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An invariant Finsler metric
From metric to geometry

Analytic discs in Complex Analysis

Florian Bertrand

Florian Bertrand Analytic discs in Complex Analysis



Set up
The Poincaré metric
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Let Ω ⊂ C be a domain.

Definition

A function f : Ω ⊂ C→ C is holomorphic if it is complex
differentiable at each point of Ω, i.e.

lim
h→0,h6=0

f(ζ + h)− f(ζ)

h

exists at each point ζ ∈ Ω.

Examples:

f(ζ) = eiθζ where θ ∈ R.
f(ζ) = ζ

Definition

A map f = (f1, f2, . . . , fn) : Ω ⊂ C→ Cn is holomorphic if fj,
j = 1, . . . , n, is a holomorphic function.
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Denote by ∆ = {ζ ∈ C | |ζ| < 1} the unit disc in C.

We are interested in holomorphic maps f : ∆→ Cn; such a map is
called a holomorphic disc.

Let M ⊂ Cn be a real hypersurface (e.g. boundary of a domain).

Definition

An analytic disc f attached to M is a continuous map f : ∆→ Cn,
holomorphic on ∆ and such that f(∂∆) ⊂M .

Question: Understand the family, or subfamilies, of analytic discs
attached to M ; and accordingly deduce analytic or geometric
properties of M
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Two examples

B2 = {z = (z1, z2) ∈ C2 | |z1|2 + |z2|2 < 1}, fv(ζ) = ζv where
v ∈ Cn is a unit vector.

Ω = {z = (z1, z2) ∈ C2 | <ez2 − |z1|2 > 0}, ft(ζ) = (
√
tζ, t) where

t ≥ 0.
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Let M ⊂ Cn be a real hypersurface (e.g. boundary of a domain).

Nonlinear boundary Riemann-Hilbert problem

A continuous map f : ∆→ Cn is an analytic disc attached to M iff f is holomorphic on ∆

f(∂∆) ⊂M

History: Riemann 1851, Plemelj 1908, Hilbert 1912, Bishop 1965,
Lempert 1981, Forstnerič 1987, Globevnik 1993...
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The unit disc ∆
The Poincaré metric
Why ∆?

The Schwarz Lemma

Theorem (Schwarz Lemma)

Let f : ∆→ ∆ be a holomorphic function s.t. f(0) = 0. Then

|f ′(0)| ≤ 1,

with equality iff f is a rotation.

Application: Aut(∆) = {Rθ ◦Ba | θ ∈ [0, 2π), a ∈ ∆}, where

Rθ(ζ) = eiθζ and Ba(ζ) =
ζ − a
1− āζ

.
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The Schwarz-Pick Lemma and the Poincaré metric on ∆

Theorem (Schwarz-Pick Lemma)

Let f : ∆→ ∆ be a holomorphic function. Then

|f ′(ζ)|
1− |f(ζ)|2

≤ 1

1− |ζ|2

with equality iff f ∈ Aut(∆).

Definition (Poincaré metric)

For ζ ∈ ∆ and v ∈ C

K∆(ζ, v) =
|v|

1− |ζ|2
=

|v|
d(ζ, ∂∆)
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The Poincaré distance on ∆

Define the Poincaré distance d∆(ζ, ζ ′):

d∆(ζ, ζ ′) = inf

∫ 1

0

K∆(γ(t), γ′(t))dt,

where γ : [0, 1]→ ∆ are such that γ(0) = ζ and γ(1) = ζ ′.
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Why ∆?

The Poincaré distance on ∆

Interpretation of Schwarz-Pick Lemma:

Holomorphic functions f : ∆→ ∆ are decreasing the distance:

d∆(f(ζ), f(ζ ′)) ≤ d∆(ζ, ζ ′).

Automorphisms f ∈ Aut(∆) are isometries.

Some facts about the Poincaré disc:

(∆, d∆) is a complete metric space.
Geodesic paths between two points are intersecting ∂∆
orthogonally.

Gauss curvature of the Poincaré disc is constant and negative.
Isometries of (∆, d∆): Aut(∆) or Aut(∆).
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Why ∆?

Why is the unit disc special ?

Theorem (Riemann mapping Theorem)

1 Let Ω ( C be a simply connected domain. Then Ω is
biholomorphic to ∆.

2 Compact Riemann surfaces with genus ≥ 2 admit ∆ as universal
cover.

Example: The upper half plane H = {ζ ∈ C | =mζ > 0} is

biholomorphic to ∆. Isometry from ∆ to H is ζ 7→ i
1 + ζ

1− ζ
.
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The unit disc ∆
The Poincaré metric
Why ∆?

Analytic discs and the Riemann mapping Theorem

Let Ω ( C be a simply connected domain.

Assume the boundary ∂Ω of Ω is continuous. ”The” Riemann
mapping between ∆ and Ω extends continuously up to ∂∆; it is an
analytic disc attached to ∂Ω.
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An observation due to Poincaré

Theorem (Poincaré 1907)

For n ≥ 2, the unit ball

Bn = {z ∈ Cn | |z|2 = |z1|2 + |z2|2 + · · ·+ |zn|2 < 1}

is not biholomorphic to the unit polydisc

∆n = {z ∈ Cn | |zj | < 1 for j = 1, · · · , n}.

Obstruction: Geometry of the boundaries (presence of complex
objects).
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Poincaré equivalence problem 1907

Questions:

Determine when and how domains of Cn can be mapped into one
another by means of a holomorphic mapping.

Carathéodory 1926, Bergman 1950, Kobayashi 1967: theory of
invariant metrics.

