
An Introductory Course on Sage

Lecture Notes
Summer Term 2020

University of Potsdam

Dr. Saskia Roos
Michael Jung

Copyright © 2020 Saskia Roos, Michael Jung

This work is based on [7] and henceforth distributed under the license Creative Com-
mons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0). You may obtain a copy
of the license at https://creativecommons.org/licenses/by-sa/4.0/.

The design is adapted from [6] developed by Mathias Legrand and Vel.

Last Update: September 30, 2020

https://creativecommons.org/licenses/by-sa/4.0/
mailto:legrand.mathias@gmail.com
mailto:vel@latextemplates.com

Contents

I The Basics

1 Why Sage? . 11

2 Getting Started . 13

2.1 Installing Sage 13
2.1.1 Linux . 13
2.1.2 Windows . 14
2.1.3 MacOS . 14

2.2 The Jupyter Notebook 15
2.2.1 First Steps . 15
2.2.2 Code Cells . 15
2.2.3 Markdown Cells . 16

2.3 First Calculations 16
2.3.1 Basic Arithmetics . 16
2.3.2 Predefined Functions and Values . 18
2.3.3 Simple Plots . 18

2.4 Useful Features 20

3 Elementary Algebra and Calculus . 21

3.1 Variables and Symbolic Expressions 21
3.1.1 Python vs. Sage . 21
3.1.2 Symbolic Expressions . 23

3.1.3 Simplifications . 25

3.2 Elementary Algebra 27
3.2.1 Polynomial and Fractional Expressions . 27
3.2.2 Equations . 28

3.3 Calculus 32
3.3.1 Symbolic Functions . 32
3.3.2 Sums . 32
3.3.3 Sequences and Series . 34
3.3.4 Derivatives and Integrals . 36
3.3.5 Vector and Matrix computation . 40

II Programming and Data Structure

4 Algorithmics . 49

4.1 Procedures and Functions 49
4.2 Conditionals 51
4.3 Loops 52
4.3.1 Example: A Sequence with an unknown Limit . 55

4.4 Output 57

5 Lists and Other Data Structures . 59

5.1 Lists 59
5.1.1 Global List Operations . 61
5.1.2 List Manipulation . 64
5.1.3 Example: The Sieve of Eratosthenes . 66
5.1.4 Example: The UlamSsequence . 67

5.2 Character Strings 68
5.3 Finite Sets 68
5.3.1 Example: The Inclusion-Exclusion Principle . 69

5.4 Dictionaries 71
5.5 More on Data Structures 72
5.5.1 Shared or Duplicated Data Structure . 72
5.5.2 Mutable and Immutable Data Structure . 72

III Graphics

6 2D Graphics . 77

6.1 Drawing Curves 77
6.1.1 Graphical Representation of a Function . 77
6.1.2 Parametric Plot . 87
6.1.3 Curves in Polar Coordinates . 87

6.1.4 Curve defined by an Implicit Equation . 89

6.2 Vector Fields 90
6.3 Complex Functions 91
6.4 Density and Contour Plots 92
6.5 Data Plot 95
6.6 More Graphic Primitives 95

7 3D Graphics . 107

7.1 Plotting Functions 107
7.1.1 Drawing the Graph of a Function . 107
7.1.2 Parametric Plots . 112
7.1.3 Implicit Plot . 113

7.2 Vector Fields 114
7.3 More Graphic Primitives 114

IV Algebra and Symbolic Computation

8 Computational Domains . 119

8.1 Sage is Object-Oriented 119
8.2 Elements and Parents 121
8.3 Domains with a Normal Form 122
8.3.1 Elementary Domains . 122
8.3.2 Compount domains . 125

8.4 Expressions vs. Computational Domains 128
8.4.1 Symbolic Polynomials vs. Polynomial Rings . 128
8.4.2 Applications . 133
8.4.3 Example: The Aliquot sequence . 135

8.5 Primality Test 136

9 Polynomial Rings . 139

9.1 Euclidean Arithmetic 142
9.1.1 Divisibility . 142
9.1.2 Ideals and Quotients . 145

9.2 Factorization and Roots 147
9.2.1 Factorization . 148
9.2.2 Roots . 149

9.3 Rational Functions 150
9.4 Formal Power Series 152
9.4.1 Operations on Truncated Power Series . 152
9.4.2 Applications involving Power Series . 154
9.4.3 Lazy Power Series . 156

