# Multiple zeta values and their *q*-analogues Joint work with K. Ebrahimi-Fard and J. Castillo-Medina

D. Manchon

Potsdam, November 7-9th 2013



- Multiple zeta values
  - Main properties
  - Word description of the double shuffle relations
  - Multiple polylogarithms
  - Historical remarks
- The Jackson integral
- g-multiple zeta values
  - Multiple q-polylogarithms
  - Ohno-Okuda-Zudilin q-MZVs
  - Double q-shuffle relations



Multiple zeta values are given by the following iterated series:

$$\zeta(n_1, \dots, n_k) = \sum_{m_1 > \dots > m_k > 0} \frac{1}{m_1^{n_1} \cdots m_k^{n_k}}.$$
 (1)

- The n<sub>j</sub>'s are positive integers.
- The series converges provided n₁ ≥ 2.
- The integer k is the **depth**, the sum  $w := n_1 + \cdots + n_k$  is the **weight**.

#### Quasi-shuffle relations

The product of two MZVs is a linear combination of MZVs! For example:

$$\zeta(n_1)\zeta(n_2) = \sum_{m_1 > m_2 > 0} \frac{1}{m_1^{n_1} m_2^{n_2}} + \sum_{m_2 > m_1 > 0} \frac{1}{m_1^{n_1} m_2^{n_2}} + \sum_{m_1 = m_2 > 0} \frac{1}{m_1^{n_1} m_2^{n_2}} 
= \zeta(n_1, n_2) + \zeta(n_2, n_1) + \zeta(n_1 + n_2).$$

The most general **quasi-shuffle relation** displays as follows:

$$\zeta(n_1,\ldots,n_p)\zeta(n_{p+1},\ldots,n_{p+q}) = \sum_{r\geq 0} \quad \sum_{\sigma\in\operatorname{qsh}(p,q;r)} \zeta(n_1^\sigma,\ldots,n_{p+q-r}^\sigma).$$

• Here qsh(p, q; r) stands for (p, q)-quasi-shuffles of type r. They are surjections

$$\sigma: \{1, \ldots, p+q\} \longrightarrow \{1, \ldots, p+q-r\}$$

subject to  $\sigma_1 < \cdots < \sigma_p$  and  $\sigma_{p+1} < \cdots < \sigma_{p+q}$ .

- $n_j^{\sigma}$  stands for the **sum** of the  $n_r$ 's for  $\sigma(r) = j$ .
- The sum above contains only one or two terms.



#### Integral representation and shuffle relations

MZVs have an iterated integral representation:

$$\zeta(n_1,\ldots,n_k) = \int_{\substack{0 \le t_w \le \cdots \le t_1 \le 1}} \frac{dt_1}{t_1} \cdots \frac{dt_{n_1-1}}{t_{n_1-1}} \frac{dt_{n_1}}{1-t_{n_1}} \cdots \frac{dt_{n_1+\cdots+n_{k-1}}}{t_{n_1+\cdots+n_{k-1}}} \cdots \frac{dt_{w-1}}{t_{w-1}} \frac{dt_w}{1-t_w}$$

As a consequence, there is a second way to express the product of two MZVs as a linear combination of MZVs: the **shuffle relations**.

### Example:

$$\zeta(2)\zeta(2) = \int_{\substack{0 \le t_2 \le t_1 \le 1 \\ 0 \le t_4 \le t_3 \le 1}} \frac{dt_1}{t_1} \frac{dt_2}{1 - t_2} \frac{dt_3}{t_3} \frac{dt_4}{1 - t_4}$$

$$= 4\zeta(3, 1) + 2\zeta(2, 2).$$

## Regularization relations

A third group of relations can be deduced from the preceding ones: the **regularization relations**. The simplest one is:

$$\zeta(2,1)=\zeta(3).$$

These three groups of relations constitute the so-called **double shuffle relations**.

It is conjectured that no other relations occur among multiple zeta values. Only tiny steps have been done in that direction.

