formula (5.11), its covarianceriras given by (5.12).
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Note that the update formula (5.11) for the mean of the pust&aussian distribu-
tion is the same as for the update vector (or reconstruaﬁ@lﬁbbtained from (cycled)
Tikhonov regularisation (3.11), which is equivalent to 3DVIn this respect we see
that Bayes’ data assimilation gives more information bycekting a whole prob-
ability distribution of a state estimate whereas Tikhonegularisation/3DVar only
provides the mean of the estimate.

Further, when the dynamick/ of a dynamical system iknear, then it maps a
Gaussian distribution into a Gaussian distribution. Theadance matrix3 in (5.11)
and (5.12) needs to be replaced by its transported veiBibncalculated from the
matrix B at the previous assimilation step B®) := M BM*. The propagation
B arises from the definition of the covariance matrix (5.9) #rellinearity of the
expected value. In this case we can formulate the full cgadithe Bayesian approach
explicitly.

Definition 5.4 (Gaussian Bayes’ data assimilation for linear systems)lirear dy-
namical systemd\/,, and linear observation operatofg, we start with some prior

distribution with probability density functioné“>(<p) given by its meamoé“) and its

covariance matri>Bc(,“>. Then, fork = 1,2, 3, ... we carry out Bayes’ data assimilation
by cycling the following propagation and analysis steps.

(i) Propagation Step.Calculate the mean staﬁéw and the covariance matriB,iw

of the prior densityr,(f)(go) at timet;, by

o = My_10®, BY = My_ 1B M7, (5.13)

(ii) Analysis Step. Calculate the Gaussian posterioramalysis densityr,i“)(¢\fk)
at timet;, by its mean and covariance

o = o+ BYHN R+ H B HY) N fi — Hipl), (5.14)

(Bt = (BY)1y HRH,. (5.15)

The above calculations treat the case of linear systemso@te, Bayes’ formula
also works for nonlinear dynamics and nonlinear obsermatiperators, for which
the numerics is much more difficult to carry out efficiently. ndmerical method to
approximately calculate the densities éysemble approachesill be introduced in
Section 8.

6 4DVar

A natural approach to the solution of a time-dependent sistienation problem is to
put all available measurements into one big minimisatiarbjgm. Given measure-
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mentsfi.1, ..., frex € Y thisleads to

K
b
Tio(0) = llp — o113 + > fwts — HMyy (0|5, (6.1)
j=1

where M., ;5 is defined in (1.2) and for simplicity we use a fixed (possibbynim-
ear) observation operatdi. Similar to the approach in Section 1 we can rewrite
the problem (6.1) in a 3DVar type form like (3.2) by puttind le measurements
fr+1, - fr+x Into one long vector and removing the sum and defining a ness{po
bly nonlinear) operatoff;,, that is,

. b r T
Te(e) = lle — &% + 1fx — Hi(0) |2,

where
Jra1 HMj 1
— Jra2 — HMy 2
fr= + and Hj = . !
Jrik HMp ik

The minimisation of (6.1) corresponds to the fit of the fulhdynic trajectory of the
states to the given measuremefits;, j = 1,..., K over the time window between
tr andt,. . As in Section 3 we can transform the functional (6.1) int@engrally
nonlinear) Tikhonov functional of the form (2.3), see, fotample [45, 28]. Note
that sometimes the observatigp at time steg;. is included in the sum (here, in the
functional (6.1) it is not included).

Denote the minimum of (6.1) by,(f). A cycling of the assimilation is then obtained
by using a new background at timg, i defined by

90/(;11( = My p(0\), (6.2)

fork =0, K,2K,3K,.... The process of minimising the functional (6.1) and using
the minimising¢ as initial condition for the forecast is known as four-dirsiemal
variational data assimilation (4DVar) [51, 50, 72, 19, 6heTrepeated minimisation of
(6.1) combined with (6.2) is then a cycled 4DVar scheme. Aamewrite 4DVar in
the form of 3DVar this is merely a form of (nonlinear) cycleitffonov regularisation
as shown in Section 3.

Usually, the minimisation of (6.1) is carried out bygeadient methogdthat is, we
calculate the gradiei, Ji, ()|, at pointsp() in the state space and update

P = O — AV, T ()] 0 (6.3)

with some appropriately chosen step size 0 and starting guess'® (often(@ :=

@éb) is used).
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For simplicity we consider the case wheXke= R"™ andY = R" and the scalar
products are th& scalar products. Let us study terms of the form

9(p) = ||f — HM |}, (6.4)

with f € Y and some linear operatdd : X — X. The gradient ofy(¢) with respect
to ¢ is given by

Vegly) = —2(M°H'(f - HM¢)). (6.5)
If M is a nonlinear operator, then we obtain the nonlinear versio

dM (p)

G HT — HM(g) (6.6)

Veglp) = —2((
of (6.5), wheral)M (y)/de denotes the Fréchet derivative &f(p) with respect tap.

The derivative )
dM (p
M =—" 6.7
() dp (6.7)
is also known as th&angent lineamodel [26, 50].
For many applications, the dynamical model is given as aaysif ordinary differ-

ential equations in the form

¢ =F(p), ©(0)= 0. (6.8)

Since the model dynamics is given pyt) = M, o(¢(0)) = M; o(po), this means that

F(p) = % Myo(w0). 69

We denote the derivative with respect to the initial stagdy

r . dp
' (t) : oo (6.10)
Note thaty’ is a linear mapping fronk into X; whenX = R" it is then x n-matrix
with element)y; /0po; fori,j =1,...,n.

We assume that the solutign= ¢(¢) is continuously differentiable with respect to
the initial statepp as well as with respect to the time In this case we can exchange
the differentiation with respect to timeand the initial stateog and, differentiating
(6.8) with respect tgg, we obtain

de d d d d d
oo~ doodi +,0(¢0) dt do +,0(0) dt(p( ) (6.11)
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This means that the time evolution of the derivatp/as given by
d d de(t)

—'(t) = —F =F . 6.12
70 = TFle(0) = Flet) " (6.12)
Attime ¢ = 0 this is equal ta#”' (o) = dF'(y)/dpo|,—,, that is,
d
a@,(t)\mo = F'(po0). (6.13)
This means that the tangent linear mogdétan be calculated by solving the system
d
70 =Fle)(1), =0 (6.14)

of ordinary differential equations with initial conditiasi (0) = I and with the solution
© of the original system of equations (6.8). Usingt) = M, o(vo) and¢'(t) =
dM; o(po)/dpo as well as (6.7) we obtain

o(t) = dM(ti,O(SDO)
¥0
for the tangent linear model.
We remark that the tangent linear adjoint israx n matrix, which might be huge
whenn is large. Thus, efficient methods for its evaluation needdosét-up. To
evaluate the adjoint in (6.5), we define a functioft) € X on the intervalt; 1, tx]

by

=: My 0(po0)

