From dynamics to topology via spectra

Nguyen Viet Dang ${ }^{1}$ Gabriel Rivière ${ }^{2}$

${ }^{1}$ Université Lyon 1
${ }^{2}$ Université Nantes

Disclaimer

I am not a specialist in dynamics, spectra, topology. Mathematical story where we meet the three subjects,

Disclaimer

I am not a specialist in dynamics, spectra, topology. Mathematical story where we meet the three subjects, a few friends and heroes who helped me to get an idea.

What is $1+1+\cdots+1=$?

9 years ago, I heard Sylvie Paycha start a talk with :

$$
\begin{equation*}
1+1+\cdots+1+\cdots=? \tag{1}
\end{equation*}
$$

How and why should we study such problems?

Motivations : number theory and physics.

Casimir effect in quantum physics. Vacuum energy in QFT, infinite sums :

$$
\begin{equation*}
\langle 0| H|0\rangle=C \sum_{\lambda \in \text { Spec }} \lambda \tag{2}
\end{equation*}
$$

Motivations : number theory and physics.

Casimir effect in quantum physics. Vacuum energy in QFT, infinite sums :

$$
\begin{equation*}
\langle 0| H|0\rangle=C \sum_{\lambda \in \text { Spec }} \lambda \tag{2}
\end{equation*}
$$

H Hamiltonian of the theory, an operator dictating the evolution of the quantum system, $\mid 0>$ denotes the vacuum state of the theory, a vector in the state space describing the system and the sum runs over the spectrum of some operator.

How to make sense of divergent sums?

$\sum_{n=1}^{\infty} 1$ or $\sum_{\lambda \in S_{\text {pec }}} \lambda$, counting an object, but divergent!

How to make sense of divergent sums?

$\sum_{n=1}^{\infty} 1$ or $\sum_{\lambda \in S_{\text {pec }}} \lambda$, counting an object, but divergent! Heuristics of zeta regularization :
(1) Some set \mathcal{E} with norm $\|$.$\| measures size of objects,$
(2) Counting $N_{T}=\mid\{a \in \mathcal{E}$ s.t. $\|a\| \leqslant T\} \mid$,
© Complex function associated to counting function, for example

$$
\zeta(s)=\sum_{a \in \mathcal{E}}\|a\|^{-s} \text { or } \eta(s)=\sum_{a \in \mathcal{E}} e^{-s\|a\|}
$$

(Regularized value $=$ special value of complex function.

Zeta regularization of an infinite sum.

Riemann zeta function

$$
\begin{equation*}
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} . \tag{3}
\end{equation*}
$$

Theorem
Riemann : ζ admits a meromorphic continuation to \mathbb{C}.

Zeta regularization of an infinite sum.

Riemann zeta function

$$
\begin{equation*}
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} . \tag{3}
\end{equation*}
$$

Theorem
Riemann : ζ admits a meromorphic continuation to \mathbb{C}.
Euler : ζ has special value at even integers

$$
\begin{equation*}
\zeta(2 k)=(-1)^{k+1} \frac{(2 \pi)^{2 k}}{2(2 k)!} B_{2 k}, \tag{4}
\end{equation*}
$$

$B_{2 k}$ Bernouilli numbers, in particular $\zeta(0)=-\frac{1}{2}$.

A dictionary.

objects	Prime numbers	Eigenvalues Δ
counting function	$N_{T}=\|\{p \leqslant T\}\|$	$N_{T}=\|\{\lambda \leqslant T\}\|$
asymptotics	$N_{T} \sim \frac{T}{\log (T)}$	$N_{T} \sim C T^{\frac{d}{2}}$
	H Hadamard	Weyl
complex function	$\zeta(s)=\sum_{1}^{\infty} n^{-s}$ $=\prod_{p}\left(1-p^{-s}\right)$ Riemann zeta	$\zeta_{\Delta}(s)=\sum \lambda^{-s}$ spectral zeta
conv domain	$R e(s)>1$	$R e(s)>\frac{d}{2}$
analytic cont.	Riemann	Seeley
zeroes	$?$	$?$
special value	$\zeta(0)=1+\cdots+1+\cdots=-\frac{1}{2}$	$\zeta_{\Delta}\left(-\frac{1}{2}\right)=$ Casimir energy

A dictionary.

objects	Prime numbers	Eigenvalues Δ
counting function	$N_{T}=\|\{p \leqslant T\}\|$	$N_{T}=\|\{\lambda \leqslant T\}\|$
asymptotics	$N_{T} \sim \frac{T}{\log (T)}$	
Hadamard	$N_{T} \sim C T^{\frac{d}{2}}$	
complex function	$\zeta(s)=\sum_{1}^{\infty} n^{-s}$	$\prod_{p}\left(1-p^{-s}\right)$ Riemann zeta

Divergent count in dynamics?