- Introduce two alphabets  $X := \{x_0, x_1\}, Y := \{y_1, y_2, y_3, ...\}.$
- $X^*$  (resp.  $Y^*$ ) is the set of words with letters in X (resp. Y).
- $\mathbb{Q}\langle X \rangle$  (resp.  $\mathbb{Q}\langle Y \rangle$ ) linear span of  $X^*$  (resp.  $Y^*$ ) on  $\mathbb{Q}$ .
- Shuffle product on  $\mathbb{Q}\langle X\rangle$ :

$$v_1\cdots v_p \sqcup v_{p+1}\cdots v_{p+q} := \sum_{\sigma\in\operatorname{sh}(p,q)} v_{\sigma_1^{-1}}\cdots v_{\sigma_{p+q}^{-1}}.$$

Quasi-shuffle product on Q(Y):

$$u_1\cdots u_{p} \text{ if } u_{p+1}\cdots u_{p+q} := \sum_{r\geq 0} \ \sum_{\sigma\in \operatorname{qsh}(p,q;r)} u_1^\sigma\cdots u_{p+q-r}^\sigma,$$

where  $u_j^{\sigma}$  is the **internal product** of the  $u_r$ 's with  $\sigma(r) = j$ . The internal product is given by  $y_i \diamond y_j = y_{i+j}$ .



- Notation:  $X_{\text{conv}}^* := x_0 X^* x_1$ ,  $Y_{\text{conv}}^* := Y^* \setminus y_1 Y^*$ .
- change of coding (swap):

$$\begin{array}{ccc} \mathfrak{s}: Y^* & \longrightarrow & X^* \\ y_{n_1} \cdots y_{n_k} & \longmapsto & x_0^{n_1-1} x_1 \cdots x_0^{n_k-1} x_1. \end{array}$$

Clearly,  $\mathfrak{s}(Y^*) = X^* x_1$  and  $\mathfrak{s}(Y^*_{\text{conv}}) = X^*_{\text{conv}}$ .

• For any word  $y_{n_1} \cdots y_{n_k}$  in  $Y_{\text{conv}}^*$  we set:

$$\zeta_{\perp}(y_{n_1}\cdots y_{n_k}) := \zeta(n_1,\cdots n_k) =: \zeta_{\perp}(x_0^{n_1-1}x_1\cdots x_0^{n_k-1}x_1).$$

• As a consequence we have on  $X_{\text{conv}}^*$ :

$$\zeta_{\scriptscriptstyle{\!\!\!\perp\!\!\!\perp\!\!\!\perp}}=\zeta_{\scriptscriptstyle{\!\!\;\sqcup\!\!\!\perp\!\!\!\perp}}\circ\mathfrak{s}.$$

 $\bullet$  Extend  $\zeta_{\sqcup}$  and  $\zeta_{\pm}$  linearly.



- By considering the ill-defined quantity  $\zeta(1)$  as an indeterminate  $\theta$ , it is possible to extend both  $\zeta_{\sqcup}$  and  $\zeta_{\sqcup}$  to all  $X^*x_1$  and  $Y^*$  respectively, in a unique way, such that:
  - $\zeta_{\sqcup \sqcup}(v \sqcup v') = \zeta_{\sqcup \sqcup}(v)\zeta_{\sqcup \sqcup}(v')$  for any  $v, v' \in X^*x_1$ .
- The relation  $\zeta_{\square} = \zeta_{\square} \circ \mathfrak{s}$  is no longer true on  $X^*x_1$ , but there is an infinite order differential operator  $\rho : \mathbb{R}[\theta] \to \mathbb{R}[\theta]$  with constant coefficients such that:

- (D. Zagier, L. Boutet de Monvel). **Regularization relations** come from there.
- If desired, extend  $\zeta_{\sqcup \sqcup}$  to all  $X^*$ . A good choice is  $\zeta_{\sqcup \sqcup}(x_0) = \theta$ .



