Kardar—Parisi—-Zhang equation

Kardar, Parisi and Zhang ('80) introduced an equation for the large scale dynamics of a
growing interface. It takes into account three effects: drift, diffusion, noise :

Och(t,x) = Ah(t, x) + F(9:h(t,2)) + &, 2),  2€T,t=0

. driftF(Vh(t,x))

~

(&(t,x)&(s,y)) =0(t —s) 0(x —y)

Expansion aroung a flat interface :

F(0.h(t,x)) =co+ c10.h(t,x) + co(Ozh(t, x))? + -



KPZ and the Stochastic Burgers Equation

Oih(t,x) = Ah(t,z) + co+ c10.h(t, ) + c2(Oh(t, x))? + - + £(t, x), reT,t>0
The ¢y and ¢y contributions can be eliminated by the Galileian transformation
h(t,z)— h(t,x — cit) + cot

and fix ¢co = 1 by rescaling. Finally drop all the higher order contributions to get the KPZ
equation

Oth(t,x) = Ah(t,z) + (0:h(t,z))* + £(t, x), rcT,t>0

Setting u = 0.h we get the stochastic Burgers equation
Owu(t,x) = Au(t,z) + 0 (u(t, x))? + 0.£(t, z), reT,t>0

which is equivalent to KPZ.



First order approximation

> Invariant measure: Formally the SBE leaves invariant the space white noise: if 1 has a
Gaussian distribution with covariance E[ug(z)ug(y)] =6 (x — y) then for all £ >0 the random
function wu(t,-) has a Gaussian law with the same covariance.

> First order approximation: Let X (¢, x) be the solution of the linear equation

O X(t,x)=AX(t,2) +0,E(t,x), 2€T,t>0

given by
t
Xto)= [ ar[ dyop- e p)eirn)
—00 T
Then X is a stationary Gaussian process with covariance

E[X(tvx) X(87 y)] :p|t—s|(x - y)

A computation gives that, almost surely X (¢,-) € €7 for any v < —1/2 and any ¢ € R. Note
also that for any t € R X (t,-) has the law of the white noise over T.



Higher order approximations

> Let u=X 4+ u; and L=0; — A then Lu=0,u?+ 0,¢, LX = ¢ and

Luy = 0,(u1 + X)2=0,X2+20,(u1 X) + O u?
N——

.,
> Let XY be the solution to
LXY=0,X? -~ XV

and decompose further u; = xV + 5. Then

Lo =20,(X" X) + 205 (us X) + 0o(XY XY) + 205(us X¥) + O (u2)?
T —r

> Define LX¥=25,(XY X) and us = X + us then X* €1/

Lz =20,(us X) +20,(X" X) 4 05(X X)) + 20, (s X)) + 0 (us)?

\ 7 \ 7
~~ ~~

—3/2— —1- —1-




> Binary trees. The expansion generates a certain number of explicit terms, obtained via
various combinations of X and of a bilinear map B given by

LB(f,g9)=0.(f9)

These terms can be described in terms of binary trees. A binary tree 7 €7 is either the root
e or the combination of two smaller binary trees 7 = (7y72). The natural grading d: 7 — N
is given by d(e) =0 and d((7172)) =1-+d(7) + d(12).

Define recursively a map X:7 — C(IR.;S'(T)) by

X=X X(nm) = B(XT, X72)

Y

giving

Xy

VIB(X7X)7 XY,:B(XaXV)v X‘Q’:B(X7XY,)’ X

X =B(XY, X"

and so on, where

(e0)=V, (Vo)=Y (o)=Y, (VV)=V



Formal expansion

> We observe that formally

U= Z c(T) X7

T€T

where ¢(7) is a combinatorial factor counting the number of planar trees which are isomorphic

(as graphs) to 7. For example c(e)=1,¢(V)=1,¢(§) = 2,0(‘((1) =4,¢(XY)=1 and in general
A7) =20 met Limm)=rc(T1)e(T2).

> We can also write an equation for the truncated series. Setting

U= Z c(r)X™+U

TeT,d(T)<n
we have that the equation satisfied by U is obtained from the fixed point equation
u=X+ B(u,u)

and reads

U= > c(r)e(r)B(X™, X™)+ > o(r)B(X™,U)+B(U,U).
T1,T2:d(7T1)<n,d(12)<n T:d(T)<n
d((T1m2)) 21



Chaotic representation

> The process X has the integral representation
X(ta)= [ T H (W (dn)
Rx E

where n=(s,&) e Rx E, E=7\{0}, h(&)=e $tL;>0, H(t, &) =ihy(€) and W (dn) is
the complex Gaussian process on R x E defined by the covariance

E( [ swian [ XEQW)W“”'))‘ [ stmstan

where 717, = (84, &€4), S—a = Sa, E—a = —&q, dng = ds,dé, is the product of the Lebesgue
measure ds, on R and of the counting measure d¢, on = 7Z\{0}. The function f, g are
complex functions in L?(IR x E) satisfying f(n_1)= f(m)*.

