Entanglements of graphs and networks 1: Entanglements in (molecular) networks

Universität Potsdam, Institutskolloquium Mathematik January 13, 2021

> Senja Barthel s.barthel@vu.nl

Graph: A graph G is a set of vertices together with edges between those vertices.

Network (as used in crystallography):

The underlying graph of a crystal (usually extended in 3, at least 2 directions). A periodic graph extending in two or three undefended directions.

Entanglement of spatial graphs: - knot theory (knots)

- topological graph theory (different notions, see later) (depends on the graph **and** on the embedding)
- **Entanglements in molecules :**
- single molecules (synthetic: $3_1, 4_1, 5_1, 7_4, 8_1, 8_{19}$, links)

Christiane O. Dietrich-Buchecker, Jean-Pierre Sauvage: 1989

Feng Li, Jack K. Clegg, Leonard F. Lindoy, René B. Macquart, George V. Meehan: 2011

Entanglement of spatial graphs: - knot theory (knots)

- topological graph theory (different notions, see later) (depends on the graph **and** on the embedding)

Entanglements in molecules :

- single molecules
 - DNA (synthetic and natural)

Dean, Stasiak, Koller, Cozzarelli: 1985

Entanglement of spatial graphs: - knot theory (knots)

- topological graph theory (different notions, see later) (depends on the graph **and** on the embedding)

Entanglements in molecules :

- single molecules
- DNA (synthetic and natural)

Entanglement of spatial graphs: - knot theory (knots)

- topological graph theory (different notions, see later) (depends on the graph **and** on the embedding)
- **Entanglements in molecules :**
- single molecules
- DNA (synthetic and natural)
- crystals (designed)

Entanglement of spatial graphs: - knot theory (knots)

- topological graph theory (different notions, see later) (depends on the graph **and** on the embedding)

Entanglements in molecules :

- single molecules
- DNA (synthetic and natural)
- crystals (included)

Entanglements in coordination polymers

Entanglements in coordination polymers

Entanglements in coordination polymers

Entanglements and surfaces

1) Graph embedded on a surface. Complexity measurement of the graph embedding.

2) Interested in surfaces. Usually three periodic (often minimal surfaces) → hyperbolic. Just as the nets before, these can be interpenetrated. (Myf's talk)

Braun, Lee, Moosavi, Barthel, Mercado, Baburin, Proserpio, Smit: 2018

Definitions of the unknot: The only knot that

- is embedded in the plane (\mathbb{S}^2)
- bounds a properly embedded disc
- has a complement with free fundamental group (\mathbb{Z} , free of rank 1)

These notions are equivalent

Definitions of entanglement-free spatial graphs:

- Knotfree: contains no cycle that is knotted
- Trivial: is embedded in the plane (\mathbb{S}^2)
- Panelled: each cycle bounds a properly embedded disc, whose interior is disjoint from the graph
- Free: has a complement with free fundamental group (\mathbb{Z}^n , free of rank n)

These notions are **not** equivalent \Rightarrow many different notions of entanglements

How are these notions related?

- Knotfree: contains no cycle that is knotted
- Trivial: is embedded in the plane (\mathbb{S}^2)
- Panelled: each cycle bounds a properly embedded disc, whose interior is disjoint from the graph
- Free: the complement has free fundamental group (\mathbb{Z}^n , free of rank n)
- (Abstractly) planar: the graph admits a trivial embedding

knotfree		
trivial		
abstractly) planar	X	
panelled		
free		

- Knotfree: contains no cycle that is knotted
- Trivial: is embedded in the plane (\mathbb{S}^2)
- Panelled: each cycle bounds a properly embedded disc, whose interior is disjoint from the graph
- Free: the complement has free fundamental group (\mathbb{Z}^n , free of rank n)
- (Abstractly) planar: the graph admits a trivial embedding

- Knotfree: contains no cycle that is knotted
- Trivial: is embedded in the plane (\mathbb{S}^2)
- Panelled: each cycle bounds a properly embedded disc, whose interior is disjoint from the graph
- Free: the complement has free fundamental group (\mathbb{Z}^n , free of rank n)
- (Abstractly) planar: the graph admits a trivial embedding

- Knotfree: contains no cycle that is knotted
- Trivial: is embedded in the plane (\mathbb{S}^2)
- Panelled: each cycle bounds a properly embedded disc, whose interior is disjoint from the graph
- Free: the complement has free fundamental group (\mathbb{Z}^n , free of rank n)
- (Abstractly) planar: the graph admits a trivial embedding