= —F'(ip(t)) (1), (6.15)
with final condition
Y(tps1) = H* (fropr — HM (¢y)). (6.16)

Lemma 6.1.For ¢ € [t, t;.1], the inner product

A(t) = (¢ (H)(600). (1) )
is constant over time for anyyg € X.
Proof.We differentiateh(¢) with respect ta and calculate

MO~ L )500), wi1)) 617)

= <jt 1)(300),¥(1)) + (150, (1))
H)(620), %()) + (' (1)(00), —F' (1) "6(¢) )

(Pl
_ <¢ )(@0), F'(p() (1) ) — (¢ (5)(60), F'(s2()) (1))
0

)
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where we have used (6.14) and (6.15). Since the derivativi€:pfis zero by (6.17),
we obtain the statement of the lemma. O

Lete;, j = 1,...,n be the canonical basis &". We can now calculate the gradient
Vg of (6.5) by

—~2( (tra)eg, B (frrn = HM(00)) )
- 2<Lp’ (trp1)ej, tk+1)>
= 2<<p’ (tk)ej, v >

= —2<ej,w<tk>>=—2w<tk>j (6.18)

for j = 1,...,n. Thus, the gradient is calculated by propagating the fietd/diod
in time by (6.8), then propagating the observation errokbac (6.15), (6.16) and
calculating the gradient using (6.18).

In general we consider the time stgpas the initial time step or, subsequently, the
intermediate time step, so that (6.8) becomes

Vyg;(er)

¢ =F(p), ©(0) =g, Where ¢ :=o(ts), (6.19)

and the derivativéwith respect to the initial statey, is given byy'(t) := %’;. Hence,
discretising (6.19) using, for example, a simple finiteeliénce between time steps

andty. 1 leads to
Pr+1 — Pk

= Flew), (6.20)
and therefore the discretised model operatrfrom time step, to time step. 1 is
given by

Or+1 = @i + DF (o) = Mi(pr) = Miy1.xk(0k)-

Moreover discretising (6.14) leads to

/ /
Pr+1 — Pk

Lk = Fl(pn). (6.21)

Hence, using), = dy) /dy), = I the (discretised) tangent linear model is given by

d My, o, = AMy i1,k
do P dp

which can also be obtained by differentiating (6.20) witepect top,. Note, that
we can similarly find the (nonlinear) operatdvs, ., ; , and their tangent linear models
Myijk(er) == dj‘%;f”“ o, foranyj = 1,..., K, and, by the chain rule applied to

(1.2) it follows that

i1 =1+ DF'(pr) = My (pr) = My k(or) i=

Mtk (0r) = Mipjrtj—1- - Migo k- 1Mpy1k(0k)-
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Studying the cas& = R™ andY = R™ and using the weighted scalar product
(3.6) and (3.7) we may compute the gradi&ht.J;(¢) of the full functional Jy(¢)
givenin (6.1) by

K

Vodi(p) = 2B Yy — o) — 2> (Myyji(0) H* R frj — HMyj 1 (0))-
=1
! (6.22)
A gradient method like (6.3) can then be used to obtain a logalmiser for the
functionalJx () in (6.1). Another method which may be used to find a local mimim
of Ji(¢) in (6.1) is the GaulR-Newton method [21]. We soWgJ;(¢) = 0 in order
to find the minimum of (6.1) using Newton’s method, that is,

-1
oD = 0 (VW%(@)IM) Ve dk(@)lpo,

with some starting guess'®, whereVV,Ji ()|« is the Jacobian o¥,.Jx(y) at

©®), that is, the Hessian. Usually the starting gues¥ = go,(f) is taken. Often
instead of the correct HessianV,Ji.(¢)|,«, an approximate version is used, ne-
glecting terms involving the gradient of the tangent linewdel, thereby leading to

a quasi-Newton method. The gradient method usually onlgsinear convergence.
The Gaul3-Newton method with approximate Hessian convergelinearly for well-
posed problems and a sufficiently close starting guessirear observation operators
H and linear model dynamic¥/;, the Newton and Gaul3-Newton method are the same
and any local minimiser of (6.1) is clearly also a global miiger (see, for example
[32]) and the convergence speed to the global minimum is rqtiad

7 Kalman filter and Kalman smoother

The Kalman filter is a method to solve the data assimilatiafigm (1.3) similarly to
the cycled Tikhonov regularisation, 3DVar or 4DVar. But oidéion to calculating an
analysis in every step, it also iteratively updates the noithe state space to include
the knowledge from previous assimilation cycles.

We can introduce the Kalman filter using deterministic amtisastic arguments.
Here, we will start with a deterministic approach, whichoafsoves equivalence of
the Kalman filter and Kalman smoother to the four-dimendimaaiational data as-
similation for linear model dynamicd/, : X — X and linear observation operators
H : X — Y. Then, we discuss a stochastic approach to the Kalman filter.

Let us study assimilation for knear model dynamicsMy, a linear observation
operatorH and measurement§ and f, at timest; andt,. Then, four-dimensional
variational data assimilation with weighted norms as int®ac3 minimises the func-
tional (see (6.1))

b
Japvar(9) = |l — o130 + | f1 — HMop| |51 + || f2 — HM1 Moy |51, (7.1)
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with B € R™™ andR € R™*™, Alternatively, we study the assimilation of the data
f1in afirst step by minimisation of

. b
J(9) = llp — o8 1B + 11— HMowl %, (7.2)
with minimiser(®) and the assimilation of, in asecond stepy minimising
Ta(9) = llp = 315 1 + || f2 — HMLMog| %+, (7.3)

with a weight matrix3. The key question here is to determine the new weight
such that the minimiser af; is equal to the minimiser of the full functiondhpy ;- in
(7.1). This is the case if we can chodSesuch that/z(¢) = Japvar () + ¢ with some
constant, where.J; is implicitly used viagt® in (7.3). The problem is solved if we
can determineo(u) and B3 such that/; and the first term off, are identical. Starting
with .J; we obtain

J1(p)

<<p — o, B ™Yo - wéb)>
+( s — HMop, R™(f — HMoyp))
= (o, (B + MgH" R HMo)p) (7.4)
—2<¢, B ¢ Mg H* R f1> +e,
with some constantindependent of. The first term ofJ; is given by
o — @5, = <90, 3*1w> - 2<<p7 E*l¢<”)> +, (7.5)

with some constant fiot depending orp. A comparison of the coefficients of the
quadratic and linear terms in (7.4) and (7.5) immediatetynshthat with

B™Y:= B+ M{H*R™*H M, (7.6)

and y
B 3@ = B0 ¢ MgH* R (7.7)

the functionalJ; given by (7.4) and the first term of the functional given by (7.5)
are the same up to some constant not depending. dfinally, from (7.7) using (7.6)
we derive

B = B(B ey + MgH'R )
- I+ BM(;‘H*R*HMO)*(@&") + BM{H*R™! f1>. (7.8)
After some algebraic manipulations inserting

I =(I+BM{H*R *HMoy) — BM{H*R™*H My
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we obtain
3@ = o) 4 (I+BM{H*R YHMo) *BM{H*R™Y(fr — HMopl)
= o+ BMZH (R + HMOBMgH*)—l( fi— HMWS’)),

which is the minimiser of/; as in (3.9) or (3.11) when the propagatidfy from g

at timetg to ; at timetq, that is,p1 = Moo is used. The above approach can be
carried out successively for the measuremé¢ity>, f3 etc. This sequential approach
leads to the Kalman smoother (see, for example, [59, 53, 2% will see later in
Theorem 7.5 that the Kalman smoother is equivalent to thenKalfilter at the final
time.

