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Introduction

Disclaimer

I am not a specialist in dynamics, spectra, topology.
Mathematical story where we meet the three subjects,

a few friends and heroes
who helped me to get an idea.
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Introduction

What is 1 + 1 + · · ·+ 1 = ?

9 years ago, I heard Sylvie Paycha start a talk with :

1 + 1 + · · ·+ 1 + · · · =? (1)

How and why should we study such problems ?
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Introduction

Motivations : number theory and physics.

Casimir effect in quantum physics. Vacuum energy in QFT, infinite sums :

〈0|H|0〉 = C
∑
λ∈Spec

λ (2)

H Hamiltonian of the theory, an operator dictating the evolution of the
quantum system, |0 > denotes the vacuum state of the theory, a vector in the
state space describing the system and the sum runs over the spectrum of some
operator.
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Introduction

[Casimir]
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Introduction

How to make sense of divergent sums ?

∑∞
n=1 1 or

∑
λ∈Spec λ, counting an object, but divergent !

Heuristics of zeta
regularization :

1 Some set E with norm ‖.‖ measures size of objects,

2 Counting NT = |{a ∈ E s.t. ‖a‖ 6 T}|,
3 Complex function associated to counting function, for example

ζ(s) =
∑
a∈E
‖a‖−s or η(s) =

∑
a∈E

e−s‖a‖

4 Regularized value = special value of complex function.
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Introduction

Zeta regularization of an infinite sum.

Riemann zeta function

ζ(s) =
∞∑
n=1

1

ns
. (3)

Theorem

Riemann : ζ admits a meromorphic continuation to C.

Euler : ζ has special value at even integers

ζ(2k) = (−1)k+1 (2π)2k

2(2k)!
B2k , (4)

B2k Bernouilli numbers, in particular ζ(0) = − 1
2 .
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Introduction

A dictionary.

objects Prime numbers Eigenvalues ∆

counting NT = |{p 6 T}| NT = |{λ 6 T}|
function

asymptotics NT ∼ T
log(T )

NT ∼ CT
d
2

Hadamard Weyl

complex ζ(s) =
∑∞

1 n−s ζ∆(s) =
∑
λ−s

function =
∏

p(1− p−s) Riemann zeta spectral zeta

conv domain Re(s) > 1 Re(s) > d
2

analytic cont. Riemann Seeley

zeroes ? ?

special value ζ(0) = 1 + · · ·+ 1 + · · · = − 1
2

ζ∆(− 1
2
) = Casimir energy

Divergent count in dynamics ?
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Hyperbolic dynamics.

[Dynamics flow ]
Nguyen Viet Dang (Université Lyon 1) From dynamics to topology via spectra 9 / 41



Hyperbolic dynamics.

Hyperbolic dynamics, example 0.

Example

On R, x 7→ etx . Expanding

One repeller.

[Expanding map, real line]
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Hyperbolic dynamics.

Hyperbolic dynamics, example 0.

Imagine attractor is at infinity, compactified in S1.

[Compactified version]
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Hyperbolic dynamics.

Geodesic flow, example 1.

Geodesic flow on phase space (x , v) ∈ Rd × Rd position x , velocity v . Motion of
free particle at x when t = 0 and initial velocity v . On TRd , t 7→ (x + tv , v).

Downstairs, on position space = geodesic arc.

[Geodesic flow on plane]
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Hyperbolic dynamics.

What if we compactify Rd ?

[Geodesic flow torus]
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Hyperbolic dynamics.

Ergodic : most orbits distribute equally on phase space, one says equidistribute.

[Equidistribution torus]
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Hyperbolic dynamics.

Hyperbolic dynamics, example 2.

On a surface X with Riemannian metric g of negative curvature, what is a
geodesic arc ?

[Geodesic arc]
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Hyperbolic dynamics.

Hyperbolic dynamics, example 3.

Surface X , with metric g of negative curvature.

What does it mean negative
curvature ?

[Geodesic triangle]
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Hyperbolic dynamics.

Geodesic flow on SX hyperbolic and ergodic.

