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An interesting model from Physics |

Ising model

Spin configurations:
Energy:

Inverse temperature:
Gibbs measure:

o(k) e {-1,1} k €N,
H(o) = =3 Sk o(k) o)),
B,

pg(o) o exp (— BH(0)).
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An equation that should describe critical Ising |

Kac-model: (e.g. Presutti, Lebowitz, ... 90s ): Spins interact
with spins in a whole neighbourhood.

Interaction kernel: k~y(K) = v"k(vk),

Energy: Hy(0) = =3 Yk gk = Do (k) o(1),
Coarse grained field: hy(k) = > ky(k = Da(]).
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An equation that should describe critical Ising |

Kac-model: (e.g. Presutti, Lebowitz, ... 90s ): Spins interact
with spins in a whole neighbourhood.

Interaction kernel: k~y(K) = v"k(vk),
Energy: Hy(0) = =3 Sk 7 (k = Da(k) o (),
Coarse grained field: hy(k) = > ky(k = Da(]).

Evolution equation:
t
h(t k) = (0, K)+ [ 2, h(s, k) ds+m(s, k), (4
J0
where (for g ~ 1)

Zyhy(0) % (K # hy(0) = hy(0)) — %(Hﬂ/ why(0,)) +
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An equation that should describe critical Ising Il

-t
ho(t k) = hw(o,/<)+/O 2 h(s,k)ds +my(s,k), ()

where

Zoh, (o) ~ (/{w * hy(0) — hﬁ/(a)) - %(“v * hy (o, )3) +....
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An equation that should describe critical Ising Il

-t
ho(t k) = hw(o,/<)+/O 2 h(s,k)ds +my(s,k), ()

where

Zoh, (o) ~ (/{w * hy(0) — hﬁ/(a)) - %(“v * hy (o, )3) +....

Looks like an approximation to
t t
h(t, x) ~ h(0, x) + / (Ah(s,x) — (s x)*)ds + / £(s, x) ds.
0 0

In one space dimension proved by [Bertini et al. 93].
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Some interesting models from Physics |l

SOS Surface growth model
Bertini-Giacomin '97 showed that a scaling limit of SOS-surface
model is described by the KPZ -equation

dth = 92h + \(9xh)® + €.

m Introduced by Kardar-Parisi-Zhang ('86) to model
fluctuation of a 1 + 1 dimensional surface.

m Universal character: KPZ universality class.

m Recently, Spohn/Sasamoto and Amir/Corwin/Quastel 11
gave an explicit formula for one-point distribution.

p.5



Regularity of the stochastic heat equation

Stochastic heat equation:

X =AX—-X+¢ (say on [0, co] x T").
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Regularity of the stochastic heat equation

Stochastic heat equation:
X =AX—-X+¢ (say on [0, co] x T").
In Fourier modes:
OeXic(t) = —(|KIZ + 1) Xi(t) + wie(t),

Ornstein-Uhlenbeck process. This implies
1
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Regularity of the stochastic heat equation

Stochastic heat equation:
X =AX—-X+¢ (say on [0, co] x T").
In Fourier modes:
OeXic(t) = —(|KIZ + 1) Xi(t) + wie(t),

Ornstein-Uhlenbeck process. This implies
1

S e

In particular, Sobolev norms

E[Xk(t)?

2—n
2

E[X(D)|Zs = D [KIPEIXk()? <00 & s <
kezn
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Regularity of the stochastic heat equation

Stochastic heat equation:
X =AX—-X+¢ (say on [0, co] x T").
In Fourier modes:
DX () = —(|k[? + 1) Xic(t) + wi(8),

Ornstein-Uhlenbeck process. This implies
1

N T

In particular, Sobolev norms

E[Xk(t)?

2—n
2

E|X(Olfs = > [KIP°E[Xk(t)]? < 0o & s <
kezn
In one dimension Brownian regularity. In n > 2 distribution

valued.
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Difficulty to define non-linearity |

KPZ:

dth = 92h + A(9xh)? + €.

m h e H® (actually C*) for o < } = cannot define (0xh)?.

m Bertini,Giacomin introduce Hopf-Cole solution to KPZ.
Write h = log(A\Z). Then formally

HZ = 02Z + Z¢.

m Convergence result for SOS-model proved on level of Z.
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Difficulty to define non-linearity |l

ot

Op=Dp—¢°+ ¢+ &

m One spatial dimension ¢ € C%, a < § = No problem.

m Two and three spatial dimensions ¢ not a function =
classical methods do not work.

m Approximation for (Kac)-Ising only known in one spatial
dimension.
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Scope of theory

Metatheorem (Hairer 13)

Stable existence and uniqueness theory locally in time on
compact domains for equations that are locally subcritical.

Locally subcritical: On small scales the non-linear term is
lower order.

Example </>ﬁ: scaling x — ¢x, t — €2t and ¢ — T o, leaves
stochastic heat equation invariant. Under this scaling ¢/,
equation becomes

0 =0 — "% +£

locally subcritical in for n < 3.
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The need for renormalisation |

Approximation by regularised noise

dos = [Dds — (63 — ¢s)] dit + W,

m From now on n = 2, Q = T? torus.
m Wi(t,x) == <1 e**wk(t). Noise white in time, spatial
corellations ~ 6.
For 6 > 0 equation is well-posed. What happens if 6 — 0?
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The need for renormalisation |

Approximation by regularised noise

dos = [Dds — (63 — ¢s)] dit + W,

m From now on n = 2, Q = T? torus.
m Wi(t,x) == <1 e**wk(t). Noise white in time, spatial
corellations ~ 6.
For 6 > 0 equation is well-posed. What happens if 6 — 0?