Definition 7.1 (Kalman smoother (KS)). Lefl, : X — Y andM, : X — X,
k=0,1,2,... givenin Definition 1.1 be linear and assume that measurefgnf, ...
attimesty, to, ... are given. Then, we calculate weight matrices

Bt =Bt + M oHER " Hy My, k=12, ..., (7.9)

with By := B, where M}, o is defined in (1.2), and analysis statpg) at time ¢y,
defined by

Y = @Y, (7.10)
+ By 1M o Hjf (R + HkMk,OékflMZVOH;)il<fk - HkMk,OSB/(f,)l)
fork =1,2,... with @E)“) = go(()b).
From our derivation it is clear that the following theoremdwso

Theorem 7.2(Equivalence of 4DVar and Kalman smoothémt H;, and M, for k =
0,1,2,... be linear operators and datd, f2, ... be given. Then, 4DVar carried out
with datafi, ..., f is equivalent to the Kalman smoother given in Definition f.the
sense that the minimum of the 4DVar functional (6.1) is glwethe analysisagf) for
k=12, ..., K according to (7.10).

Proof. The proof fork = 1 is given in equations (7.1) to (7.8). The general case is
directly obtained by iterating the arguments. O

In Definition 7.1 we worked with states at timg Usually, the states of the Kalman
filter are calculated at timeg, ¢, etc. We need to propagate the sta&é‘g from time
toto ¢ by

o) = My o3\, and o\ = M o3\, (7.11)

fork =1,2 3, ..., which means that

b a
o = My (o) (7.12)
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propagates the state frofp_; to ¢; (see also (3.1)). The matricés are propagated
from ¢ to ;. by

B = MyoBi1Mj,, and B = My oBiMj, (7.13)

fork = 1,23, ..., where thebackground matriat timet,, is obtained by propagating
theanalysis matrixrom time¢;_ to t; by

BY = M;,_1B\” M} _,. (7.14)

Note that the propagation of the state (7.12) and the prdimagef the weight matrix
(7.14) are equivalent to the propagation step in Bayes’ @ssanilation for Gaussian
probability densities and linear systems, see (5.13).

Using (7.11) and (7.13) the iterative version of (7.10) erlyiven by

o = o + BYHE (R + HuBY HY) ™ (fi — Hiol) (7.15)
for k € N, often written in the form
ok = o) + Kifi = Hiol) (7.16)
with the Kalman gain matrix
Ky := BV H; (R+ H BV Hp) L. (7.17)

Note that the Kalman gain matrix is identical to the Tikhorregularisation matrix
(3.11). Using (7.14) and (7.9) we readily verify that the lssis matrixB,(f) at time
t;, is obtained from théackground matri>B,ib> at timet;, by

(Bt = (BP) 4 HfR'Hy, (7.18)
for £k € N. Note that the analysis matriB,(f) in (7.18) and the analysis stayéf)
in (7.15) is equivalent to the updated covariance matrix tiedupdated state in the
analysis step in Bayes’ data assimilation for Gaussianghitity densities and linear
systems, see (5.14 and (5.15)).

Often, another version of (7.18) is used, where the matiépgear without their
inverse (see also (5.12)).

Lemma7.3.Fork e N andB,(f) in (;.18) we have

whereK}, is given by (7.17).
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Proof.We start from (7.18) in the form

-1
B = (1+ B iR 1) "By (7.20)

We expand
T = (I+BYHR™H) (I~ KyHy)
(1+ B HiR ) (1= BY HE(R + BBy H) ™ Hy )

1+ B H; R H, - B H (R + Hy B H) " H,
:ZS]_

=5
— B R 0, B H (R + H,BY Hy) " H, .

=55

(7.21)

and remark that
S = BYH{R YR+ HBY Hy)(R+ H.BY Hy) *Hy = S1 + Sa,
which yieldsT = I. Thus

(0) 7% p—1 71_ .
I+ B, "H R ~Hy = (I — KyHy)

and the proof is complete.
We are now ready to define the Kalman filter (see, for examplg3239]).

Definition 7.4 (Kalman filter). Starting with an initial statpéw and an initial weight

matrix Bé‘” = B, for k € N the Kalman filter iteratively calculates an analy@@
attimet, fork =1,2,... by
(i) propagating the statggfll fromt,_q toty via (7.12):

(péb) = Mk—1<90§ca—)1)a

(i) propagatingB,(C‘i)l from ¢;,_1 to t; following (7.14):

b *
BY = My 1B\ My,

(iii) calculate the Kalman gain by (7.17):

Ky, = BPH (R + H B Hp) ™,
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(iv) calculating an analysis state by (7.15):
o) = o) + Kilfo — Hipl),
(v) calculating an analysis weight by (7.19):
B\ = (I - KH)BY.

The first two steps of the Kalman filter are often referred téhagpredictor steps
as they predict a state and a covariance estimate by prapgdia¢m forward via the
model dynamics. The last two steps are called analysis steysdate the state and
covariance estimate.

The relationship between the Kalman filter, the Kalman sim@otnd 4DVar is
summarised in the following theorem.

Theorem 7.5(Equivalence of 4DVar, Kalman filter and Kalman smoothkeel the
operatorsH;, : X — Y fork e Nand M, : X — X for k € Ng be linear. Letp,(f) be
the analysis of the Kalman filter at tintg, @é‘” the analysis of the Kalman smoother

with datafy, ..., f at timetg, 95%\/(17' . the minimiser of the 4DVar functional (6.1) at
timetgp and define

Ospvark = Moy k=123, (7.22)
Then 4DVar is equivalent to the Kalman filter and to the Kalmmaroother in the sense
that

9051(3\/(17',k = @55” = Mk,oaﬁ;‘”, (7.23)

if we start the iterations with the same initial backgroumaitegpgb) and the same initial
error covariance matrich(,“> ‘= B.

