

Information entropy in complex systems: Mathematical foundations and their meaning

Karoline Wiesner Institute of Physics and Astronomy University of Potsdam

University of Potsdam – Karoline Wiesner

November 2021

What is a complex system? The role of information theory in complexity science Examples in physics and biology Cumulative Entropy and Complex Networks

"Many people might not bother to define complexity, thinking that we know it when we see it. Scientists and philosophers have no such luxury."

Sean Carroll, Caltech (personal communication)

Conditions for complexity

- Numerosity: complex systems inv components.
- **Disorder and Diversity**: the interactions in a complex system are not coordinated or controlled centrally, and the components may differ.
- Feedback: the interactions in complex systems are iterated so that there is feedback from previous interactions on a time scale relevant to the system's emergent dynamics.
- **Non-equilibrium**: complex systems are out of thermodynamic equilibrium with the environment and are often driven by something external.

Ladyman & Wiesner, What is a complex system? Yale University Press (2020)

University of Potsdam – Karoline Wiesner

Numerosity: complex systems involve many interactions among their

"In all complex systems the whole displays behavior that the individual parts cannot; this is called 'emergence'."

Philip Anderson, Science (1972)

Emergent features of complexity

- Spontaneous order and self-organisation: complex systems exhibit structure and order that arise out of the interactions among their parts.
 Nonlinearity: complex systems exhibit nonlinear dependence on
- Nonlinearity: complex systems e parameters or external drivers.
- **Robustness**: the structure and function of complex systems is stable under relevant perturbations.
- Nested structure: there may be multiple scales of structure and clustering in complex systems.

Ladyman & Wiesner, What is a complex system? Yale University Press (2020)

University of Potsdam – Karoline Wiesner

7

Complexity in functional systems

- Modularity: there may be specialisation of function in complex systems.
- **History and Memory**: complex systems often require a very long his- tory to exist and often store information about history.
- Adaptive behaviour: complex systems are often able to modify their behaviour depending on the state of the environment and the predictions they make about it.

Ladyman & Wiesner, What is a complex system? Yale University Press (2020)

JAMES LADYMAN & KAROLINE WIESNER

University of Potsdam – Karoline Wiesner

... spontaneous order and self-organisation, nonlinear behaviour,

Book available at UP library as e-book and as paper copy at Golm library

Yale University Press (2020)

Shannon entropy of random variable X:

University of Potsdam – Karoline Wiesner

$H(X) = -\sum P_X(x)\log P_X(x)$ $x \in \mathcal{X}$

11

Mutual Information of two random variables X and Y:

University of Potsdam – Karoline Wiesner

 $I(X;Y) = \sum_{\substack{x \in \mathcal{X} \\ y \in \mathcal{Y}}} P_{XY}(xy) \log \frac{P_{XY}(xy)}{P_X(x)P_Y(y)}$

diso	
non	
num	
dive	
feed	
non	
robu	
self	
nes	
ada	
men	
mod	

order

- -equilibrium
- nerosity
- ersity
- dback
- linearity
- ustness
- -organisation
- ted structure
- ptive behaviour
- nory
- dularity

To measure complexity is to measure... Information theory can be used to measure...

- ...disorder
- ...non-equilibrium
- ...numerosity
- ...diversity
- ...feedback
- ...nonlinearity
- ...robustness
-self-organisation
- ...nested structure
- ...adaptive behaviour
- ...memory
- ...modularity

Complex systems are always correlated but rarely information processing

"There is a distinction between information processing – in the sense of encoding and transmitting a symbolic representation – and the formation of correlations (pattern formation / self-organisation).

The study of both uses tools from information theory, but the purpose is very different in each case: explaining the mechanisms and understanding the purpose or function in the first case, versus data analysis and correlation extraction in the latter."

Karoline Wiesner and James Ladyman, Journal of Physics: Complexity (in press).

Examples in physics and biology

17

Finding a smoking gun for the onset of the glass transition in a colloidal system

University of Potsdam – Karoline Wiesner

A.J. Dunleavy, K. Wiesner, R. Yamamoto, and C.P. Royall. Mutual Information Reveals Multiple Structural Relaxation Mechanisms in a Model Glass Former. Nature Communications 6 (2015).