Hyperbolic dynamics, example 0.
Example
On $\mathbb{R}, x \mapsto e^{t} x$. Expanding
One repeller.

Hyperbolic dynamics, example 0.
Imagine attractor is at infinity, compactified in \mathbb{S}^{1}.

[Compactified version] .

Geodesic flow, example 1.

Geodesic flow on phase space $(x, v) \in \mathbb{R}^{d} \times \mathbb{R}^{d}$ position x, velocity v. Motion of free particle at x when $t=0$ and initial velocity v. On $T \mathbb{R}^{d}, t \mapsto(x+t v, v)$.

Geodesic flow, example 1.
Geodesic flow on phase space $(x, v) \in \mathbb{R}^{d} \times \mathbb{R}^{d}$ position x, velocity v. Motion of free particle at x when $t=0$ and initial velocity v. On $T \mathbb{R}^{d}, t \mapsto(x+t v, v)$.
Downstairs, on position space $=$ geodesic arc.
Motion flee particle \mathbb{R}^{2}

x pori
\checkmark vebrity
[Geodesic flow on plane]

What if we compactify \mathbb{R}^{d} ?

Geodesic flown
torus \prod^{2}
[Geodesic flow torus] .

Ergodic : most orbits distribute equally on phase space, one says equidistribute.
$\angle \theta$ imational slope

dense
[Equidistribution torus]

Hyperbolic dynamics, example 2.

On a surface X with Riemannian metric g of negative curvature, what is a geodesic arc?

[Geodesic arc]

Hyperbolic dynamics, example 3.

Surface X, with metric g of negative curvature.

Hyperbolic dynamics, example 3.
Surface X, with metric g of negative curvature. What does it mean negative curvature?

[Geodesic triangle] .

Geodesic flow on SX hyperbolic and ergodic.

Theorem (Anosov)
The geodesic flow on SX is ergodic, in fact it is a consequence of being Anosov (no joke)!

Geodesic flow on SX hyperbolic and ergodic.

Theorem (Anosov)
The geodesic flow on SX is ergodic, in fact it is a consequence of being Anosov (no joke)!

What is Anosov?

Anosov

[Anosov decomposition of TSX]

Es: mate, Es stable, Eu instable

[Stable and unstable foliations]

Omri Sarig's thought experiment.

A thought experiment. Drop a bit of ink into a glass of water, then stir it with a spoon.

- Can you predict where individual ink particles will end after 1 min ?

Omri Sarig's thought experiment.

A thought experiment. Drop a bit of ink into a glass of water, then stir it with a spoon.

- Can you predict where individual ink particles will end after 1 min ?
- NO : the motion of ink particles is chaotic.

Omri Sarig's thought experiment.

A thought experiment. Drop a bit of ink into a glass of water, then stir it with a spoon.

- Can you predict where individual ink particles will end after 1 min ?
- NO : the motion of ink particles is chaotic.
- Can you predict the density of the ink particles after 1 min?

Omri Sarig's thought experiment.

A thought experiment. Drop a bit of ink into a glass of water, then stir it with a spoon.

- Can you predict where individual ink particles will end after 1 min ?
- NO : the motion of ink particles is chaotic.
- Can you predict the density of the ink particles after 1 min ?
- YES : it will be nearly constant, equal to $\frac{\mid \text { mass of ink | }}{\mid \text { |volume of water+ink| }}$.

Transfer operators : motivation.

Gibbs's insight : For chaotic systems, it is often easier to predict the behavior of densities of large collections of initial conditions, then to predict the behavior of individual initial conditions.

Transfer operators : motivation.

Gibbs's insight : For chaotic systems, it is often easier to predict the behavior of densities of large collections of initial conditions, then to predict the behavior of individual initial conditions.

The transfer operator : The action of a dynamical system on mass densities, extended objects.

Transfer operators : motivation.

Gibbs's insight : For chaotic systems, it is often easier to predict the behavior of densities of large collections of initial conditions, then to predict the behavior of individual initial conditions.