Proof. The equivalence of the Kalman smoother with the Kalman fit@btained
by our reformulation based on (7.11) worked out in equati@h$4) to (7.19). The
equivalence to 4DVar is then a consequence of Theorem 7.2. |

Theorem 7.5 states that the Kalman smoother is equivaléhé tisalman filter (and
4DVar) at the end of some time window for linear operators.

We finally consider the stochastic approach to the Kalmaar filthich we formulate
as a basic theorem. Observing that the formulas for Bayds' assimilation with
Gaussian densities as given in Definition 5.4 are identéhé¢ update formulas for
the Kalman filter according to Definition 7.4, the proof ofsthésult is straightforward.

Theorem 7.6(Equivalence of Kalman filter and Bayes’ data assimilatiéo) linear
systemd\/, : X — X, linear observation operatorél;, : X — Y, and Gaussian
probability densities, th&alman filteras given in Definition 7.4 is identical Bayes’
data assimilatiogiven by Definition 5.4.
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For nonlinear system dynamidg, : X — X, and nonlinear observation operators
Hy . X — Y the above equivalences do not hold any more. However, we tihy s
apply the Kalman filter if we linearise both the modd], and the observation operator
H), about the considered state. This leads to the Extended Kdilea (EKF) ([46, 2].
The linearisations of the model operatf;, and the observation operatfii;,, which
are used within the Kalman filter (7.4) are given by

dM,. dH},
My, (¢r) i= %M and My (pr) == —— g

dep
whereM,, is the tangent linear model (see (6.7)).

We have introduced several data assimilation methods amdrsthat, for linear
systems, they are all essentially equivalent to cycled drikiv regularisation with a
weighted norm. In the next section we consider ensemble adsthwhich provide
a way of (approximately) updating probability distribut®and covariance matrices
within the assimilation schemes.

8 Ensemble methods

We have introduced several methods for data assimilatidhanprevious sections,
including Tikhonov data assimilation, 3DVar, 4DVar, Baydata assimilation and the
Kalman filter.

Evaluating the different approaches, we note that 3DVaiildrdhov data assimila-
tion work with fixed norms at every time-step and do not futiglude all the dynamic
information which is available from previous assimilasoisince 4DVar uses full tra-
jectories over some time window, it implicitly includes suoformation and we can
expect it to be superior to the simple 3DVar. However, Bayksga assimilation or
the Kalman filter are equivalent to 4DVar for linear systemd anclude all available
information by updating the weight matrices and propaggtiem through time. This
is essentially done implicitly in 4DVar. In general, we campect them to yield results
comparable to those of 4DVar.

The need to propagate some probability distribution is aatttaristic feature of the
Bayes’ data assimilation and the Kalman filter. It is alsarthrain challenge, since the
matricesB,(f) or B,(f) have dimensiom x n, which for largen is usually not feasible
in terms of computation time or storage, even when superotenp are employed
for the calculation as in most operational centres for aphesc data assimilation.
Thus, a key need for these methods is to formulate algorithinish give a reasonable
approximation to the weight matrice&(f) with less computational costs than by the
use of (7.14) and (7.18) or (7.19).

Often, the approach to ensemble methods is carried out ethastic estimators.
Here, we want to stay within the framework of the previoustisas and study the
ensemble approach from the viewpoint of applied mathemafitie stochastic view
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will be discussed in a second step. One of the most populandis filter techniques
is the Ensemble Kalman filter (see [25, 41, 42, 84, 65, 3, 431,724, 70]).

Definition 8.1 (Ensemble). Arensembleavith N members is any finite set of vectors
©¥ € X for¢ = 1,...,N. We can propagate the ensemble through time by applying
our model dynamicd/ : X — X or M, : X — X, respectively. Starting with an
initial ensemblgpgf), ¢ =1,...,N, this leads to ensemble members

A = M1l k=123, .. (8.1)
fore=1,...,N.

We will start with the construction of a particular family efisembles generated by
the eigenvalue decomposition of the weight maBix= B(®) defined in Section 7 with
X = R". Bis a self-adjoint and positive definite matrix, hence, thera complete
set of eigenvectors oB, i.e. we have vectorg®, ..., ¢ X and eigenvalues
2D A such that

By® = AOp0 g—1 (82)

The eigenvalues are real valued and positive and we willydvwasume that they are
ordered according to their sizé? > \@ > . > X" With the matrixA =
diagv A, ..., v A)] and the orthogonal matri& := [V ..., /("] we obtain

B = UN*U* = (UN)(UN)*, (8.3)

where we note thal/* = U~1. This representation corresponds to the well-known
principle component analysaf the quadratic formdefined by

E(p,%) == ¢ By, ¢, € X. (8.9)

Geometrically,B defines a hypersurface of second order with positive eideesa
whose level curves form a family of — 1-dimensional ellipses itX. The principal
axis of this ellipse are given by the eigenvectof8, ¢ = 1, ..., n.

The application ofB to some vectorp € X according to (8.3) is carried out by
a projection ofy onto the principle axis)(¥) of B, followed by the multiplication
with A(¥), This setup can be a basis for further insight to construonadimensional
approximation ofB.

Before we continue the ensemble construction we first nedbtwss thenetricin
which we want an approximation of the-matrix. We remark that the role @ in the
Kalman filter is mainly in the update formulas (7.14), (7.46¥ (7.19). Here, to obtain
a good approximation of the vector updated.fy we needB to be approximated in
the operator norm based drf on X = R™. That is what we will use as our basis for
the following arguments.
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Lemma 8.2.We construct an ensemble of vectors by choosing\he 1 maximal
eigenvalues oB and its corresponding eigenvectaps?, ...,V —1 . We define

Q == [VAQp® |/ AG-1)y(NV-D), (8.5)

Then, we have the error estimate

1B - Q@I = sup AD] =)=, (8.:6)
J

j=N,...,n

Proof. The proof is obtained from
B — QQ* = UNU*, (8.7)

with A2 = diag[0, ...,0, \(Y) AN+ A(")] where there aréV — 1 zeros on the
diagonal ofA. Sincel is an orthogonal matrix, the norm estimate (8.6) is stréyht
ward. O
We are now going to use arbitrary ensemhfé8. ..., ") and construct approx-
imate weight matrices. From the Courant Minimum-Maximunmé&ple we know
that o
AT = dimr(TJ“:ne—l LpeUT,ﬂ)éuzl <<,0, B<’0> ' (8.8)

For an arbitrary ensemblg!V), ..., (™) we use the mean

1 N
—— Q)
= ;,1 ® (8.9)

to define theensemble matrix
N — ], (8.10)

and we define thensemble subspaég, by

Uq = spar{e™ — p, .., o) — p}. (8.11)

We call the vectorsp®) — i, ¢ = 1,..., N the centered ensembléWe remark that
dimUg = N — 1. Then, we have

1B -QQ"| = sup  [|(B - QQ)¢l

BolUg,|lell=1

> sup  [|Byl|
BoLUqg,[lell=1
> sup  (p, By)

BolUg,|lell=1

v

__min sup (@, By)
AMU=N=10 1Ul¢l=1

= A, (8.12)

The above results are summarised in the following theorem.
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Theorem 8.3.Let the eigenvalues) > A > ... > A\ of the self-adjoint weight
matrix B be ordered according to its size and letd, ..., o) with N € N be an
arbitrary ensemble of states ik. Then, the error for the approximation of the weight
matrix B by QQ* with Q defined in (8.10) is estimated by

1B = QQ*||2 > A (8.13)

Remark 8.4.The optimal erron¥) can be achieved if the centred ensemble spans
the space of th&/ — 1 eigenvectorg)V, ..., (N =1 of B corresponding to the largest
eigenvalues\V| ..., \(N=1 with appropriate coefficients as in (8.5).