Related results: Small noise, pass to this limit on the level of
large deviations (Kohn & Otto & Westdickenberg (Reznikoff) &
Vanden-Eijnden — Cerrai & Freidlin — Barret & Bovier &
Meleard).
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Renormalised powers |

Constructive field theory ('70s)

Xs = stationary solution of (approximated) stochastic heat
equation

adXs = AXs — Xs + dWs.

E[Xs5(x)Xs(y)] < [log|x — yl| Alog(d).

Question:
m Does X? converge to a random distribution?
m Does (X3, ) converge to a random variable for smooth ?

m Does E[(X?, ¢)?] remain bounded as § — 0?
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Renormalised powers |l

E[(XF,¢)? /1r2/1r2 Xa(}’)} dx dy

Gaussian Moments

E[X(x) X3 (y)]
= BE[X()X(y)]° + 9EXG() X5 ()] E[Xs(x)X5(x)]°
< [log(x — y)|° + [log(8)|?| log(x — y)|

m |log(x — y)| termis integrable. |log(d)| term diverges.
m E[(X3, ¢)?] diverges as § — 0.
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Renormalised powers |l

: X3(x) := X3(x)—3Cs5X5(x) where Cs = E[X5(x)?] ~ |log(d)|.

=E[: X3(x)  X3(y) : | = BE[X: ()X (y)].

=E[(: X? ., ©)?] remains bounded.
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Renormalised powers |l

: X3(x) := X3(x)—3Cs5X5(x) where Cs = E[X5(x)?] ~ |log(d)|.

=E[ XG0 X3 (y) 1 | = 6E[X() X)),

=E[(: X? ., ©)?] remains bounded.

Theorem (Glimm, Jaffe, Nelson, Gross,... 70s)

: X3 : converges to a random distribution : X : in every
negative Sobolev space.
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Renormalised powers |l

: X3(x) := X3(x)—3Cs5X5(x) where Cs = E[X5(x)?] ~ |log(d)|.

=E[ XG0 X3 (y) 1 | = 6E[X() X)),

=E[(: X? ., ©)?] remains bounded.

Theorem (Glimm, Jaffe, Nelson, Gross,... 70s)

: X3 : converges to a random distribution : X : in every
negative Sobolev space.

m : X3 : called third Wick power.
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Trivial limit

dos = [Dgs — (45 — és)] dt + AW

Theorem (Hairer, Ryser, W’ 12)

¢Y bounded in C(T?). Then fort, > 0, s > 0 almost surely

16sll o, myps) =0 foro—0

m Convergence is slow (logarithmic).
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Numerics
Ryser & Nigam & Tupper preprint 11

Ey()

N number of grid points ~ .
En(r) ~ strength of x Fourier mode.
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Small noise
Small noise o(0) < 1
dils = |ATs — (B§ — Ty)| dt + o (5)aWs

¢ — u® in C(T?). Then fort. > 0, s > 0 almost surely in H~S

0 if|log(d)|" %<<0(5)<<1

- _ 1
1sllg(g. m sy = 4T if[log(d)] 72 = (6
1

)
u if0<o(0) < |log(d)| 2

m U solution to deterministic Allen-Cahn equation.

m U solutionto U = Als — (U3 — Us) — C.u.
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The scheme needs to be modified

Approximation by regularised noise

dos = {A@; — (¢3 — Cs¢ps — cf)(s)] at + dW;.

Cs ~ |logd|.

Theorem (da Prato/Debussche '03)

¢s converge to a limit. This is limit is called solution to
du = [Au— (s 03 —u)} dt + dw,

or dynamic ¢35 model.
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Strategy I:

1. ) Lift Gaussian process
Foreveryte[0,T],p>1,5>0

mXs — X,

[ X527C5%:X2 :

[ | Xg’fC(;X(;%:X3:,
inLP(B25) -

m Gaussian moment calculation.

m equivalence of moments in fixed Wiener chaos - Nelson
estimate.

m Regularity measured in Besov spaces.
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Strategy |

2.) Non-linear evolution as continuous function of lifted
Gaussian process
Standard regularisation trick: vs = ¢s — Xs.

av,
7; =Avs — (X5 + v5)° = 3Cs(Xs + v5))

=Avs— (: X543 X2 vs +3X5vE+ V).

Multiplicative inequality: If s <0 < «and s + a > 0. Then
luvlige < lollge Vlge

Used to deal with nonlinearity.
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Comments:

m Only works on bounded domains.

m Extra argument needed for global in time solutions. Extra
argument required (invariant measures a la Bourgain).

m In 3-d the normalisation is more tricky. Careful with word
"Wick".

m More term in expansion necessary, one exira term
diverges. Approximations of type

dos = {A(/b(g — (¢3 — Csps — @5)] at + dws,
for C; = S + G| log(9)).
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Summary/Outlook:

m Non-linear white noise driven SPDEs arise as scaling limits
for particle systems in interesting regimes.

m Solutions to these equations have very poor regularity
properties and it is not always clear how to treat non-linear
terms.

m Infinite constants have to be dealt with.
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Summary/Outlook:

m Non-linear white noise driven SPDEs arise as scaling limits
for particle systems in interesting regimes.

m Solutions to these equations have very poor regularity
properties and it is not always clear how to treat non-linear
terms.

m Infinite constants have to be dealt with.

From friday: How to implement renormalisation for more
complicated equations.
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