> Example. The covariance of X can be computed as

ELX(t,2)X (s, )] = /

d&ei&(m—y)/ Hy— s, (§1)Hs— s,(—&1)ds1
E R

ez )e—é%lt—SI 1
:/ ety 9 d§1:§p|t_s|(:v —Y)
E



Kernels

> Recall that X*=X and X("7™) = B(X ™ X7). Then

X7(t,x :/ T(t,x,n:) (dn;)
69= f Hw

where n=d(7)+1, n-=n1....= (1, ..., Mn) € (R x E)" and dn, =dn;...,, =dny---dn,. Here
we mean that each of the X7 is a polynomial in the Gaussian variables W (dn;).

> The kernels G7 are defined recursively by
G*(t,z,n) =e“"Hy (&)

G(TlT2>(t7 xT, 77(7‘17'2)) - B(Gﬂ('a " 777'1)7 GTQ('? ) nTz))(t7 LC)

t
:/ dO'ath_s(GTl(O-,',nTl)aGTQ(O-:')nTQ))(x)

— o



Kernels (cont.)

> In the first few cases this gives

t

Gtz ra) = / o 0,P,—o(G*(0, 1), G*(0, -, 1)) (x)

, t
et / Hy o (En) Ho oy (60) o oy(2)do
0

where we set {[1..,) = &1+ + &
X t Vv
G (ta €Z, 77123) :/ dO_aCEPt—U(G (0-7 ) 7712)7 G.(O-a ) 7]3))(1‘)
0

:elé[ﬂg]x/ dU/ do’ Hi—o(&123) Ho—o/(&12) Ho'— 5, (§1) Hor— 55(&2) Ho — 55(&3)
0 0

and ...



Still more kernels

.. and
, t o’ o’
G‘({'(ta% 171234) :€®§[1234]m/ dU/ dU// do" Hy_5(&nasa) Ho—s,(&4) Ho—o/(&[123)) X
0 0 0

><HG’—83(€3)H0’—0”(5[12])]_]0”—81(gl)HG”—SQ(&)

and
. t o’ o
Gv(tﬁl@? N1234) 2615[1234@/ dU/ dU’/ do" Hi _5(&n2sa) Ho—o(&[34) Ho —o1(&[12]) X
0 0 0

XHor—5,(§1)Hor—s,(§2) Horr—54(€3) Horr— 5,(€4)

and so on: you get the idea...



Chaotic decomposition of Gaussian polynomials

> The general explicit formula for the chaos decomposition of a polynomial

n

/(IRXE)” f ) [T W(dn:)

i=1
is given by

n

1) [T W(dn,) = 1) W (dy...
/(RXE)nf(n )T widn) ];)/(Rxwfk(n )W (dnr..k)

1=1

with fr(m1...) =0 if n—k is odd and if n — k= 2m for some m then

Se(nik) = Z / f(onin)dN@ 1) (ktm)

O_esn (RXE)m

with the understanding that 7y, 1= 17— (1) for [=1,...,m and where 07)1...., = 5(1)...o(n)-

> For example:

W (dn )W (dn2) = W (dnidnz) + 0 (m + n—2)dnidns.



Chaotic decomposition (cont.)

> In general we will denote with G7, the kernel of the n-th chaos arising from the decompo-
sition of X7:

T(t,x) Z/ Bt s, m ) W(dny..k).
k=0 RXE

> Terms X7 of odd degree have zero mean by construction while the terms of even degree
have zero mean due to the fact that if d(7)=2n we have

E[X7(t,x)]= Z / G7(t,z,0(N.n(=1)(=n)))dN1..n

0'682n (RXE)”

where o(71...2n)) = Mo (1) (2n)- BUt noW & 1)... =&+ -+ &, — & —&,=0 and
we always have G7 (¢, x, 11..2,,) o< &[1...(2)] Which |mpI|es that

G (t,x, U(Ul---n(—l)---(—n))) =0.

This is a simplification of SBE with respect to KPZ.



Wick contractions

> Applying these considerations to the first nontrivial case given by XY we obtain:

Xt~ [ Gt maW (dmdn) + GY(t.)
(RX E)?
with
Gg(tax):/ Gv(taxanl(—l))dnl
(Rx E)?
but as already remarked

] t
G¥(t,x, mi(1) :ezg[l(_l”x/ Hy—o(&n-1)Ho—s,(§1)Ho - 55(§-1)do =0
0

since H;_,(0)=0.