Theorem (Anosov)

The geodesic flow on SX is ergodic, in fact it is a consequence of being Anosov
(no joke) !

What is Anosov ?
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Hyperbolic dynamics.

Anosov

[Anosov decomposition of TSX]

[Stable and unstable foliations]
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Dynamical spectras.

Omri Sarig’s thought experiment.

A thought experiment. Drop a bit of ink into a glass of water, then stir it with a
spoon.

Can you predict where individual ink particles will end after 1 min ?

NO : the motion of ink particles is chaotic.

Can you predict the density of the ink particles after 1 min ?

YES : it will be nearly constant, equal to | mass of ink |
|volume of water+ink| .
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Dynamical spectras.

Transfer operators : motivation.

Gibbs’s insight : For chaotic systems, it is often easier to predict the behavior of
densities of large collections of initial conditions, then to predict the behavior of
individual initial conditions.

The transfer operator : The action of a dynamical system on mass densities,
extended objects.

Mathematical setup ?
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Dynamical spectras.

[transfer operator]
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Dynamical spectras.

Functional formalism of classical mechanics.

Classical functional formalism Quantum
configuration space (M, µ) C∞(M) H = L2(M, dµ)

mfd, measure Hilbert space

dynamics generator dΦt

dt = V ◦ Φt iLV ∆
V vector field Lie derivative Laplacian

Group Φt e−tV e it∆

flow transfer operator propagator
information Φt(x)

〈
ψ1, e

−tVψ2

〉 〈
ψ1, e

it∆ψ2

〉
trajectory dynamical correlator matrix coeff
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Dynamical spectras.

Viewing spectras of matrices.

H a matrix, ψ1, ψ2 some test vectors, consider matrix element〈
ψ1, e

−tHψ2

〉
=

∑
λ∈Spec(H)

e−tλP(λ, ψ1, ψ2) (5)

To capture large time t behaviour, Laplace transform

LCψ1,ψ2 (z) =

∫ ∞
0

(〈
ψ1, e

−tHψ2

〉)
e−tzdt =

〈
ψ1, (H + z)−1

ψ2

〉
. (6)

Poles of LCψ1,ψ2 = − spectrum of H.
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Dynamical spectras.

Pollicott–Ruelle resonances

On compact manifold M for H = V Anosov vector field, ψ1, ψ2 test functions,
poles of

LCψ1,ψ2 (z) =

∫ ∞
0

(∫
M

ψ1e−tVψ2dµ

)
e−tzdt =

〈
ψ1, (H + z)−1

ψ2

〉
, (7)

are called Pollicott–Ruelle resonances.

Nguyen Viet Dang (Université Lyon 1) From dynamics to topology via spectra 24 / 41



Dynamical spectras.

Why study dynamical spectras ?

Assume σ (V ) = {0 < λ1︸ ︷︷ ︸ 6 λ2 6 . . .} and ker(V ) = constant functions.

σ
(
e−tV

)
= {1 > e−tλ1 > . . .}.

Density ψ1 ∈ L2(M, dµ) of particles at entrance

Domain Ω, 1Ω indicator function

How many particles in Ω at time t ?

We find :∫
Ω

(
ψ1 ◦ Φ−t) dµ = 〈1Ω, e

−tVψ1〉

= 〈1Ω,
1

Vol(M)
1
2

〉〈 1

Vol(M)
1
2

, ψ1〉︸ ︷︷ ︸
projects on ker(V )

+ O
(
e−λ1t

)

=
Vol(Ω)

Vol(M)

∫
M

ψ1dµ+ O
(
e−λ1t

)

Exponential convergence to Nb particles× Vol(Ω)
Vol(M) .
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Dynamical spectras.

Dynamical features of spectras.

Spectral features =⇒ density ψ1 will equidistribute in M by mixing uniformly i.e.
ergodic and exponentially mixing dynamics.
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Back to topology.

Klingen–Siegel Theorems.

