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Research cycles in our interdisciplinary group

Research questions Network methods
HowW can we explain

natural phenomena X! Method A

How Ccan we explain Method B

natural phenomena Y?!
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B mapequation.org

MapEquation

:§Maquuation apps code publications about

Explore the mechanics of the map equation
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Apps » Code » Publications »

hephtoloay e from infomap import Infomap
Neurology ~ Eem—— — | im = Infomap() Maps of information flow reveal community
t::::::: \ im.read_file("ninetriangles.net") StrUCtU rein complgx networks
im.add_link(1, 10) Martin Rosvall and Carl ..'Bcrgst"om
e | im. runC”--two-level --num-trials 5") PNAS 105, 1118 (2008). [arXiv:0707.0609]
print(im.codelength) I | To comprehend the multipartite
N \ for node in im.tree: ¥s organization of large-scale biological
| if node.is_leaf: TR - § andsocial systems, we introduce a new
S print(node.node_id, node.module_id) | ‘D‘_ information-theoretic approach to
__cell bioloay = rovianl commiinityv ctriictiira in

News

Oct 14, 2021 Release — Infomap binaries — Infomap binaries are now available for Windows, MacQOS, and Linux. We also build binary wheels for Windows and macOS.
Oct 4, 2021 Release — Infomap v1.7 — Updated Python API, documentation, and bug fixes (changelog)

Sep 22,2021 Release — Infomap v1.5 — Updated Python API, bug fixes, CSV and JSON output (changelog)

Jun 11, 2021 Research Paper — How choosing random-walk model and network representation matters for flow-based community detection in hypergraphs — Comm. Phys. 4, 133 (2021)
May 11, 2021 Preprint — Flow-based community detection in hypergraphs — arXiv:2105.04389

Nov 11, 2020 Research paper — Mapping flows on bipartite networks — Phys. Rev. E 102, 052305 (2020)

Sep 16, 2020 Release — Infomap on Docker Hub — Run Infomap on any operating system with Docker
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Mapping network flows
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Mapping network flows
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Mapping network flows




| Coding theory

2 Mapping network flows

3 ...with Incomplete information



Coding theory: [ he minimum
. description length principle
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Coding theory: [ he minimum

, description length principle

Regularities In data can be used to
compress the data. | he best
compression captures most regularities



2 Mapping network flows:
, | he map equation



NETWORKS describe where flows move

to depending on where they are

MAPS depict regularities using less

Information



If we can find a good code

for describing flows on a network,
we will have solved the dual problem
of finding the important structures

with respect to that flow



We use a modular code structure
that can exploit regions in the network
in which units of flow tend to stay

for arelatively long time



Two-level partitions

How many modules are present? And which

nodes are members of which modules?



Two-level partitions with the map equation

Maximal compression of flow with constraints:

1. Modular code structure
2. No more than two levels

3. Each node can only belong to one module



Two-level partitions with the map equation

L(M) = a~H(@) + ) pi,H(P)
=1



Two-level partitions with the map equation




Two-level partitions with the map equation

(e, H(P')

ptH(P?)

P H(P?)

pe, H(P*)

L(M) = q~H(Q) + < p3, H(P°) = 3.57 bits.
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(p%)H(Pl) pbH(PT)

L(M) = ¢~H(Q) + { p} H(P?) = 3.68 bits. P8 H(PS)
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0.12 bits 3.56 bits 0.97 bits 2.60 bits



Science 2010

10,000 journals

1,000,000 articles
10,000,000 citations

Thomson Scientific Journal Citation Reports
2010
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Multilevel partitions

Into how many hierarchical levels is a given
network organized? How many modules are

present at each level? And which nodes are

members of which modules?