Definitions of entanglement-free spatial graphs:

- Knotfree: contains no cycle that is knotted
- Trivial: is embedded in the plane (\mathbb{S}^2)

free

- Panelled: each cycle bounds a properly embedded disc, whose interior is disjoint from the graph
- Free: the complement has free fundamental group (\mathbb{Z}^n , free of rank n)
- (Abstractly) planar: the graph admits a trivial embedding

- Knotfree: contains no cycle that is knotted
- Trivial: is embedded in the plane (\mathbb{S}^2)
- Panelled: each cycle bounds a properly embedded disc, whose interior is disjoint from the graph
- Free: the complement has free fundamental group (\mathbb{Z}^n , free of rank n)
- (Abstractly) planar: the graph admits a trivial embedding

- Knotfree: contains no cycle that is knotted
- Trivial: is embedded in the plane (\mathbb{S}^2)
- Panelled: each cycle bounds a properly embedded disc, whose interior is disjoint from the graph
- Free: the complement has free fundamental group (\mathbb{Z}^n , free of rank n)
- (Abstractly) planar: the graph admits a trivial embedding

Relations of Entanglements

Relations of Entanglements

Relations of Entanglements

Theorem (Robertson, Seymour, Thomas): \mathscr{G} is panelled if and only if all its subgraphs $\mathscr{G} \subseteq \mathscr{G}$ are free.

Theorem (Scharlemann, Thompson):

9 is trivial

- 1) iff φ is abstractly planar, free, and all proper subgraphs are trivial.
- 2) iff φ is abstractly planar, and all subgraphs are free.
- 3) iff φ is abstractly planar, ∂ -reducible, and all proper subgraphs are free.

Theorem (Wu):

q is trivial4) iff *q* is abstractly planar, and panelled.

More Entanglement Types

"Least entangled" (first after trivial):

- A spatial graph \mathcal{G} is **minimal knotted** if \mathcal{G} is nontrivial but for every edge e, both $\mathcal{G} \setminus e$ and $\mathcal{G} e$ are trivial.
- Embeds on the standard torus but is not trivial.

More Entanglement Types

"Least entangled" (first after trivial):

- A spatial graph \mathcal{G} is **minimal knotted** if \mathcal{G} is nontrivial but for every edge e, both $\mathcal{G} \setminus e$ and $\mathcal{G} e$ are trivial.
- Embeds on the standard torus but is not trivial.

More Entanglement Types

"Least entangled" (first after trivial):

- A spatial graph \mathcal{G} is **minimal knotted** if \mathcal{G} is nontrivial but for every edge e, both $\mathcal{G} \setminus e$ and $\mathcal{G} e$ are trivial.
- Embeds on the standard torus but is not trivial.

Remark:

Minimal knotted graphs do not contain proper subgraphs that are knotted or linked.

Minimally knotted abstractly planar spatial graphs are not panelled.

Minimally knotted abstractly planar graphs are not free.

Entanglements on the Torus

Theorem (B):

If an abstractly planar spatial graph is nontrivially embedded on the torus, it contains a nontrivially knotted or linked subgraph.

Reformulation:

`Stabilising' a nontrivial embedding of an abstractly planar graph on the torus can only be done by introducing a nontrivial knot or link.

Consequence:

Let G be a graph that it is not a subdivision of a circle.

Then a minimally knotted embedding of G embeds one a surface of genus at least two.

minimal knotted on torus nonplanar

not minimal knotted on torus planar

minimal knotted on genus 2 surface planar

Entanglements on the Torus

Theorem (B):

If an abstractly planar spatial graph is nontrivially embedded on the torus, it contains a nontrivially knotted or linked subgraph.

Idea of the proof:

Let \mathscr{G} be a knot-free and link-free embedding on the torus of a planar graph G. We show that it follows that \mathscr{G} is trivial.

- 1. Statement is true for non-standardly embedded tori
- 2. It is sufficient to restrict to connected graphs
- 3. A bouquet graph on T^2 either contains a nontrivial knot or is trivial

Combining:

Any connected graph G on T^2 contracts to a bouquet graph on T^2

- \Rightarrow the bouquet is trivial, all connected subgraphs of \mathcal{G} are free
- $\Rightarrow \varphi$ is trivial (by theorem of Scharlemann and Thompson)

Thank you!

Senja Barthel s.barthel@vu.nl

