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Multiple zeta values are given by the following iterated series:

1
n Nk *
oMy~ My

Cn,.om) =),

my > >my>

@ The nj’s are positive integers.
@ The series converges provided ny > 2.

@ The integer k is the depth, the sum w := ny 4 --- + ni is the
weight.
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Quasi-shuffle relations

The product of two MZVs is a linear combination of MZVs!
For example:
y

C(m)C(ne) = Z —m o Z W+ Z o

my>mo> me>my>0 "1 2 m=my>

= §(m,n2) +(n2,n)+(m + o).
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The most general quasi-shuffle relation displays as follows:

Sy, np)C(Npt1s- -3 Nptq) = Z Z g(ng,....n5. 4 1)

r>0  ceqsh(p,q;r)

@ Here gsh(p, g; r) stands for (p, g)-quasi-shuffles of type r.
They are surjections

o:{1,....,p+q} —{1,....,p+q—r}

subjectto 61 < --- < 0Opand Opq < -+ < Opygq.
e n? stands for the sum of the n,’s for 6(r) = j.

@ The sum above contains only one or two terms.
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Integral representation and shuffle relations

MZVs have an iterated integral representation:

% din,—1 _dip, Oty 44y dty—1 dty
t1 tn171 1 - tn1 tn1+"'+nk,1 tW*'I 1 _ tW

C(m,...,nk):/

0<ty <<t <1

As a consequence, there is a second way to express the product of
two MZVs as a linear combination of MZVs: the shuffle relations.
Example:

aty db dis diy
2)C(2) = — —
C( )C( ) / hl1—b 31—

0<to<t; <1
0<ty<t3<1

= 4{(3,1)+2¢(2,2).
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Regularization relations

A third group of relations can be deduced from the preceding ones:
the regularization relations. The simplest one is:

§(2,1) =&(3).

These three groups of relations constitute the so-called
double shuffle relations.

It is conjectured that no other relations occur among multiple zeta
values. Only tiny steps have been done in that direction.
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Introduce two alphabets X := {xo,x1}, Y :={y1,)2,¥3,.--}-
X* (resp. Y*) is the set of words with letters in X (resp. Y).
Q(X) (resp. Q(Y)) linear span of X* (resp. Y*) on Q.
Shuffle product on Q(X):

Vit VplliVptg - o Vptq = Z Vo' Vol
o€sh(p,q)

Quasi-shuffle product on Q(Y):

P O (o)
Ut UptUp 1 - Uptq = Z Z Uy -Upyg—r
r>0  oeqsh(p,q;r)

where u? is the internal product of the u's with o(r) = j. The
internal product is given by y; o y; = yi,.
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@ Notation: X = xoX*x1, Vi =Y\ Y

conv conv

@ change of coding (swap):

s: Y — X*
1 ne—1

e
Yoy Yme Xy X4t Xt Xq.

Clearly, s(Y*) = X*x; and s(Y(,,,) = X

conv"*
@ Forany word yp, -+~ yp, in Y7 . we set:

conv

nk—1

Ciw Wy = Ym) = Em o) = G (09" T xaooxgt ).

@ As a consequence we have on X*

conv*

Cu =L 0s.
@ Extend £, and £, linearly.
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@ By considering the ill-defined quantity (1) as an indeterminate 6,
it is possible to extend both {,,, and { .., to all X*x; and Y*
respectively, in a unique way, such that:

o Cu(viv) =8 (v)E (V) forany v,v' € X*x.
o Ly (utd) =L (u)Cs (V) forany u, v’ € Y*.

@ The relation ., = {,,, os is no longer true on X*x1, but there is
an infinite order differential operator p : R[0] — R[6] with
constant coefficients such that:

Chos=polu.