10 Matrices . 159

10.1 Constructions and Elementary Manipulations 159
10.1.1 Matrix Spaces and Groups . 159
10.1.2 Matrix and Vector Constructions . 162
10.1.3 Basic Manipulations and Arithmetic . 163

10.2 Matrix Computations 165
10.2.1 Gaussian Elimination and Normal Forms . 165
10.2.2 Linear System Solving, Image and Nullspace Basis 170

10.3 Spectral Decomposition 173
10.3.1 Cyclic Invariant Subspaces and the Frobenius Normal Form 174
10.3.2 Eigenvalues and Eigenvectors . 179
10.3.3 Jacobi Normal Form . 181

11 Polynomial Systems . 185

11.1 Polynomials in Several Variables 185
11.2 Polynomial Systems and Ideals 190
11.2.1 A first Example . 190
11.2.2 Ideals and Systems . 194
11.2.3 Computing Modulo an Ideal . 197
11.2.4 Radical of an Ideal and Solutions . 199
11.2.5 Operations on Ideals . 201

11.3 Solving Strategies 201
11.3.1 Elimination . 202
11.3.2 Zero-Dimensional Systems . 208

12 Differential Equations . 217

12.1 First Order Ordinary Differential Equations 217
12.1.1 Types of First Order ODEs . 219
12.1.2 A Parametric Equation . 228
12.1.3 Numerical Solving . 229

12.2 Second Order Equations 231
12.2.1 How to solve a PDE: The Heat Equation . 232

12.3 The Laplace Transform 233
12.4 Systems of Linear Differential Equations 236
12.4.1 Systems of First Order Differential Equations . 236
12.4.2 Systems of Higher Order . 237
12.4.3 Numerical Solving . 240

V Appendix

A Git It . 247

A.1 Getting Started 247
A.1.1 Installing Git . 247

A.2 How to Use Git 248
A.2.1 Clone and Pull . 248
A.2.2 Create your own Repository . 248
A.2.3 Stage Area, Commits and Push . 249
A.2.4 Branches . 249
A.2.5 Workflow Example . 250

Bibliography . 253

Online 253
Books 253

Index . 255

I

1 Why Sage? . 11

2 Getting Started . 13
2.1 Installing Sage
2.2 The Jupyter Notebook
2.3 First Calculations
2.4 Useful Features

3 Elementary Algebra and Calculus 21
3.1 Variables and Symbolic Expressions
3.2 Elementary Algebra
3.3 Calculus

The Basics

1. Why Sage?

Even though mathematics is a beautiful kind of art, it sometimes requires tedious tasks:
calculating confusing integrals, computing complicated Taylor expansions up to high
orders, operating with matrices in high dimensions or repeating the very same calculation
over and over again. It would be such a relieve if we had a machine which could do
the whole time-consuming work for us. Of course, it is well-known that every personal
computer is capable of these tasks. Thus, we only need the right software.
Sage (“System for Algebra and Geometry Experimentation”) is an open-source

computer algebra system for desktop computers and represents a powerful alternative to
Mathematica (i. e. WolframAlpha), MATLAB and Magma. Its library contains over 100
additional open-source packages, which are all interfaced via the Python programming
language. Therewith, Sage is capable of symbolic as well as numerical computations in
analysis, algebra, linear algebra, geometry, tensor algebra and more. Although Sage is
based on Python, it provides a slightly different syntax closer to actual mathematics,
which turns it into a perfect tool for mathematicians.

Throughout this course, we will survey Sage’s capabilities as well as limitations.
In this notes, we discuss Sage’s syntax in contrast to Python’s and give a glimpse of
internal processes. After this course, we will be able to use all basic functionalities of
Sage and apply them to mathematical problems. For these notes, we use version 9.0 of
Sage.

2. Getting Started

2.1 Installing Sage
The installation process of SageMath 9.0 depends on the operating system. We give
short introductions for Linux, Windows and macOS.

R It is also possible to run Sage externally via the web-based client CoCalc. After signing
up on https://cocalc. com , Sage can be used on a remote CoCalc-server. A free
membership allows only small calculations, which should be sufficient for this course.
However, as a precaution, we still recommend installing Sage on your local machine.