The transfer operator : The action of a dynamical system on mass densities, extended objects.

Mathematical setup?

Functional formalism of classical mechanics.

	Classical	functional formalism	Quantum
configuration space	(M, μ) mfd, measure	$C^{\infty}(M)$	$\mathcal{H}=L^{2}(M, d \mu)$ Hilbert space
dynamics generator	$\frac{d \Phi^{t}}{d t}=V \circ \Phi^{t}$	$i \mathcal{L}_{V}$	Δ
	V vector field	Lie derivative	Laplacian
Group	Φ^{t}	$e^{-t V}$	$e^{i t \Delta}$ flow
transfer operator	propagator		
information	$\Phi^{t}(x)$	$\left\langle\psi_{1}, e^{-t V} \psi_{2}\right\rangle$	$\left\langle\psi_{1}, e^{i t \Delta} \psi_{2}\right\rangle$
	trajectory	dynamical correlator	matrix coeff

Viewing spectras of matrices.

H a matrix, ψ_{1}, ψ_{2} some test vectors, consider matrix element

$$
\begin{equation*}
\left\langle\psi_{1}, e^{-t H} \psi_{2}\right\rangle=\sum_{\lambda \in \operatorname{Spec}(H)} e^{-t \lambda} P\left(\lambda, \psi_{1}, \psi_{2}\right) \tag{5}
\end{equation*}
$$

Viewing spectras of matrices.

H a matrix, ψ_{1}, ψ_{2} some test vectors, consider matrix element

$$
\begin{equation*}
\left\langle\psi_{1}, e^{-t H} \psi_{2}\right\rangle=\sum_{\lambda \in \operatorname{Spec}(H)} e^{-t \lambda} P\left(\lambda, \psi_{1}, \psi_{2}\right) \tag{5}
\end{equation*}
$$

To capture large time t behaviour, Laplace transform

$$
\begin{equation*}
\mathcal{L} C_{\psi_{1}, \psi_{2}}(z)=\int_{0}^{\infty}\left(\left\langle\psi_{1}, e^{-t H} \psi_{2}\right\rangle\right) e^{-t z} d t=\left\langle\psi_{1},(H+z)^{-1} \psi_{2}\right\rangle \tag{6}
\end{equation*}
$$

Poles of $\mathcal{L} C_{\psi_{1}, \psi_{2}}=-$ spectrum of H.

Pollicott-Ruelle resonances

On compact manifold M for $H=V$ Anosov vector field, ψ_{1}, ψ_{2} test functions, poles of

$$
\begin{equation*}
\mathcal{L} C_{\psi_{1}, \psi_{2}}(z)=\int_{0}^{\infty}\left(\int_{M} \psi_{1} e^{-t V} \psi_{2} d \mu\right) e^{-t z} d t=\left\langle\psi_{1},(H+z)^{-1} \psi_{2}\right\rangle, \tag{7}
\end{equation*}
$$

are called Pollicott-Ruelle resonances.

Why study dynamical spectras?

Assume $\sigma(V)=\{\underbrace{0<\lambda_{1}} \leqslant \lambda_{2} \leqslant \ldots\}$ and $\operatorname{ker}(V)=$ constant functions.

Why study dynamical spectras?

Assume $\sigma(V)=\{\underbrace{0<\lambda_{1}} \leqslant \lambda_{2} \leqslant \ldots\}$ and $\operatorname{ker}(V)=$ constant functions. $\sigma\left(e^{-t V}\right)=\left\{1>e^{-t \lambda_{1}} \geqslant \ldots\right\}$.

- Density $\psi_{1} \in L^{2}(M, d \mu)$ of particles at entrance
- Domain $\Omega, 1_{\Omega}$ indicator function

Why study dynamical spectras?

Assume $\sigma(V)=\{\underbrace{0<\lambda_{1}} \leqslant \lambda_{2} \leqslant \ldots\}$ and $\operatorname{ker}(V)=$ constant functions. $\sigma\left(e^{-t V}\right)=\left\{1>e^{-t \lambda_{1}} \geqslant \ldots\right\}$.

- Density $\psi_{1} \in L^{2}(M, d \mu)$ of particles at entrance
- Domain $\Omega, 1_{\Omega}$ indicator function
- How many particles in Ω at time t ?

Why study dynamical spectras?