Consider the next term

X
XVt z) = / GV (t, 2, 1193) W (ddrgadns) + / GY(t, 2, m)W (dm)
(Rx E)3 RxE

in this case we have three possible contractions contributing to G; which results in

X X X X

Gl(ta L, 771) :/ (G (ta L 7712(—2)) +G (ta L, 7721(—2)) +G (ta L, 772(—2)1))(17727
RxFE

but note that G‘{'(t,:v, n2(—2y1) = 0 since, as above, this kernel is proportional to {;(_2)=0,

moreover by symmetry G‘{'(t, T, Ni2(—2)) = G‘o(t, T, 721(—2)) SO We remains with

X N X
Gtt.o.m) =)= [ o macz)in
RxFE

where we introduced the intuitive notation G’V(t,x, 1) which is useful to keep track graphi-
cally of the Wick contration on the structure of the kernels GG™ by representing them as arcs
between leaves of the binary tree.



Wick contractions (cont.)

> Now an easy computation gives

t o
Gt w,m) =etrr / do / 40" Hy— o(62) Hor—s, (6)V(0 — 0, €1)
0 0

where

VV(U,&)=Q/Ha(ﬁ[u_z)])ﬂa_32(52)H—52(€—2)d772:2/ A2t o (En(~2))—

We call the functions V] vertex functions they are useful to compare the behaviour of different
kernels.



Wick contraction (end)

By similar arguments we can estabilish the decomposition for the last two terms: that is

XY"(t,x):/ GY"(t,:rJ,n1234)W(dn1234)+/ G‘(g(t,x,ﬁm)w(dmﬂ
(Rx E)3 (RxX E)?
and
X
Xv(t,x):/ Gv(t,a:,n1234)W(d771234)+/ Ga (L, x, m2)W (dn2)
(Rx E)3 (Rx E)?
with

G‘g(ta T,N2) = / (G“o(t’ T, N123(—3)) + 2G‘({/(ta T, Ni32(—3)) + 2G‘({,(t7 T, N312(—3)) )dn3
RxFE

:G‘(o(t, x, 7712) + G‘Ql(ta x, 7712) + G‘@(t7 L 7712)
and

X X hod
G2 (ta Ly 7712) :4/ G (taxa 77132(—3))d773: G (ta L, 7712)-
RxFE



Reducible contractions

> Here the contributions associated to G‘(o(t, x, 1n12) and G‘Q’(t, x, 1n12) are “reducible” since
they can be conveniently factorized as follows

G\(o(tﬁﬁa M12) =/ G‘{{'(taw, N123(—3))dns3
R X E

t o o’
1£[12]T \/j
=e'Sn /O dU/O dU’/O do" Hi— (&2 Hor— o (o) Hor— s, (1) Hor—5,(€2) V' (0 — 07, §[12))
and

G‘Q'(tw, M12) = 2/ G‘{{'(taw, M13(—3)2)dn3
R X E

. t o o’
:ezgm]x/o dO_Ht_O-(g[lz])HU_SQ(é.Q)/O dU//O d‘T//HU—U’(gl)HU”—sl(gl)V‘o(U/_Uua 5[12])

t
) x —SiT \
=e'tn2 /0 doHt 5 (&12) Ho —s,(E2)e S%G (0, 2, 1)



Irreducible contractions

> G‘O(t, x,n12) cannot be reduced to a form involving ¥ and instead we have for it:

G‘O(ta T,M2) = 2/ G‘Q,(ta L 77132(—3))d773
Rx E

. t o O-/
:€l£[12]m/ dO—/ dO'// do” Ht—J(f[lQ])Ha’—82(52)]{0”—81(gl)vv(o- - 0/7 o — OJ/’ 512)
0 0 0

with
—£§|O'—O'”|

2

Voo =o' =", €) =2 [ a6 Hooo(Enaa) o o(€)
E

Similarly for G¥ we have

bod X
G (t,$,n12)=4/ G (t, 2, Mi32(—3))dn3
Rx E

zelg[lz]m/ dU/ dO'// dO'//Ht—U(£[12])HJ”—81(£1)H0’—82(€2)Vv(0-_OJ’O-_O-//’ 512)
0 0 0



Feynman diagrams

> The explicit form of the kernels G™ can be described in terms of Feynman diagrams and
the associated rules. To each kernel G we can associate a graph which is isomorphic to the
tree 7 and this graph can be mapped with Feynman rules to the explicit functional form of
(7. The algorithm goes as follows: consider 7 as a graph where each edge and each internal
vertex (i.e. not a leaf) are drawn as

ww_, and IHTF

> To the trees V‘({Y{/‘(}/ we associate, respectively, the diagrams

v V¥ | % v

IRIRANY




Feynman rules

> These diagrams corresponds to kernels via the following rules:

Each internal vertex comes with an time integration and a factor (i&),

77;&7:.;772 — (iflg)[R do

12

Each external wiggly line is associated to a variable 7; and a factor of H, _.(&;) where o is
the integration variable of the internal vertex to which the line is attached.