# Multiple polylogarithms

For any  $t \in [0, 1]$ ,

$$\begin{aligned} \operatorname{Li}_{n_{1},...,n_{k}}(t) &:= \int\limits_{0 \leq t_{w} \leq \cdots \leq t_{1} \leq t} \frac{dt_{1}}{t_{1}} \cdots \frac{dt_{n_{1}-1}}{t_{n_{1}-1}} \frac{dt_{n_{1}}}{1-t_{n_{1}}} \cdots \frac{dt_{n_{1}+\cdots+n_{k-1}}}{t_{n_{1}+\cdots+n_{k-1}}} \cdots \frac{dt_{w-1}}{t_{w-1}} \frac{dt_{w}}{1-t_{w}} \\ &= \sum_{m_{1} > \cdots > m_{k} > 0} \frac{t^{m_{1}}}{m_{1}^{n_{1}} \cdots m_{k}^{n_{k}}}. \end{aligned}$$

$$x(t) := \frac{1}{t},$$
  $y(t) := \frac{1}{1-t}.$ 

**Three operators** on the space of continuous maps  $f:[0,1] \to \mathbb{R}$ : X[f](t) := x(t)f(t), Y[f](t) := y(t)f(t),  $R[f](t) := \int_0^t f(u) du$ .

⇒ Concise expression of the multiple polylogarithm:

$$\operatorname{Li}_{n_1,\ldots,n_k} = (R \circ X)^{n_1-1} \circ (R \circ Y) \circ \cdots \circ (R \circ X)^{n_k-1} \circ (R \circ Y)[1].$$



R is a weight zero Rota-Baxter operator:

$$R[f]R[g] = R[R[f]g + fR[g]].$$

We have of course for any positive integers  $n_1, \ldots n_k$  with  $n_1 \ge 2$ :

$$\operatorname{Li}_{n_1,\ldots,n_k}(1) = \zeta(n_1,\ldots,n_k).$$

#### **Historical remarks**

- Double zeta values were already known by L. Euler, as well as all the relations above relating double and simple ones.
- MZVs in full generality seem to appear for the first time in the work of J. Ecalle (Les fonctions résurgentes, Univ. Orsay, 1981).
- Growing interest since the works of D. Zagier and M. Hoffman (early 90's).
- Integral representation attributed to M. Kontsevich (D. Zagier, 1994), starting point of the modern approach (periods of mixed Tate motives...).
- Recent breakthrough by F. Brown (2012):
   Any MZV is a linear combination, with rational coefficients, of MZVs with arguments equal to 2 or 3.



#### The Jackson integral is defined by:

$$J[f](t) = \int_0^t f(u) \, d_q u = \sum_{n \ge 0} (q^n t - q^{n+1} t) f(q^n t).$$

- Here q is a parameter in ]0,1[.
- When q 

   <sup>→</sup> 1 the Riemann sum above converges to the ordinary integral.
- q can also be considered as an indeterminate: The Jackson integral operator J is then a  $\mathbb{Q}[[q]]$ -linear endomorphism of

$$\mathcal{A} := t\mathbb{Q}[[t,q]].$$



#### A weight -1 Rota-Baxter operator

The  $\mathbb{Q}[[q]]$ -linear operator  $P_q: \mathcal{A} \longrightarrow \mathcal{A}$  defined by:

$$P_q[f](t) := \sum_{n \ge 0} f(q^n t) = f(t) + f(qt) + f(q^2 t) + f(q^3 t) + \cdots$$

satisfies the weight -1 Rota-Baxter identity:

$$P_q[f]P_q[g] = P_q[P_q[f]g + fP_q[g] - fg].$$

Operator  $P_q$  is **invertible** with inverse:

$$P_q^{-1}[f](t) = D_q[f](t) = f(t) - f(qt).$$



The q-difference operator  $D_q$  satisfies a modified Leibniz rule:

$$D_q[fg] = D_q[f]g + fD_q[g] - D_q[f]D_q[g].$$

We end up with three identities:

$$P_q[f]P_q[g] = P_q[P_q[f]g + fP_q[g] - fg],$$

$$D_q[f]D_q[g] = D_q[f]g + fD_q[g] - D_q[fg],$$

$$D_q[f]P_q[g] = D_q[fP_q[g]] + D_q[f]g - fg.$$

### Multiple *q*-polylogarithms

Introduce the functions:

$$x(t) := \frac{1}{t}, \qquad y(t) := \frac{1}{1-t}, \qquad \overline{y}(t) := \frac{t}{1-t}.$$

Note that  $\overline{y}$  is an element of  $\mathcal{A}$ .