Assume $\sigma(V)=\{\underbrace{0<\lambda_{1}} \leqslant \lambda_{2} \leqslant \ldots\}$ and $\operatorname{ker}(V)=$ constant functions.
$\sigma\left(e^{-t V}\right)=\left\{1>e^{-t \lambda_{1}} \geqslant \ldots\right\}$.

- Density $\psi_{1} \in L^{2}(M, d \mu)$ of particles at entrance
- Domain $\Omega, 1_{\Omega}$ indicator function
- How many particles in Ω at time t ?
- We find :

$$
\begin{aligned}
\int_{\Omega}\left(\psi_{1} \circ \Phi^{-t}\right) d \mu & =\left\langle 1_{\Omega}, e^{-t V} \psi_{1}\right\rangle \\
& =\underbrace{\left\langle 1_{\Omega}, \frac{1}{\operatorname{Vol}(V)}\right.}_{\text {projects on }} \begin{aligned}
\operatorname{Vol})^{\frac{1}{2}}
\end{aligned}\left\langle\frac{1}{\operatorname{Vol}(M)^{\frac{1}{2}}}, \psi_{1}\right\rangle
\end{aligned}+O\left(e^{-\lambda_{1} t}\right)
$$

Exponential convergence to Nb particles $\times \frac{\operatorname{Vol}(\Omega)}{\operatorname{Vol}(M)}$.

Dynamical features of spectras.

Spectral features \Longrightarrow density ψ_{1} will equidistribute in M by mixing uniformly i.e. ergodic and exponentially mixing dynamics.

Klingen-Siegel Theorems.

Theorem (Hecke, Klingen-Siegel, Shintani refined by Deligne-Ribet, Cassou-Noguès)
Let \mathfrak{f} and \mathfrak{b} be two relatively prime ideals in the ring of integers \mathcal{O}_{F}. The partial zeta function attached to the ray class \mathfrak{b} mod \mathfrak{f} is defined by

$$
\begin{equation*}
\zeta(\mathfrak{b}, \mathfrak{f}, s)=\sum_{\mathfrak{a}=\mathfrak{b}}^{\bmod (\mathfrak{f})} \frac{1}{\mathbf{N}(a)^{s}}, \operatorname{Re}(s)>1 \tag{8}
\end{equation*}
$$

where \mathfrak{a} runs over all integral ideals in \mathcal{O}_{F} such that the fractional ideal $\mathfrak{a b}^{-1}$ is a principal ideal generated by a totally positive number in the coset $1+\mathfrak{f b}^{-1}$. Then

$$
\begin{equation*}
\zeta(\mathfrak{b}, \mathfrak{f}, 0) \in \mathbb{Q} . \tag{9}
\end{equation*}
$$

Klingen-Siegel Theorems.

Theorem (Hecke, Klingen-Siegel, Shintani refined by Deligne-Ribet, Cassou-Noguès)
Let \mathfrak{f} and \mathfrak{b} be two relatively prime ideals in the ring of integers \mathcal{O}_{F}. The partial zeta function attached to the ray class \mathfrak{b} mod \mathfrak{f} is defined by

$$
\begin{equation*}
\zeta(\mathfrak{b}, \mathfrak{f}, s)=\sum_{\mathfrak{a}=\mathfrak{b}} \sum_{\bmod (\mathfrak{f})} \frac{1}{\mathbf{N}(a)^{s}}, \operatorname{Re}(s)>1 \tag{8}
\end{equation*}
$$

where \mathfrak{a} runs over all integral ideals in \mathcal{O}_{F} such that the fractional ideal $\mathfrak{a b}^{-1}$ is a principal ideal generated by a totally positive number in the coset $1+\mathfrak{f b}^{-1}$. Then

$$
\begin{equation*}
\zeta(\mathfrak{b}, \mathfrak{f}, 0) \in \mathbb{Q} . \tag{9}
\end{equation*}
$$

Hard to understand but

Arithmetic results with knot theoretic interpretation.

Theorem (Bergeron-Charollois-Garcia-Venkatesh)
The special value $\zeta(\mathfrak{b}, \mathfrak{f}, 0)$ can be interpreted as a linking number of periodic orbits in some 3-manifolds obtained by suspension of a linear automorphism of a torus.

A result of similar flavour,
Theorem (Ghys, Duke-Imamoglu-Toth)
On the unit tangent bundle of the modular surface $S L_{2}(\mathbb{Z}) \backslash S L_{2}(\mathbb{R})$, linking of a closed geodesic and the trefoil knot can be identified with the value of the Rademacher function on the closed geodesic.