Ensembles can be used to approximate the weight mﬁﬁfk when the weight ma-

trix B,(:) is given (see (7.15)). lB/,(€ is approximated by the ensemlz;bél ,gpkN)

in the form

)~ QM (Q\W), (8.14)

with Qf) = [(eM)@) — pla) (M@ — (@] then by (7.14) we derive an ap-

proximation forB,(iZl by

BY, = MkB<“>M,j
~ MpQ\"
= MQ\"
= Q") (8.15)

Uy M

QL
(Mk )

WhereQ/,(fll = Mka).

Lemma 8.5.Consider the approximation o?,(f)

ensemble matri@gf). If the error satisfies

by an ensemble:i”, ceny <p§§N> with

1B = Qi Q)| < e, (8.16)

for somee > 0 then, the error estimate for the propagated ensemble at timgis
given by

b b b * *
1B, — Q) (@))% < 1M ||| |e. (8.17)

Proof.Based on (8.15) the proof is straightforward. O

A key question of ensemble methods is how to update the ededmlhe data
assimilation step. Given the dafa at timet;, how do we get an ensemble which
approximates the analysis covariance maﬂ’@?) given an ensemble which approx-

imates the background error covariance mafb’fﬁ). We know that for the Kalman
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filter the analysis covariance matrR,E is calculated fromB by (7.19). In terms
of the ensemble approximations this means

AQY) = (I - KeH) QP (QY)" (8.18)
with theensemble Kalman matrix
Ki = QP (@QV) Hi(R+ HiQP Q) Hy) ™, (8.19)

leading to

-1
Q@) = Q{1 - @) Hi (R + HQP (@) Hi ) Q) @)

=T

(8.20)
The matrixT" in the curly brackets is self-adjoint and positive semi+itdi hence
there exists a matrix. such thafl’ = LL*. This finally leads to

QW =L, (8.21)
which we denote asquare root filtef4, 8, 65, 79].

Lemma 8.6.Assume tha}oél), ceny @ém is an ensemble which satisfies

||B(b) _ Q;(gb)(Qéb))*H <e (8.22)
with some: < ||B H Then, for the analysis ensemble defined by (8.21) we have
1B, - Q@) < Ce, (8.23)
with some constar® not depending o@ﬁca).

(true)

Proof. Using the notationk’, for the Kalman gain matrix in the general case

(see (7.17) and (7.19)), aigf™ (Q'”))* from (8.18) we write
B - Q@) = (1-K"H) B - (Q))
+(K, — K™ )Hka @), (8.24)
with K, defined by (8.19). We remark that due to its special strudtugenorm of
the inverse(R+ Hkab (ka )V*H )—1 in (8.19) is bounded uniformly independent of
Qk Furthermore, using < HB H the norm
() 1 () b b) 1 (b) b
Q@1 = 1B + (@) - B

I1BY]] +e
2B

IN

IN
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is bounded uniformly, leading to
B — K| < ee, (8.25)

with a constant not depending onig,(f). Finally, a similar estimate applied to (8.24)
yields the desired result (8.23), and the proof is complete. O
For further insight into ensemble methods we refer to thielarf69] in this book.

9 Numerical examples

We examine data assimilation techniques discussed intticdeaand their relation to
inverse problem theory, for simple model problems. Firstoessider an advection-
diffusion equation in Section 9.1 and then the Lorenz-9%esysn Section 9.2.

9.1 Data assimilation for an advection-diffusion system

Consider the following linear (one-dimensional) advecitiffusion problem (see, for
example [15]). The system dynamics are described by

0 ety = v () — a Lol ©.1)
8t<10 xﬂ - Vaxch 'Ta aamw xa ) .

for z € (0,1) andt € (0,T). As boundary and initial conditions we have
v(0,t) = 0, te(0,1),

e(1,t) = 0, te(0,7),
o(z,0) = @o(x), x€(0,1).
Herev > 0 is the diffusion coefficient and is the advection parameter. We want

to determine the initial conditioyg from the measurements of the solutigi;, t)
at certain points in space and time. Letzg < z1... < z, = 1 andxz; = ih,

i=0,...,n+1landh = n_—]{—l With the discretisations of the spatial derivatives
82 i+1 2 % i—1 o i ai—1
—gp%sp g , and —cpz%,
Ox? h? ox h

fori =0,...,n, we obtain a system of ordinary differential equations effiborm

@(t) = F(¢)> le (07 TL @(0) = $0;, (9-2)
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where, in this casé&'(p) = K¢(t), thatis,F is linear, with

B v a v T
22 1 W2
|4 a v a v
wth e n W
v ya _ov _a v
h2+h h2 h h2 +2xn+2
K = _ e RToxnre
| 4 a v a | 4
wth e h m
|4 a v a
I wth —2 gl

andy(t) = [¢%(t),..., " 1(t)]T € R™+2. To satisfy the boundary conditions we set
©%(t) = ¢"*1(t) = 0 throughout. As initial condition we choos€(0) = ¢o(z;),
1 =0 ...,n. The solution to the linear system of ordinary differenéglations with

0.8
0.6 -
0.4

0.2

0.5

0.3

oo time

Figure 1: Solution ofp(t) = (expKt)po, t € [0,0.5] (discretised advection-diffusion
equation (9.1)) for initial conditiogpg(z) = sin(mx).

constant coefficients (9.2) is given by

o(t) = (expKt)po, te€[0,7T], (9.3)

where expgt € R*2x7+2 or, using an explicit first order Euler scheme we obtain
the discrete linear model

Pk+1 = Pk +AtK(10ka kzoa"'aA_ta (94)
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wherepy, = [©2,..., 07T € R"2 andg? = 7™ = 0 throughout. Note that
we use a lower index to describe the time steps and an uppex todlescribe points

in space/components @f,. The approach (9.4) is a more practical implementation as
the analytical solution (9.3) would only be available forteen problems. We solve
the advection-diffusion problem (9.1) (using the ForwatdeE method) witha = 1,

v = 0.01,n = 100, final timeT = 0.5, time stepAt = 0.001 and initial condition
wo(x;) = sin(mx;). The solution is shown in Figure 1.