Response lines:

f / - ha—a’(g)

0 mA— 0

Note that these lines carry information about the casual propagation.

Finally the outgoing line always carries a factor h;_ (&) where £ is the outgoing momentum
and o the time label of the vertex to which the line is attached.



Feynman rules example

> For example:

m 72
) / dOdOl(if[lgg])(’if[lg])ht—a(g[lZS])ha—G’(€[12]) X
SN RQ

o)
6[12] 3 ><Ho'/—sl(gl)HO'/_SQ(gé)HO'—83(63)

§[123]



Contractions 1

> Once given a diagram the associated Wick contraction are obtained by all possible pairings
of the wiggly lines. To each of these pairings we associate the corresponding correlation
function of the field X and an integration over the momentum variable carried by the line:

—&%lo—o’|
& — /dfe
B 2

> For example we have :

m
o’ ,
X , e—§2lo—a’
Gi(t,z,m)=2x & 22/ dodo Ht—a(fl)/E d THO'—O"(g[l(—Q)])HU’—sl(gl)
o

&1



Contractions 2

> Contraction arising from G and G results in the following set of diagrams:

Gg—Gv—Qxlgj, G‘Q'QXW, ng, GW_Qxé:j

> The diagrammatic representation make pictorially evident what we already have remarked

with explicit computations: G‘Q' and GYO are formed by the union of two graphs:

QY

while thekl;,ernel G cannot be decomposed in such a way and it has a shape very similar to
that of G



Regularity of the driving terms

> Using Feymann diagrams we can compute quantities like
E[(AgX7(t, x))%]

and obtain the pathwise regularity of the driving terms:

x x| x¥ | x¥ |x

—1/2—[0—|1/2=[1/2= [1—

> Note that in general B(X, ) for f very regular cannot be better than ©'/2~ so we cannot
hope that higher order terms in the expansion get very regular. In particular for all 7 we have

X(.T) c %1/2—



Regularity of the partial expansion

> Recall our partial expansion for the solution

=X+ XxViox'ay

LU =20,(U X) +20,( X X) + 0,(XYXY) +20,(2 X+ U) X¥) + 0,(2 X+ U)2

LU=20,(UX)+ L2 X"+ X%) +20,(2 X+ U) X¥) + 0,2 X’ + U)?

and the regularities for the driving terms

x x| x¥ | x¥ |x

—1/2—|0— [1/2— [1/2= [1—

We can assume U € /2~ so that the terms 20,((2 XY'+ U) Xv) + 0x(2 XY'+ U)? are well
defined.

The remaining problem is to deal with 20, (U X).



Paracontrolled ansatz

> Make the following ansatz U=U’~<Y + U*. Then

LU=LU' <Y +U'<LY —0,U'<08,Y + LU*
while

LU =20,(UX)+ L2 X+ X%) +20,(2 X+ U) XV) + 8.2 X + U)?
Q(U)

=20, (U <X) +20,(UoX)+20,(U =X)+ Q(U)
=2(U <0, X ) +2(0,U <X)4+20,(UoX)+20,(U=X)+ Q(U)
so we can set U'=2U and LY =0,X and get the equation

LU= —LU' <Y +0,U' < 8,Y +2(0,U <X) +20,(U 0X) + 20, (U ~X) + Q(U)

> Observe that Y, U, U’ € €%~ and we can assume that Ut e ¢! .



The resonant term

> The difficulty is now concentrated in the resonant term U o X which is not well defined.

> The paracontrolled ansatz and the commutation lemma give

UoX=02U<Y)oX+UloX=2U(YoX)+CQU,Y,X)+Uto X
15 12—

> A stochastic estimate shows that Yo X € €V~

> The final fixed point equation reads
LU'=40,(U(Y0X))+48,C(U,Y,X)+20,(U*o X)—-2LU <Y
+20,U < 8,Y + 2(8,U <X) + 20,(U =X) + Q(U)

> This equation has a (local in time) solution U = ®(X(&)) which is a continuous function
of the data X (&) given by the collection of multilinear functions of & given by

X(6) = (x, XY, x%, x4 X%, X oY)



Thanks.