- Introduce  $X, Y, \overline{Y}$ , multiplication operators by  $x, y, \overline{y}$  resp.
- Recall:

$$\operatorname{Li}_{n_1,\ldots,n_k} = (R \circ X)^{n_1-1} \circ (R \circ Y) \circ \cdots \circ (R \circ X)^{n_k-1} \circ (R \circ Y)[1].$$

Analogously:

$$\operatorname{Li}_{n_1,\ldots,n_k}^{\mathbf{q}} := (\mathbf{J} \circ X)^{n_1-1} \circ (\mathbf{J} \circ Y) \circ \cdots \circ (\mathbf{J} \circ X)^{n_k-1} \circ (\mathbf{J} \circ Y)[\mathbf{1}].$$



### Ohno-Okuda-Zudilin q-multiple zeta values

Recall:

$$\zeta(n_1,\ldots,n_k)=\mathrm{Li}_{n_1,\ldots,n_k}(1).$$

By analogy define:

$$\mathfrak{z}_q(n_1,\ldots,n_k):=\mathrm{Li}_{n_1,\ldots,n_k}^{\mathbf{q}}(\mathbf{q}).$$

Some straightforward computation shows:

$$\mathfrak{z}_q(n_1,\ldots,n_k) = \sum_{m_1 > \cdots > m_k} \frac{q^{m_1}}{[m_1]_q^{n_1} \cdots [m_k]_q^{n_k}},$$

with usual q-numbers:

$$[m]_q = \frac{1-q^m}{1-q} = 1+q+\cdots+q^{m-1}.$$



• For any positive integers  $n_1, \ldots n_k$  with  $n_1 \ge 2$ , the q-MZV  $\mathfrak{z}_q(n_1, \ldots, n_k)$  makes sense for any complex q with  $|q| \le 1$ , and we have:

$$\lim_{q\to 1}\mathfrak{z}_q(n_1,\ldots,n_k)=\zeta(n_1,\ldots,n_k).$$

 An alternative description in terms of the operator P<sub>q</sub> will be very convenient:

$$\bar{\mathfrak{z}}_{q}(n_{1},\ldots,n_{k}) := (1-q)^{-w} \mathfrak{z}_{q}(n_{1},\ldots,n_{k}) 
= \sum_{m_{1}>\cdots>m_{k}>0} \frac{q^{m_{1}}}{(1-q^{m_{1}})^{n_{1}}\cdots(1-q^{m_{k}})^{n_{k}}} 
= P_{q}^{n_{1}} \circ \overline{Y} \circ \cdots \circ P_{q}^{n_{1}} \circ \overline{Y}[\mathbf{1}](t)_{|_{t=q}}.$$

### Extension to arguments of any sign

- The iterated sum defining  $\bar{\mathfrak{z}}_q(n_1,\ldots,n_k)$  makes perfect sense in  $\mathbb{Q}[[q]]$  for any  $n_1,\ldots,n_k\in\mathbb{Z}$ .
- moreover it also makes sense when specializing q to a complex number of modulus < 1:</li>

$$|\bar{\mathfrak{z}}_q(n_1,\ldots,n_k)| \leq |q|^k (1-|q|)^{-w'-k},$$

with  $w' := \sum_{i=1}^k \sup(0, n_i)$ .