For the inverse problem (data assimilation problem), weesap we do not know
the initial conditiongg(x). We want to estimateg(x) from measurements efcom-
ponentsyr (t), 2+ (t), ..., " (t) of the solutiony(t) at timest; = 0.002t, =
0.004,...,t,, = 0.5. For our experiment we use = 5, hence, we observe 5 out
of n = 100 components. Take noisy measurement8 oft1), Hp(t2), ..., Ho(tm),
where H € R™*"+2 is the observation operator matrix (which is linear in thise)
given by H;; = 1if j = %4 and H;; = O otherwise. We obtain the (linear) least
squares problem _

min ||Hgo— f|3, (9.5)
po€ER™+2
with H and f for the forward Euler method and observations every secomel $tep
given by

H(I + 2AtK) fl
2
H= HT+ _2AtK) e R"™*"2 and f = Jiz eR™.
H(I + 20 K)™ fm

The observations are obtained using the output from thetén#ial condition and
the measurements usually contain noise (see Section 4 timtedkdescription of the
errors), thatisf = f9 = f(true) 1 g% where the noise is usually normally distributed,
that isd’ ~ N(0, p2I), wherep is the standard deviation. If we solve the problem
using a naive approach with a standard least squares imptatioe [74] we obtain
the result in Figure 2a. _

Using the singular value decomposition given in Lemma 1.3waee H = VU™
and, withf = f(rv) 1 4% we obtain

n+2 ;.5 n+2 T ¢(true) T 16
(f°5v)y v; f v; d
wo=> —tu=) |- + =Ly,
J

g gj
i=1 i=1 ! !

and clearly for small singular values the noise is magnified, hence the naive solution
in Figure 2a. Figure 2b shows what happens for this parti@dample. The singular
valuess; decay rapidly and only the coefficierjthﬂ = \vaf‘s\ above the noise level
(here we chosé® ~ N (0, p°I) with p = 0.1) are useful and carry clear information
about the data.
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(a) Exact initial conditionyg and (b) Plots of the singular values;
naive solution to the least squares  and the coefficient$vaf|, forj =
problem. 1,...,n+2.

Figure 2: Naive solution to the least squares problem (:8)singular values off .

In order to compute a better solutign for the initial condition than the one given
in Figure 2a we apply Tikhonov regularisation. From (3.1 Tikhonov regularised
solution is given by

o5 = o) + BH" (aR+ HBH") "} (f — H*¢{))).

For our problem we use the observation error covarianceibxmatr= 0.017 (in line
with the noise on the observations). For this particulabjmm we we choseag’) =
1 — 0.57%(z — 0.5)? for the background estimate, which is the truncated Tayddes
expansion of the true initial conditiopg. For the background error covariance ma-

Regularisation/reconstruction

= = = Perturbation/data error

error
/
'
'
\

o 0.005 0.01 0.015

Regularisation parameter o
Figure 3: Regularisation/reconstruction and data/measent error for different val-
ues ofa between 0 and.015. The optimat in this case is found to be = 0.00359.

trix we take B with entriesB;; = 0.01 exp(%) and fora we choose the value
a = 0.00359 which minimises both the total error consisting oftyodsation error
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| Rad’|| whereR,, = BH*(aR+ HBH*)~! and regularisation errdR, o — o,
see (2.7). The plots in Figure 3 show both the regularisar@hperturbation error for
this problem. For the value = 0.00359 the reconstruction of the initial condition
is plotted in Figure 4a and the initial condition error isplé&yed in Figure 4b. Note

a=0.00359 szsvvov:0.092207

1 T T T T - T T T T 0.06
P

& os g 0
(0]
0.4
03 0.02
0.2
‘s TikhoNOV regularised initial condition 0.04
0.1 = = =exact initial condition
0 - - - - - - - - - -0.06 - - - - - - - - -
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X X
(@) Exact initial condition and (b) Error between exact initial condi-
Tikhonov regularised solution. tion and regularised solution.

Figure 4: Exact initial condition and regularised solutfonthe regularisation param-
etera = 0.00359 and thé,-norm error between exact and regularised solution for the
linear advection equation (9.1).

that similar computations can be done using no backgrmﬁf?d the standard situa-
tion in Tikhonov regularisation, different backgroundiesttes, as well as different
choices for the background error covariance matriBes~or the choice ofx which
corresponds to the choice of Tikhonov regularisation patanseveral heuristics are
available, such as the L-curve criterion [36], generalis@ss-validation [30] and the
discrepancy principle [61], where the latter is most appedp for large scale compu-
tations.

We have essentially solved a 4DVar data assimilation propés we have shown in
Section 6 that 4DVar can be written in the form of 3DVar whishrierely a Tikhonov
regularisation, discussed in Section 3.

The situation described above was an ideal situation. lity@aodels are nonlinear
and imperfect, that is, they include model error. We givaeples for these situations.
First, consider a nonlinear problem. Instead of (9.1) atarsi

9 o2 9 ,
a@(mat) - V@Q{?(l’,lﬁ) - a%@(m,t) + gD(JJ,t) y

and the discrete nonlinear problem becomes

i1 = o1 + MK op + 05 = Mi(pr), /f=0,---,A—t- (9.6)
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(@) Exact initial condition and (b) Error between exact initial condi-
Tikhonov regularised solution. tion and regularised solution.

Figure 5: Exact initial condition and regularised solutimn the regularisation pa-
rametera. = 1 and thel,-norm error between exact and regularised solution for the
nonlinear advection equation.

We set up the nonlinear least squares problem

min || H (o) — flI3,
@oeRWH (¢o) = flIz

where heréd is a nonlinear operator. The minimisation problem can beesblising
the Gauss-Newton method [21, 64]. The results for the reénacted initial condition
for the same data as for the linear problem are displayedgar€i5a and the initial
condition error is displayed in Figure 5b.

Finally, consider the case where some model error is pre$etttis end, we assume
the observations are created by the true model for the remaiiadvection-diffusion
equation (9.1) withu = 1, » = 0.01. The model used in the data assimilation process
uses perturbed parametef§™ = 1.1, »P®" = 0.009. The results for the reconstructed
initial condition are shown in Figure 6a and the initial cidiwh error is displayed in
Figure 6b. As the model contains an error we are trying to finéral condition for
the wrong model and hence the error for this problem is rdétige as seen in Figures
6b and 6b.