A result inspiring us.

Theorem (Dyatlov-Zworski)
X surface with negative curvature. Then

$$
\begin{equation*}
\zeta(s)=\prod_{\gamma}\left(1-e^{-s \ell(\gamma)}\right) \tag{10}
\end{equation*}
$$

product over prime periodic orbits γ of the geodesic flow, has meromorphic continuation on \mathbb{C} (also Giuletti-Liverani-Pollicott).

$$
\begin{equation*}
\zeta(s)=s^{-\chi(X)}(C+\mathcal{O}(s)) \tag{11}
\end{equation*}
$$

hence lenght of periodic geodesics gives genus of X.

Poincaré series.

Surface X with negative curvature, (x, y) pair of points on X, consider

$$
\begin{equation*}
\eta(s)=\sum_{\gamma} e^{-s \ell(\gamma)} \tag{12}
\end{equation*}
$$

where the sum runs over geodesic arcs $x \rightarrow y$.
More generally,
[Geodesic and orthogeodesic arcs]

γ orthogeodesic arc
Σ_{1}
From dynamics to topology via spectra

Poincaré series.

Surface X with negative curvature, $\left(\Sigma_{1}, \Sigma_{2}\right)$ pair of closed geodesic curves on X, consider

$$
\begin{equation*}
\eta(s)=\sum_{\gamma} e^{-s \ell(\gamma)}, \quad \operatorname{Re}(s)>h_{t o p} \tag{13}
\end{equation*}
$$

where the sum runs over orthogeodesic arcs $\Sigma_{1} \rightarrow \Sigma_{2} . \eta$ appears in Margulis, Pollicott, Sharp, Paternain, Mañé ...

Theorem (D-Rivière)

- η has analytic continuation to the complex plane.
- Poles of $\eta \subset$ Pollicott-Ruelle resonances of the geodesic flow on SX
- When Σ_{1}, Σ_{2} are homologically trivial, no poles at $s=0$.
- $\eta(0)=1+\cdots+1+\cdots \in \mathbb{Q}$ explicit rational value obtained as linking number of two Legendrian knots.

[Linking of Legendrian knots]

Main idea of proof.

L_{1}, L_{2} two Legendrian curves lifting Σ_{1}, Σ_{2} to cotangent. Then [L_{1}], $\left[L_{2}\right]$ two integration currents :

$$
\begin{aligned}
\sum_{\gamma} e^{-s \ell(\gamma)} & =\int_{0}^{\infty}\left\langle\left[L_{1}\right], i_{V} e^{-t V}\left[L_{2}\right]\right\rangle e^{-t s} d t \\
& =\left\langle\left[L_{1}\right], i_{V}(V+s)^{-1}\left[L_{2}\right]\right\rangle
\end{aligned}
$$

When $s=0,\left\langle\left[L_{1}\right], i_{V} V^{-1}\left[L_{2}\right]\right\rangle$ is a correlation function where $i_{V} V^{-1}$ similar to Chern-Simons propagator, gives linking.

A dictionary.

objects	Prime numbers	Geodesic arcs
counting function	$N_{T}=\|\{p \leqslant T\}\|$	$N_{T}=\|\{\gamma ; \ell(\gamma) \leqslant T\}\|$
asymptotics	$N_{T} \sim \frac{T}{\log (T)}$	
Hadamard	$N_{T} \sim C^{h_{\text {top }} T}$	
	Margulis	
complex	$\zeta(s)=\sum_{1}^{\infty} n^{-s}$	$\eta(s)=\sum_{\gamma} e^{-s \ell(\gamma)}$
function	$=\prod_{p}\left(1-p^{-s}\right)$ Riemann zeta	Poincaré series
conv domain	$\operatorname{Re}(s)>1$	$R e(s)>h_{\text {top }}$
analytic cont.	Riemann	Selberg in curvature -1 D-Rivière
zeroes	$?$	Pollicott-Ruelle
$s=0$	$\zeta(0)=1+\cdots+1+\cdots=-\frac{1}{2}$	$\eta(0)=1+\cdots+1+\cdots=\frac{1}{\chi(X)}$

Thanks for your attention!

$$
\eta(0)=\frac{3}{4}
$$

$$
x(x)=-4
$$