Determine when and how real submanifolds of Cn can be
mapped into one another by means of a holomorphic mapping.

Poincaré 1907, Segre 1931, E. Cartan 1932, Chern-Moser 1975:
CR geometry. Invariants by means of Taylor series coefficients.
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Kobayashi pseudometric

Let Ω ⊂ Cn be a domain.

Definition (Kobayashi pseudometric)

Let z ∈ Ω and v ∈ Cn:

KΩ(z, v) = inf
{1

r
> 0 | f : ∆→ Ω holomorphic,

f(0) = z, f ′(0) = rv
}
.

Remarks:

Biholomorphic invariant.

Natural extension of the Poincaré metric in higher dimension.

Measures the size of holomorphic discs contained in Ω.

Can be degenerate.
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Kobayashi hyperbolicity

Define the Kobayashi pseudodistance dΩ(z, z′) by considering lengths
of smooth paths joining z and z′.

Definition

Ω is hyperbolic if the Kobayashi pseudodistance dΩ is a distance.

Ω is complete hyperbolic if (Ω, dΩ) is a complete metric space.

Examples:

∆, H, ∆ \ {0}, Bn and ∆n are complete hyperbolic.

Any bounded domain in Cn is hyperbolic.

{z ∈ C2 | 1 < |z|2 < 4} is hyperbolic but not complete.

{z ∈ C2 | <ez2 + |z1|2 < 0} is unbounded complete hyperbolic.

Cn is not hyperbolic. Any domain containing a complex line is
not hyperbolic.

Florian Bertrand Analytic discs in Complex Analysis



Set up
The Poincaré metric
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First example: Wong-Rosay theorem
Second example: Lempert theory of extremal discs

An important rigidity result

Theorem (Wong 1977, Rosay 1979)

Let Ω be a smoothly bounded strictly pseudoconvex domain of Cn.
Assume that Aut(Ω) acts transitively on Ω (resp. is noncompact).
Then Ω is biholomorphic to the unit ball Bn.

Remark: Estimates of the Kobayashi metric near the boundary
(Graham 1975)

Florian Bertrand Analytic discs in Complex Analysis



Set up
The Poincaré metric
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Extremal discs

Recall that for z ∈ Ω and v ∈ Cn:

KΩ(z, v) = inf
{1

r
> 0 | f : ∆→ Ω holomorphic,

f(0) = z, f ′(0) = rv
}
.

Remark: When Ω is bounded, there is a disc f : ∆→ Ω with f(0) = z
and f ′(0) = 1

KΩ(z,v)v. Such a disc is called an extremal disc of Ω for

(z, v).

Examples:

The set of extremal discs of ∆ is Aut(∆).

Extremal discs of Bn centered at the origin are linear discs
f(ζ) = ζv (here ‖v‖ = 1). Extremal discs of Bn are the
holomorphic isometries f : (∆, d∆)→ (Bn, dBn

).

f0(ζ) = (ζ, 0) and f1(ζ) = (ζ, ζ2) are extremal discs of ∆2 for
((0, 0), (1, 0)).
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An invariant Finsler metric
From metric to geometry

First example: Wong-Rosay theorem
Second example: Lempert theory of extremal discs

Extremal discs

Recall that for z ∈ Ω and v ∈ Cn:

KΩ(z, v) = inf
{1

r
> 0 | f : ∆→ Ω holomorphic,

f(0) = z, f ′(0) = rv
}
.

Remark: When Ω is bounded, there is a disc f : ∆→ Ω with f(0) = z
and f ′(0) = 1

KΩ(z,v)v. Such a disc is called an extremal disc of Ω for

(z, v).
Examples:

The set of extremal discs of ∆ is Aut(∆).

Extremal discs of Bn centered at the origin are linear discs
f(ζ) = ζv (here ‖v‖ = 1). Extremal discs of Bn are the
holomorphic isometries f : (∆, d∆)→ (Bn, dBn

).

f0(ζ) = (ζ, 0) and f1(ζ) = (ζ, ζ2) are extremal discs of ∆2 for
((0, 0), (1, 0)).

Florian Bertrand Analytic discs in Complex Analysis



Set up
The Poincaré metric
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Lempert theory of extremal discs

Let Ω be a bounded smooth strongly convex domains in Cn.

Theorem (Lempert 1981)

Ω admits a singular foliation through any point by images of extremal
discs.

Consequences and remarks:

Extremal discs are holomorphic isometries, are smooth up to the
boundary, and are isolated.

Allows to construct a circular representation of Ω: Φz : Ω→ Bn.

Extremal discs are stationary (Poletskii 1983: stationarity =
Euler-Lagrange)

Birth of Stationary discs.
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a few words on stationary discs

They are analytic discs

Biholomorphically invariant

Their existence is well understood for ”nondegenerate”
hypersurfaces and relies on nonlinear Riemann-Hilbert problems
(Forstnerič 1987, Globevnik 1993-1994)

They usually form a submanifold of finite dimension (of the
infinitely dimensional Banach submanifold of analytic discs).

Well adapted to study mapping problems (Lempert 1981, Huang
1994, Tumanov 2001), and to study the question ”how to
distinguish maps from one another?” (B-Blanc-Centi 2014, also
with Della Sala, Lamel, Meylan).

Florian Bertrand Analytic discs in Complex Analysis


	Set up
	The Poincaré metric
	The unit disc 
	The Poincaré metric
	Why ?

	An invariant Finsler metric
	An observation due to Poincaré
	The equivalence Problem
	The Kobayashi pseudometric
	Hyperbolicity

	From metric to geometry
	First example: Wong-Rosay theorem
	Second example: Lempert theory of extremal discs