However, in Figures 7a and 7b we see that this relativelyelamgor in the initial
condition does not lead to large errors in the solution. fEgia shows the solution
to the nonlinear advection equation with exact initial ddnd and Figure 7b shows
the solution with the perturbed initial condition obtairedter solving the inverse (data
assimilation) problem. We see that, as the solution is gafeal forward in time, the
error in the initial condition is smoothed. The reason isgimothing property of the
forward operator. We havgy,.1 = M (¢x) wherelM, is a linear (that is] + AtK)
or a nonlinear (see (9.6)) operator. If the initial conditie perturbed by, then we
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Figure 6: Exact initial condition and regularised solutiimn the regularisation pa-

rametera. = 1 and thel,-norm error between exact and regularised solution for the

nonlinear advection equation when a model error is present.

0.3

X time
(a) Solution to nonlinear discretised

advection-diffusion equation for ini-
tial conditionyo(z) = sin(mz).

o .
X time

(b) Solution to nonlinear discretised
advection-diffusion equation for per-
turbed initial condition computed
from data assimilation problem.

Figure 7: Solution to nonlinear advection-diffusion prinl with exact and perturbed

initial condition.

havepi.1 + (k1 = Mi(er + k), and to leading order

Cret1 = My (o1) Gk,

where My, is the discretised tangent linear model. Assuming MBi(pr) = M
(which holds for our linear example), then in the limit we bay, = M*(o. From
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basic linear algebra (see [31]) we have that— O if p(M) < 1, wherep(M) =
max{|A\|,A € A(M)} is the spectral radius. In our example, both for the linear an
linearised nonlinear model dynamics the eigenvaluedIgf ¢;.) are within the unit
circle, explaining the smoothing of the error in the init@ndition as the solution
propagates in time.

In the next example we consider problems which are more tBengd the initial
conditions, that is systems that exhibit chaotic dynaméeel(hence more accurately
represent the effects in, say, weather forecasting). Oak system is the Lorenz-
95 model. In reality we would expect a mix of situations angsfrom chaotic and
smoothing systems.

9.2 Data assimilation for the Lorenz-95 system

As a second example consider the Lorenz-95 system (seegh5a%yeneralisation of
the well-known three-dimensional Lorenz-63 System [54fhe Todel is given by a
system ofN coupled nonlinear ordinary differential equations whodletson ¢ with
components = [p1, ..., ¢"] satisfies

%

dy o L . . .
= 2o 4 o ol f, 1€ (0,T] ¢H0) =gh,  (9.7)

wherei = 0,..., N, with cyclic boundary conditions® = ¢V, =1 = N1,
oVt = plandf is a forcing term. For a forcing tersh= 8 the system is chaotic (i.e.
it has positive Lyapunov exponents, see [76]). Roe 40 the system has 13 positive
Lyapunov exponents. Lorenz [55] observed that this sys@sratsimilar error growth
characteristic as an operational numerical weather piedisystem if a timel’ = 1
is associated with 5 days.

We solve (9.7) using the classical 4th order explicit RuKgéta scheme, which
gives

¢rr1 = Mi(pr), where ¢ = [¢f, ..., 00", (9.8)

and M, is the nonlinear model operator which propagatg<o ¢, 1. The solution
trajectory of two components ¢f computed with the Runge-Kutta method akid=
0.01 andT’ = 21 is displayed in Figure 8. In order to illustrate the chadtinamics of
the Lorenz-95 model we run it with slightly perturbed initanditions. Perturbing the
initial condition randomly with an error of about 10% givéetensemble of forecasts
in Figure 9a, using a perturbation of about® gives the forecast ensemble in Figure
9b. We only show the trajectory of site 20. The figures showrgretturbed solution
trajectory and an ensemble where the initial condition®hmaen slightly perturbed. It
is easy to see that the larger the perturbation in the ir@tabition the more the error
in the forecast grows. For this problem the eigenvalues eftlatrix My () from
the linearisation of (9.8) are not necessarily within thé disk.
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Figure 8: Components 1 and 20 of the solution to (9.7).
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Figure 9: Trajectory of site 20 of Lorenz-95 system of size 4Breen thick line:
unperturbed forecast. Black lines: Ensemble of 20 pertufbeecasts.

We carry out some data assimilation experiments with thoblem. First, consider
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the 4DVar minimisation problem (6.1). We need to minimise

K
T(90) = (wo— 5 )T B Yo~y )+ > (f; — H() ' R™Y(f;— H(p;)), (9.9)

Jj=1

wherep; = M;_1(j_1) is given by (9.8). We have

Vol (g0) = 2B (g0 — ¢})) 22 joleo) " HT R™Y(f; — HMjo(p0)),

wherel; o is given by (1.2) and;  is the tangent linear model. In order to minimise
the cost function we neeW¥,,J(¢o) and in order to solve this problem we apply
Newton’s method. The Hessian (or the Jacobian for Newtoe®od) is given by

K

V'V (0) = 2B~ 42 " (M;0(0) " HT R HM;0(00)) + Q(0),
j=1

whereQ(po) involves terms including second derivatives of the systgmadics.
These are usually neglected as for large problems they afficiant, impracticable
and often infeasible to calculate. Hence we solve

UV (90)AGY) = —Vuod (03,
YA /A A
o8 = o + 8,

for/=0,1,. wheregogf) is the/th iterate of Newton s method. As initial condition

usually the background state is chosen, tha,bé,%) ). We perform data assimila-
tion for a single assimilation window of length 100 tlme stefollowed by a forecast
of 2000 time steps. First we carry out an experiment withgarbbservations. For the
background estimate we choose a perturbed initial comdéimd B = 0.01/. Check-
ing the singular values of the observability matrix for thieblem we obtain that the
singular values lie between 4 and 30 and the problem is robiiditioned. This is
in contrast to the problem in Section 9.1, where the forwarerator has very small
singular values, which, however led to a smoothing propeafrtiie forecast. The prob-
lem here lies in the fact that the forecast error grows séuefiéne inverse problem
is not actually ill-conditioned as such but the forward peob exhibits severe error
growth for small perturbations! Figure 10 shows the 1st abith Zomponent ofy
before and after the data assimilation process. The ertaseles the true solution and
the trajectory before and after the 4DVar data assimilgti@cess is shown in Figure
11. We observe that the error in the analysis (thick lineg@duced significantly (com-
pared to the background) in the first 600 time steps (wheraslenilation window
is of length 100 time steps). After that we see that the effiéthe chaotic dynamics
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Figure 10: Components 1 and 20 of the solution to (9.7) fdrefntl perfect observa-
tions. The plot shows the observations, the assimilatiordoxy, the exact trajectory,
the background trajectory and the final solution (analyai®r 4DVar.