Engineering and Physical Sciences **Research Council**

Relaxation in a colloidal system is driven by correlations

probability density of displacement of particle i: $f_i(x_i)$

mutual information between particles i and j:

$$I_{ij} = \int f_{ij}(x_i x_j) dx_j(x_j) dx_j(x_$$

Dunleavy, Wiesner, Yamamoto, Royall (*Nature Communications, 2015*)

University of Potsdam – Karoline Wiesner

 $(f_j) \frac{f_{ij}(x_i x_j)}{f_i(x_i) f_j(x_j)} dx_i dx_j$

particles with high correlation

time

19

number of correlated partners later

Dunleavy, Wiesner, Yamamoto, Royall (Nature Communications, 2015)

early on

80

60

40

20

0

 $n_i(2\tau_{\alpha})$

University of Potsdam – Karoline Wiesner

number of correlated partners

Initial configuration predicts players in relaxation mechanism

Dunleavy, Wiesner, Yamamoto, Royall (*Nature Communications, 2015*)

New length scale captures structure and dynamics

$$I(\mathbf{r},t) = \frac{\sum_{ij} I_{ij}}{\sum_{ij}}$$

Dunleavy, Wiesner, Yamamoto, Royall (*Nature Communications, 2015*)

University of Potsdam – Karoline Wiesner

 $\delta_j(t)\delta(\mathbf{r} - |\mathbf{x}_i(0) - \mathbf{x}_i(0)|)$ $\delta(\mathbf{r} - |\mathbf{x}_i(0) - \mathbf{x}_i(0)|)$

Fit an exponential function to define the length scale: ξ_{exp}

 $I(\mathbf{r},t) \propto e^{-\mathbf{r}/\xi_{\mathrm{ex}p}}$

23

Finding the 'point of no return' in stem cell differentiation

Wiesner, K., Teles, J., Hartnor, M., & Peterson, C. (2018). Haematopoietic stem cells: entropic landscapes of differentiation. Interface focus, 8(6), 20180040.

Engineering and Physical Sciences Research Council

Hypothesis by MacArthur et al. (Cell, 2013): Entropy monotonically decreases during differentiation

University of Potsdam – Karoline Wiesner

Statistical mechanics analogy for stem cell development

26

Experimental data for entropy measurements

Mapping Cellular Hierard by Single-Cell Analysis of the Cell Surface Repe

Guoji Guo,¹ Sidinh Luc,¹ Eugenio Marco,³ Ta-Wei Lin Jian Xu,¹ Partha Pratim Das,¹ Tobias Neff,⁵ Keyong

¹Division of Pediatric Hematology/Oncology, Boston Children Harvard Medical School, Boston, MA 02115, USA