(D. Zagier, L. Boutet de Monvel). Regularization relations come
from there.

o If desired, extend {,,, to all X*. A good choice is {,,,(x0) = 6.
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Multiple polylogarithms

For any t € [0,1],

dt iy 1 dty Oy dty_1 dt
Lip,...n.(£) -—/ o A1 O Olmtetnes Ot dlw

ty 1 1—1 thytcan, tw—1 1—1
0<t, <<t <t ny ny M-+ N1 w w

tm

- Z n1...mlr('k'

my>-->mi>0 m1

x():=1, y(0)= i

t
Three operators on the space of continuous maps f: [0,1] — R:

X[1(8) == x()(1), YA = y(Of@D),  RIA) := [y f(u)du.
= Concise expression of the multiple polylogarithm:

..... =(RoX)" 'o(RoY)o---0(RoX)™* "o(Ro Y)[1].
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R is a weight zero Rota-Baxter operator:

RIfIRlg] = R[RI[flg+ RIg]].

We have of course for any positive integers ny, ... ng with ny > 2:

Li’71,---7nk(1) = C(n‘] g '7nk)-
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Historical remarks

@ Double zeta values were already known by L. Euler, as well as all
the relations above relating double and simple ones.

@ MZVs in full generality seem to appear for the first time in the
work of J. Ecalle (Les fonctions résurgentes, Univ. Orsay, 1981).

@ Growing interest since the works of D. Zagier and M. Hoffman
(early 90’s).

@ Integral representation attributed to M. Kontsevich (D. Zagier,
1994), starting point of the modern approach (periods of mixed
Tate motives...).

@ Recent breakthrough by F. Brown (2012):

Any MZV is a linear combination, with rational coefficients, of
MZVs with arguments equal to 2 or 3.
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The Jackson integral

The Jackson integral is defined by:

()= [ o) = ¥ (a't= " f(a").

@ Here q is a parameter in 0, 1].

@ When q 1 the Riemann sum above converges to the ordinary
integral.

@ g can also be considered as an indeterminate: The Jackson
integral operator J is then a Q[[q]]-linear endomorphism of

A = tQ[[t,q]]-

D. Manchon Multiple zeta values and their g-analogues



The Jackson integral

A weight —1 Rota-Baxter operator
The Q[[q]]-linear operator P, : A — A defined by:

Polfl(t) := ) f(q"t) = f(1) + f(qt) + F(G°t) + F(q°t) +--

n>0

satisfies the weight —1 Rota-Baxter identity:

Pyl f1Pqlgl = Pq[Pqlflg + fPqla] — fo].

Operator Py is invertible with inverse:

Pq '[f1(t) = Dqlf1(t) = £(t) — (at).
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The Jackson integral

The g-difference operator D, satisfies a modified Leibniz rule:

Dqlfg] = Dq[flg + Dglg] — Dylf1Dglg]-

We end up with three identities:

Pqlf]Polg] = Pq[Pq[f]g+qu[g] —fg],
Dq[f]Dglg] = Dqlflg+ fDglg] — Dqlfg],
DqlflPglg]l = Dq[fPglg]] + Dqlflg — fg.
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Multiple g-polylogarithms

@ Introduce the functions:

Note that y is an element of 4.

@ Introduce X, Y, Y, multiplication operators by x, y,y resp.
@ Recall:

Lip, .n=(RoX)" "o(RoY)o---0(RoX)® 1o (RoY)1].
@ Analogously:

Lij = (JoX)" To(JoY)o---o(JoX)™  To(JoY)[1].
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Ohno-Okuda-Zudilin g-multiple zeta values

@ Recall:
C(m yeeey nk) == Lin17...,nk(1 )

@ By analogy define:
3q(m,....nk) :==Lig . (q).
@ Some straightforward computation shows:

my
q
Nk ?