emerges and the error grows since the initial condition efghalysis vector is per-
turbed from the true initial condition. The initial conditi error is of orde)(10~3)
at each of the sites and from Figure 9b we cannot anticipatgttartperformance of
the forecast. We expect the results to be best for perfectudinobservations. Next,
we carry out an experiment with noisy observations. The mlasiens are generated
from the truth with an error of mean zero and covariafice- 0.01/. Moreover we
only take observations every 5 time steps and we only obseofethe 40 variables
(precisely, we observe every 5th component). For the backgt state we use a per-
turbed initial condition but this time with background eromvariance matrix3 with
entriesB;; = 0.01 exq%). We observe that the singular values of the observabil-
ity matrix for this problem lie between@2 and 7 and not surprisingly the problem is
slightly worse conditioned than the one for full observasio

Figure 12 shows the error between the true solution andafectory before and af-
ter the 4DVar data assimilation process. We observe thadrtioe in both components
is not reduced as much as the error in Figure 11 (for perfedtfalh observations)
which is to be expected as we observe fewer components angowesrthe obser-
vations are noisy. Note that with our setup the 1st compoisean “observed site”,
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Figure 11: Error of components 1 and 20 of the solution to)(foi7 full and perfect
observations. The plot shows the error in the backgrounddi@y and the error in
the final solution (analysis) after 4DVar.

where the 20th component is unobserved. We can therefotaiexpe slightly worse
assimilation results of the trajectory of the 20th compdmempared to the trajectory
of the 1st component in Figure 12.

To explore this relation further, Figure 13 shows the alisolalue of the error in
the initial condition for this problem including the sitebtbe observations. Clearly,
at the observation sites the analysis error is generallflenthan at the unobserved
sites. However, this is not always true as information alibettrue state from the
observations is spread to the unobserved sites througlothpieg of the problem and
via the background error covariance matfx

We carried out tests with other data assimilation algoritfsmch as 3DVar and the
Extended Kalman filter. We do not report the results for 3Dvare but mention that
for full perfect observations, 3DVar produces very smalbes at the end of the as-
similation window as we have perfect observations whichseguentially assimilated
into the trajectory. Then the forecast is run from a very $mwabr at the end of the
assimilation window. With fewer and noisy observationsVabgives worse results
than 4DVar (as in 4DVar the missing information is assineititia the system dynam-
ics). Also, if a model error is included in the system dynaibat is the observations
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Figure 12: Error of components 1 and 20 of the solution to)(&i7partial and noisy
observations. The plot shows the error in the backgrounddi@y and the error in
the final solution (analysis) after 4DVar.
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Figure 13: Error in the initial condition and observed sfteghe solution to (9.7) after
4DVar for partial and noisy observations.

are created from the true trajectory whereas in the datendaton process we use a
different, perturbed model, replicating the practicalation) we obtain worse results
than for the perfect model, as would be expected (see Sextidn

Finally, we apply the Extended Kalman filter (EKF) to the Liazed5 problem. If
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Figure 14: Error of components 1 and 20 of the solution to)(fi7partial and noisy
observations. The plot shows the error in the backgrounddi@y and the error in
the final solution (analysis) after applying the EKF.

we use the same background error covariance matrix and e iséial condition as

for 4DVar we obtain essentially the same results as for 4@&amvould be expected
from Theorem 7.5). The results here are only approximatglyvalent as Theorem
7.5 only holds for the Kalman filter applied to linear systeynaimics. However, when
plotting the error we hardly observe any difference.

A better result as for 4DVar is obtained for the EKF if a betteckground error
covariance matrix is chosen. To this end we use the covarianatrix produced by the
EKF (after one data assimilation cycle at time step 100) aditial background error
covariance matrix for a new EKF experiment applied to thadasimilation problem
we consider. This should give a better (flow-dependent) ¢paeknd error covariance
matrix. This is indeed true as seen in Figure 14 compareddor&il2. The new
(flow-dependent) background covariance matrix can alscsbd for 4DVar, resulting
in a hybrid method [9].



48 M. A. Freitag and R. W. E. Potthast

10 Concluding remarks

Inverse problemare an area of research dealing with the reconstructionraftifons
or parameter distributions from measurements. It has edabver nearly 100 years in
many applications, for example in electromagnetics andsts, in medical imaging
and elastography. Today, a growing community of reseaschiploys both a large
set of well-established methods for linear and nonlineagrise problems as well as a
large variety of specific new methods for reconstructiorgiaraging.

Data assimilationhas evolved as a very important and popular research anea fro
specific applications such as weather prediction or hydsoloJsing measurement
data to control the evolution of dynamical systems sharas/moéthe features which
are integral parts of inverse problems. Since World War tadessimilation has fo-
cussed on the state estimation problem, that is, the recotish of the stateo € X
of the dynamical system under consideration, wh&relenotes the particular state
space. Often, parameter functions are also involved ardi te@an extended state
space which includes unknown parameter functions as weik dlgorithms which
have been introduced here can easily be applied to this reastral situation.

Historically, the communities afverse problemanddata assimilatiorhave evolved
independently, with particular notation and approacheghvare similar in content,
but have been expressed in different type of notation oritediogy. One main goal
of this article has been to describe key approaches to dsimitation in aninverse
problems terminologysuch that thelynamic inverse problentan be easily identified
by the inverse problems community. At the same time, we pwan introduction
into a functional analytic view for the data assimilatiomoaunity, which is too often
second priority by those working on important applications

Today, theconvergencef inverse problemsnddata assimilatioris driven by the
evolution of modern remote sensing measurement techreaofor example, there is
an increasing set of satellite infra-red and microwave dets) such that their assim-
ilation into atmospheric models involves the use of ill-pdsneasurement operators.
New radar machines measure not only Doppler shift and refiigcof atmospheric
meteors, but also polarisation. Ground-based LIDaRs wavhlirther highly ill-posed
measurement operators. Further techniques, such as GBS/Gant delay measure-
ments, lead to ill-posed tomographic problems, which bexonegral parts of opera-
tional data assimilation. We believe that the frameworkalihwe presented provides
an adequate approach to the further development of thetnsys

There is aneed for convergen@dso on the level adissimilation algorithmsClearly,
methods like 3DVar or 4DVar are basically a version of Tikbemegularisation. But
also modern ensemble or particle methods increase the oesththematical analysis
with tools from functional analysis and approximation theaince for typical appli-
cations only a very limited number of ensembles or partictesbe used and we are in
the range of low-dimensional approximation theory rathantin the stochastic limit
of an infinite ensemble.
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Our article has aimed to contribute to the convergence byemting a concise in-
troduction into key algorithms and results in a functionadlgtic language which has
the potential to be understood by a large range of matheimasi@and build a basis
for further research and developments. We have includddthetviewpoint of deter-
ministic mathematics, numerical analysis and functionalgsis as well as stochastics
and Bayesian reasoning. Understanding important statieesért algorithms within a
uniform framework is a key step today to further develop g which are known
to have the highest impact on society with respect to suatialrareas as high-impact
weather, logistics, travel and energy supply by renewategy resources.
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