• For any  $n_1, \ldots, n_k \in \mathbb{Z}$  we still have (with  $P_q^{-1} = D_q$ ):

$$\overline{\mathfrak{z}}_q(n_1,\ldots,n_k) = P_q^{n_1} \circ \overline{Y} \circ \cdots \circ P_q^{n_1} \circ \overline{Y}[\mathbf{1}](t)|_{t=q}.$$



#### **Examples**

$$\bar{\mathfrak{z}}_{q}(0) = \frac{q}{1-q},$$

$$\bar{\mathfrak{z}}_{q}(\underbrace{0,\dots,0}_{k}) = \left(\frac{q}{1-q}\right)^{k},$$

$$\bar{\mathfrak{z}}_{q}(-1) = \sum_{m>0} q^{m}(1-q^{m}) = \frac{q}{1-q} - \frac{q^{2}}{1-q^{2}}.$$

#### q-shuffle relations

- Let  $\widetilde{X}$  be the alphabet  $\{d, y, p\}$ .
- Let W be the set of words on the alphabet  $\widetilde{X}$ , ending with y and subject to

$$dp = pd = 1$$
,

where **1** is the empty word.

- Any nonempty word in W writes uniquely  $v = p^{n_1} y \cdots p^{n_k} y$ , with  $n_1, \dots, n_k \in \mathbb{Z}$ .
- Now define:

$$\overline{\mathfrak{z}}_q^{\sqcup}(p^{n_1}y\cdots p^{n_k}y):=\overline{\mathfrak{z}}_q(n_1,\ldots,n_k)$$

and extend linearly.



• *q*-shuffle product recursively given (w.r.t. length of words) by  $1 \sqcup v = v \sqcup 1 = v$  and:

$$(yv)\sqcup u = v\sqcup (yu) = y(v\sqcup u),$$
  
 $dv\sqcup du = v\sqcup du + dv\sqcup u - d(v\sqcup u),$   
 $pv\sqcup pu = p(v\sqcup pu) + p(pv\sqcup u) - p(v\sqcup u),$   
 $dv\sqcup pu = pu\sqcup dv = d(v\sqcup pu) + dv\sqcup u - v\sqcup u.$ 

for any  $u, v \in W$ .

- The q-shuffle relations write:

$$\bar{\mathfrak{z}}_q^{\perp}(u)\bar{\mathfrak{z}}_q^{\perp}(u)=\bar{\mathfrak{z}}_q^{\perp}(u\square v).$$



### q-quasi-shuffle relations

- $\widetilde{Y}$  = alphabet  $\{z_n, n \in \mathbb{Z}\}$ , with internal product  $z_i \diamond z_j = z_{i+j}$ .
- Let  $\widetilde{Y}^*$  be set of words with letters in  $\widetilde{Y}$ .
- Let \* be the ordinary quasi-shuffle product on  $\mathbb{Q}\langle \widetilde{Y} \rangle$ .
- Let *T* be the shift operator defined for any word *u* by:

$$T(z_nu):=z_{n-1}u.$$

• The q-quasi-shuffle product  $\perp$  is (uniquely) defined by:

$$T(u \perp v) = Tu * Tv.$$



- the *q*-quasi-shuffle relations write:

$$\bar{\mathfrak{z}}_q^{\scriptscriptstyle{\pm}}(u)\bar{\mathfrak{z}}_q^{\scriptscriptstyle{\pm}}(v)=\bar{\mathfrak{z}}_q^{\scriptscriptstyle{\pm}}(u\!\!\perp\!\!\!\perp\!\!\!\!\perp\!\!\!\!\perp}v)$$

for any words  $u, v \in \widetilde{Y}^*$ .

• Example of *q*-quasi-shuffle relation: for any  $a, b \in \mathbb{Z}$ ,

$$\overline{\mathfrak{z}}_{q}(a)\overline{\mathfrak{z}}_{q}(b) = \overline{\mathfrak{z}}_{q}(a,b) + \overline{\mathfrak{z}}_{q}(b,a) + \overline{\mathfrak{z}}_{q}(a+b) \\
-\overline{\mathfrak{z}}_{q}(a,b-1) - \overline{\mathfrak{z}}_{q}(b,a-1) - \overline{\mathfrak{z}}_{q}(a+b-1).$$

 Note that the weight is **not** conserved, contrarily to the classical case.