3q(ny,.. nk) = R —
I ’ 7 my>-->my [m1]g1 e [mk]q

with usual g-numbers:
1—q™
1—
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@ For any positive integers ny, ... nx with ny > 2, the g-MZV
3q(n1,...,nK) makes sense for any complex g with |g| < 1, and

we have:

;quq(nh“wnk) = C(n‘h"'ank)'

@ An alternative description in terms of the operator P, will be very
convenient:

dgln,oom) = (1—aq) "aq(n,..., k)

q™
(1 — g™ )

my>->m>0 (1 —q” )

= PgoYo---oPy 07[1](t)’t:
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Extension to arguments of any sign

@ The iterated sum defining 34(ny,.. ., nk) makes perfect sense in
Q[[q]] for any n4,...,nx € Z.

@ moreover it also makes sense when specializing g to a complex
number of modulus < 1:

Balm-- )l < [l (1 = al) ™",

with w’ := Y%, sup(0, n;).
o Forany ny,...,nx € Z we still have (with P, ' = D,):

3g(m,...,nk) = Py’ oYo---0 Py 07[1](t)‘t:q'
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Examples
_ q
0) = ——
34(0) g
k
_ q
0’ ?0 = )
@(\T ) (1—01)
2
_ q q
3o(—1) = q"(1-q")=——
g(—1) ng,o ( ) g 1
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Multiple g-polylogarith
Ohno-Okuda-Zudilin q

Double g-shuffle relations

g-multiple zeta values

g-shuffle relations

@ Let X be the alphabet {d,y,p}.

@ Let W be the set of words on the alphabet )N(, ending with y and

subject to
dp=pd =1,

where 1 is the empty word.

@ Any nonempty word in W writes uniquely v =p™y---py,
with nq,...,nx € Z.

@ Now define:
ZEJ(Pn‘y'“PnkY) ::gq(nh"'ank)

and extend linearly.
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@ g-shuffle product recursively given (w.r.t. length of words) by
1wuv =vul =vand:

(W)u=vi(y) = y(viow),
dviudu = viudu+ dviuu — d(viow),
pviupu = p(viupu)+p(pviuu) — p(viuw),
dviupu = pudv = d(viupu) + dviou — viou.

forany u,v e W.
@ The product LU is commutative and associative.
@ The g-shuffle relations write:

3g (W)g (u) =534 (urv).
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g-quasi-shuffle relations

Y = alphabet {z,, n € Z}, with internal product z; ¢ z; = zj4,.
Let Y* be set of words with letters in Y.
Let * be the ordinary quasi-shuffle product on Q(?).

Let T be the shift operator defined for any word u by:
T(zpu) := zp_1u.
@ The g-quasi-shuffle product L1 is (uniquely) defined by:

T(uwv) = Tux* Tv.
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o Define 3, (Zn, -+~ 2n,) :=3q(mM,...,nk) and extend linearly.

@ the g-quasi-shuffle relations write:

for any words u,v € Y*,
@ Example of g-quasi-shuffle relation: for any a,b € Z,

gq(a)gq(b) = gq(av b) +3q(bv a) +3q(a+ b)
—gq(a,b—1)—3q(b,a—1)—3q(a+b—1).

@ Note that the weight is not conserved, contrarily to the classical
case.
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@ In terms on "non-modified” g-MZVs, the previous example
becomes:

3q(@)3q(b) = 3q(a b)+3q(b @) +34(a+b)
—(1 —q)[gq(a,b—1)—3q(b,a—1)—3q(a+b—‘|)}.

@ Inthe limit g — 1, the "weight drop term” disappears, and we
recover the classical quasi-shuffle relation.
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Important remark

There are no regularization relations in this picture. The swap

Y W
is defined by:
t(zm .. 'an) = pn1—1y. . .pnk—1y’
and the change of coding writes itself:
35 =34 ot

in full generality.
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Summing up, the double g-shuffle relations write themselves as
follows:

forany u,v € Y* and forany u/,v € W,
) = 3
g (Wag'(V) =3

and we also have:
= Lt = L
dg =dq O
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Thank you for your attention!
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