Theorem (Hecke, Klingen–Siegel, Shintani refined by Deligne-Ribet,
Cassou-Noguès)

Let f and b be two relatively prime ideals in the ring of integers OF . The partial
zeta function attached to the ray class b mod f is defined by

ζ(b, f, s) =
∑

a=b mod (f)

1

N (a)s
,Re(s) > 1 (8)

where a runs over all integral ideals in OF such that the fractional ideal ab−1 is a
principal ideal generated by a totally positive number in the coset 1 + fb−1. Then

ζ(b, f, 0) ∈ Q. (9)

Hard to understand but
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Back to topology.

Arithmetic results with knot theoretic interpretation.

Theorem (Bergeron-Charollois-Garcia-Venkatesh)

The special value ζ(b, f, 0) can be interpreted as a linking number of periodic
orbits in some 3–manifolds obtained by suspension of a linear automorphism of a
torus.

A result of similar flavour,

Theorem (Ghys, Duke-Imamoglu-Toth)

On the unit tangent bundle of the modular surface SL2(Z) \ SL2(R), linking of a
closed geodesic and the trefoil knot can be identified with the value of the
Rademacher function on the closed geodesic.
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Back to topology.
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Back to topology.

A result inspiring us.

Theorem (Dyatlov–Zworski)

X surface with negative curvature. Then

ζ(s) =
∏
γ

(1− e−s`(γ)) (10)

product over prime periodic orbits γ of the geodesic flow, has meromorphic
continuation on C (also Giuletti-Liverani-Pollicott).

ζ(s) = s−χ(X )(C +O(s)) (11)

hence lenght of periodic geodesics gives genus of X .
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Back to topology.

[Gabriel Rivière]
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Back to topology.

Poincaré series.

Surface X with negative curvature, (x , y) pair of points on X , consider

η(s) =
∑
γ

e−s`(γ) (12)

where the sum runs over geodesic arcs x → y .
More generally,
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Back to topology.

[Geodesic and orthogeodesic arcs]
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Back to topology.

Poincaré series.

Surface X with negative curvature, (Σ1,Σ2) pair of closed geodesic curves on X ,
consider

η(s) =
∑
γ

e−s`(γ), Re(s) > htop (13)

where the sum runs over orthogeodesic arcs Σ1 → Σ2. η appears in Margulis,
Pollicott, Sharp, Paternain, Mañé ...

Theorem (D-Rivière)

η has analytic continuation to the complex plane.

Poles of η ⊂ Pollicott-Ruelle resonances of the geodesic flow on SX

When Σ1,Σ2 are homologically trivial, no poles at s = 0.

η(0) = 1 + · · ·+ 1 + · · · ∈ Q explicit rational value obtained as linking
number of two Legendrian knots.
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Back to topology.

[Linking of Legendrian knots]
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Back to topology.

Main idea of proof.

L1, L2 two Legendrian curves lifting Σ1,Σ2 to cotangent. Then [L1], [L2] two
integration currents :∑

γ

e−s`(γ) =

∫ ∞
0

〈
[L1], iV e−tV [L2]

〉
e−tsdt

=
〈

[L1], iV (V + s)−1 [L2]
〉
.

When s = 0,
〈
[L1], iV V−1[L2]

〉
is a correlation function where iV V−1 similar to

Chern–Simons propagator, gives linking.
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Back to topology.
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Back to topology.

A dictionary.

objects Prime numbers Geodesic arcs

counting NT = |{p 6 T}| NT = |{γ; `(γ) 6 T}|
function

asymptotics NT ∼ T
log(T )

NT ∼ CehtopT

Hadamard Margulis

complex ζ(s) =
∑∞

1 n−s η(s) =
∑
γ e
−s`(γ)

function =
∏

p(1− p−s) Riemann zeta Poincaré series

conv domain Re(s) > 1 Re(s) > htop
analytic cont. Riemann Selberg in curvature − 1 D-Rivière

zeroes ? Pollicott-Ruelle

s = 0 ζ(0) = 1 + · · ·+ 1 + · · · = − 1
2

η(0) = 1 + · · ·+ 1 + · · · = 1
χ(X )
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Back to topology.

Thanks for your attention !
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Back to topology.
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Back to topology.
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