 In terms on "non-modified" q-MZVs, the previous example becomes:

$$\mathfrak{z}_{q}(a)\mathfrak{z}_{q}(b) = \mathfrak{z}_{q}(a,b) + \mathfrak{z}_{q}(b,a) + \mathfrak{z}_{q}(a+b) \\
- (1-q) \big[ \mathfrak{z}_{q}(a,b-1) - \mathfrak{z}_{q}(b,a-1) - \mathfrak{z}_{q}(a+b-1) \big].$$

• In the limit  $q \to 1$ , the "weight drop term" disappears, and we recover the classical quasi-shuffle relation.

#### Important remark

There are no regularization relations in this picture. The swap

$$\mathfrak{r}:\widetilde{Y}^*\to W$$

is defined by:

$$\mathfrak{r}(z_{n_1}\cdots z_{n_k}):=p^{n_1-1}y\cdots p^{n_k-1}y,$$

and the change of coding writes itself:

$$\bar{\mathfrak{z}}_q^{\scriptscriptstyle{\sqcup\!\!\!\perp}}=ar{\mathfrak{z}}_q^{\scriptscriptstyle{\sqcup\!\!\!\sqcup}}\circ\mathfrak{r}$$

in full generality.



# Summing up, the double q-shuffle relations write themselves as follows:

for any  $u, v \in \widetilde{Y}^*$  and for any  $u', v' \in W$ ,

$$\begin{array}{rcl} \overline{\mathfrak{z}}_q^{\scriptscriptstyle{\;\!\!\!\perp\!\!\!\perp\!\!\!\perp}}(u)\overline{\mathfrak{z}}_q^{\scriptscriptstyle{\;\!\!\!\perp\!\!\!\perp\!\!\!\perp}}(v) &=& \overline{\mathfrak{z}}_q^{\scriptscriptstyle{\;\!\!\!\perp\!\!\!\perp\!\!\!\perp}}(u\!\!\mathrel{\sqcup}\!\!\mathrel{\sqcup}\!\!\mathrel{\sqcup}\!\!\mathrel{\sqcup}\!\!\mathrel{\sqcup}}v), \\ \overline{\mathfrak{z}}_q^{\scriptscriptstyle{\;\!\!\!\perp\!\!\!\perp\!\!\!\perp}}(u')\overline{\mathfrak{z}}_q^{\scriptscriptstyle{\;\!\!\!\perp\!\!\!\perp\!\!\!\perp}}(v') &=& \overline{\mathfrak{z}}_q^{\scriptscriptstyle{\;\!\!\!\perp\!\!\!\perp\!\!\!\perp}}(u'\!\!\mathrel{\sqcup}\!\!\mathrel{\sqcup}\!\!\mathrel{\sqcup}\!\!\mathrel{\sqcup}}v'), \end{array}$$

and we also have:

$$\overline{\mathfrak{z}}_q^{\scriptscriptstyle{\sqcup\!\!\!\perp}}=\overline{\mathfrak{z}}_q^{\scriptscriptstyle{\sqcup\!\!\!\sqcup}}\circ \mathfrak{r}.$$

#### References

- Y. Ohno, J.-I. Okuda, W. Zudilin, Cyclic q-MZV sum,
  J. Number Theory 132 (2012), 144–155.
- Y. Takeyama,
   The algebra of a q-analogues of multiple harmonic series,
   arXiv:1306.6164 (2013).
- J. Castillo-Medina, K. Ebrahimi-Fard, D. Manchon, Unfolding the double shuffle structure of q-MZVs, arXiv:1310.1330 (2013).

Multiple *q*-polylogarithms Ohno-Okuda-Zudilin *q*-MZVs Double *q*-shuffle relations

Thank you for your attention!