Multilevel partitions with the map equation

Maximal compression of flow with constraints:

1. Modular code structure
2-Noe-more-than-twotevels

3. Each node can only belong to one module



Multilevel partitions with the map equation
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2 Mapping network flows:

, | he map equation

[he map equation infers communities
with long flow persistence using the
Minimum description length principle



3 Mapping network flows with
. INcomplete information



The map equation

Spurious communities resulting from mere noise
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[ he map equation requires stronger

regularization for sparse networks
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Bayeslan estimate of the map equation

Lp(M) = /L(M)P(p|network data)dp
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Bayesian estimate of the map equation

Undirected and unweighted networks
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Bayesian estimate of the map equation

Choosing a prior distribution

Prior assumption:

e random network

a

V-1

e cach pair of nodes connected with probability p =
= Parameters of the Dirichlet distribution:

e 4, = @

V-V,
V—1

e a' = a’, = aV;



Bayesian estimate of the map equation

(b) Jazz collaborations
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Bayesian estimate of the map equation

Choosing a prior distribution

Standard map equation

Map equation with Bayesian flow estimator
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Bayesian estimate of the map equation

|azz collaboration network

Standard map equation Bayesian estimate of the map equation
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Bayesian estimate of the map equation

Adjusted mutual iInformation
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Bayesian estimate of the map equation

Phys Rev E 102, 012502 (2020)

PHYSICAL REVIEW E 102, 012302 (2020)

Mapping flows on sparse networks with missing links

1,3,4 |

Jelena Smiljanic 12" Daniel Edler®, and Martin Rosvall
U ntegrated Science Lab, Department of Physics, Umed University, SE-901 87 Umed, Sweden
2Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade,
Pregrevica 118, 11080 Belgrade, Serbia

3Gothenburg Global Biodiversity Centre, Box 461, SE-405 30 Gothenburg, Sweden
*Department of Biological and Environmental Sciences, University of Gothenburg, Carl Skottsbergs gata 22B, Gothenburg 41319, Sweden

M (Received 12 December 2019; revised 12 May 2020; accepted 9 June 2020; published 6 July 2020)

Unreliable network data can cause community-detection methods to overfit and highlight spurious structures
with misleading information about the organization and function of complex systems. Here we show how
to detect significant flow-based communities in sparse networks with missing links using the map equation.
Since the map equation builds on Shannon entropy estimation, it assumes complete data such that analyzing
undersampled networks can lead to overfitting. To overcome this problem, we incorporate a Bayesian approach
with assumptions about network uncertainties into the map equation framework. Results in both synthetic and
real-world networks show that the Bayesian estimate of the map equation provides a principled approach to
revealing significant structures in undersampled networks.



Bayesian take on the map equation

Directed and welighted networks

Complete network Incomplete network

Standard teleportation Regularized network flows



An empirical Bayes estimate of the transition rates

for the map equation
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An empirical Bayes estimate of the transition rates

for the map equation
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An empirical Bayes estimate of the transition rates

for the map equation

Mapping flows on weighted and directed networks with incomplete observations

Jelena Smiljanié,!*?'* Christopher Blocker,! Daniel Edler,>%* and Martin Rosvall!

! Integrated Science Lab, Department of Physics, Umed University, SE-901 87 Umed, Sweden
?Scientific Computing Laboratory, Center for the Study of Complex Systems,
Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia.
> Gothenburg Global Biodiversity Centre, Box 461, SE-405 30 Gothenburg, Sweden.

* Department of Biological and Environmental Sciences,

University of Gothenburg, Carl Skottsbergs gata 22B, Gothenburg 41319, Sweden.
(Dated: November 2, 2021)

Detecting significant community structure in networks with incomplete observations is challenging
because the evidence for specific solutions fades away with missing data. For example, recent research
shows that flow-based community detection methods can highlight spurious communities in sparse
undirected and unweighted networks with missing links. Current Bayesian approaches developed to
overcome this problem do not work for incomplete observations in weighted and directed networks
that describe network flows. To address this gap, we extend the idea behind the Bayesian estimate
of the map equation for unweighted and undirected networks to enable more robust community
detection in weighted and directed networks. We derive a weighted and directed prior network that
can incorporate metadata information and show how an efficient implementation in the community-
detection method Infomap provides more reliable communities even with a significant fraction of
data missing.

I. INTRODUCTION tection in directed and weighted networks remains unre-
solved.



3 Mapping network flows with

. INncomplete Information

[ he Bayesian estimate of the map equation
provides a principled approach

to revealing significant structures In
undersampled networks.
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