²Howard Hughes Medical Institute, Boston, MA 02115, USA

³Department of Biostatistics and Computational Biology, Dan MA 02115, USA

⁴Molecular Genetics Core Facility, Children's Hospital Boston

⁵Pediatric Hematology/Oncology/BMT, University of Colorado

⁶Boston Open Labs, Cambridge, MA 02138, USA

*Correspondence: stuart_orkin@dfci.harvard.edu

http://dx.doi.org/10.1016/j.stem.2013.07.017

			Cell Ste	m Cell	Bax	Aebp2	CD63	Cdkn2a	Cdkn2c	CD48	Pax5	Gapdh	Cdkn2d	Hes5
		He	sour	'Ce 🛛	10.29	6.91	0	1.54	10.92	10.54	9.68	12.38	12.37	0
					8.6	6.13	0	0	7.93	4.18	11.62	11.36	9.58	0
					5.64	4.45	0	0	4.4	0	9.34	5.85	4.29	2.85
-				T	7.78	4.38	0	5.41	0	7.57	9.92	10.65	7.97	' O
chy					11.98	5.61	0	5.3	9.52	9.6	10.83	13.19	10.99	0
-				T	9.77	4.4	0	6.56	0	10.74	8.13	11.28	0	0
. .					10.23	5.99	0	5.1	0	11.23	0	9.84	0	0
ertoire n, ⁴ Cong Peng, ¹ Marc A. Kerenyi, ¹ Semir Beyaz, ¹ Woojin Kim, ¹ Zou, ⁶ Guo-Cheng Yuan, ³ and Stuart H. Orkin ^{1,2,*} n's Hospital and Dana-Farber Cancer Institute, Harvard Stem Cell Institute,					8.38	3.31	0	0	10.23	9.62	0	10.66	10.54	0
					8.93	4.53	0	0.48	0	10.01	0	10.29	1.88	1.66
					9.38	3.37	0	0	8.41	9.61	0	9.04	7.98	0
					11	6.25	0	2.3	8.18	11.75	0	11.52	8.84	0
					10.47	5.89	7.62	7	0	10.21	0	10.97	0	3.12
na-Farber Cancer Institute, Harvard School of Public Health, Boston, n, Boston, MA 02115, USA lo, Aurora, CO 80045, USA					9.93	7.5	0	0	9.63	10.76	0	11.85	11.26	i 0
					9.62	6.69	0	3.46	0	9.95	8.35	11.13	7.94	0
					11.99	7.15	0	0	8.96	12.23	10.39	13.36	10.32	6.34
					9.29	5.11	0	3.58	8.7	10.15	0	12.04	10.82	0
					7.96	7.11	0	0	9.66	9.2	9.77	12.19	0	0
LLF	3.03	U	U	U	5.2	7.18	0	0	8.35	9.96	0	9.02	8.45	0
CLP	0	0	0	0	0	5.57	0	0	0	0	0	4.23	0	0
CLP	0	0	0	0	0	2.83	7.76	0	0	0	0	8.74	0	5.75
CLP	9.62	0	8	7.77	8.25	6.39	0	2.71	0	9.67	0	12.35	9.11	. 0
CLP	0	2.84	8.86	0.37	9.72	6.49	0	7.23	10.11	9.11	11.01	12.4	11.49	0
CLP	10.38	0	0	10.92	7.89	5.01	0	0	8.44	10.93	0	10.28	0	0
CLP	10.68	0	0	4.99	10.65	5.68	0	5.96	0	9.88	0	10.03	8.86	i 0
CLP	10.35	8.18	0	0	9.76	6.2	0	0	8.19	11.32	0	10.59	7.37	0
CLP	9.1	9.97	0	0	10.86	7.28	0	0	0	9	0	10.92	0	0
CLP	8.13	0	0	0	10.46	5.74	0	0	7.19	10.88	0	10.08	4.57	0
CLP	7.15	0	10.87	0.62	11.23	8.17	0	7.51	0	12.37	0	13.21	9.37	0
CMP	12.07	0	0	0	9.02	5.9	6.94	0	0	11.76	0	8.59	0	0
CMP	10.39	9.63	0	0	9.89	6	9.24	0	0	12.65	0	13.23	8.91	. 0
CMP	0	11.58	0	4.09	0	4.16	0	0	0	7.7	0	9.25	7.73	0
CMP	7.67	11.18	0	0	8.06	5.95	6.93	5.04	0	10.45	0	10.54	8.53	0
CMP	11.08	10.03	0	0	10.77	7.48	9.15	2.94	9.47	12.1	0	13.9	0	0

University of Potsdam – Karoline Wiesner

Contrary to expectations: entropy goes through a maximum during differentiation

Biological interpretation: Opening up of several pathways toward final cell lineages.

University of Potsdam – Karoline Wiesner

Wiesner et al., Interface Focus (2018)

30

Is the Shannon entropy a good measure of network robustness?

'Critical fraction': fraction of nodes to be removed (on average) before network falls apart. Average degree:

A randomly configured network will have a giant component, if

The critical fraction is then given by the formula

Degree distribution entropy gives lower bound to robustness

cumulative entropy

Wiesner, K. Cumulative entropy (working title). in draft form.

Wiesner, K., Teles, J., Hartnor, M., & Peterson, C. (2018). Haematopoietic stem cells: entropic landscapes of differentiation. Interface focus 8(6), 20180040.

information in complex systems Wiesner, K., Ladyman, J.. Complex systems are always correlated but rarely information processing. Journal of Physics: Complexity in press.

Ladyman, J., Wiesner, K.. What is a complex system? Yale University Press (2020).

> Jones, C., Wiesner, K.. Clarifying How Degree Entropies and Degree-Degree Correlations Relate to Network Robustness. YarXiv:2106.14784 (2021).

A.J. Dunleavy, K. Wiesner, R. Yamamoto, and C.P. Royall. Mutual Information Reveals Multiple Structural Relaxation Mechanisms in a Model Glass Former. Nature Communications 6 (2015).