2.1.1 Linux
On Debian-based distributions, it is possible to install Sage using the apt manager.
However, the standard ppa usually does not provide the recent version of Sage. Rather
follow the subsequent instructions to install the most recent version of Sage on your
local machine:

1. Visit https://www.sagemath.org/download-linux.html and choose any down-
load server (recommendation: “Freie Universität Berlin, Germany”).

2. Extract the archive file into a directory of your choice.

3. Start a new terminal, change to the extraction folder and type the following
command into the command line to run Sage:

$./sage

If you have followed the instructions precisely, you should see this message in your
terminal:

https://cocalc.com
https://www.sagemath.org/download-linux.html

14 Chapter 2. Getting Started

Rewriting paths for your new installation directory
===

This might take a few minutes but only has to be done once.

patching ... (long list of files)

At this point, you should not move this directory if you expect Sage to function properly.
In case you want to start Sage from anywhere in your command line, simply use ln to
create a shortcut:

$ sudo ln -s /path/to/SageMath/sage /usr/local/bin/sage

Here, /path/to/SageMath/sage represents the actual path to your Sage installation.
From now on, you can run Sage by typing the command

$ sage

2.1.2 Windows
Before you install Sage on a Windows system, please make sure that your Windows
installation is of 64-bit type. If not, either switch to Linux, use CoCalc or install a 64-bit
Windows on your local machine. If Windows is of 64-bit type already, proceed with the
following instructions:

1. Visit https://github.com/sagemath/sage-windows/releases and download
the installer SageMath-9.0-Installer-v0.6.0.exe.

2. Execute the installer and follow the instructions.

3. Open the application “SageMath 9.0” to run the Sage console interface.

2.1.3 MacOS
The following instructions are intended for OS X version 10.4 and higher.

1. Visit https://www.sagemath.org/download-linux.html and choose any down-
load server (recommendation: “Freie Universität Berlin, Germany”).

2. Download the dmg according to your machine and double click on it.

3. Drag the sage folder to your favorite place, e. g. into /Applications.

4. Use finder to visit the sage folder and double click on “sage”.

5. Select to run it with Terminal:

a) Choose Applications and select “All Applications” in the “Enable:” drop
down.

b) Change the “Application” drop down to “Utilities”.

c) On the left, scroll and select “Terminal”.

6. After clicking “Open”, Sage should pop up in a window.

https://github.com/sagemath/sage-windows/releases
https://www.sagemath.org/download-linux.html

2.2 The Jupyter Notebook 15

2.2 The Jupyter Notebook
Jupyter Notebook is a web-based computational environment for creating documents
interacting with Python code. It is intended to present code in a nice way and is also
capable of LATEX formatting. Jupyter Notebook is part of the open-source project
Jupyter [2], and is already included in Sage. We discuss the absolute minimum for this
course. For a more detailed introduction into Jupyter Notebook, consult [1] instead.
In the following, when we speak of Jupyter, we usually mean Jupyter Notebook.

2.2.1 First Steps
In order to start Jupyter, type the following command into the Sage command line:

sage: !sage -n jupyter

A browser window pops up with the Jupyter web-interface.

R We recommend to create a separate folder for your Jupyter notebooks. To do so, click
on the upper right corner: New Folder . To rename the new folder, select the checkbox
next to it and click on Rename in the upper left corner. Click on the folder to change the
working directory.

To create a new Jupyter notebook running on the Sage kernel, click on New SageMath 9.0 .
Now, your browser should look like this:

Jupyter essentially distinguishes between two kind of cells, which we want to discuss
in the next two sections.

2.2.2 Code Cells
Code cells are blocks that contain code you want to execute. The code can be executed
by pressing + on your keyboard. Then the corresponding output is displayed
below:

To each executed code cell corresponds a label number which indicates when the cell
was executed on the kernel. While working with Jupyter, you should check on a regular
basis whether your code cells run in the correct order.

16 Chapter 2. Getting Started

2.2.3 Markdown Cells
It is convenient to surround your code with explanations in Markdown cells. Mark-
down cells contain formattable text and display their output just in-place. A plain-
text-formatting is provided via the Markdown language. Markdown supports headings,
listings, HTML and more, see [5] for details. Furthermore, LATEX code can be embedded
by enclosing the corresponding expressions with “$...$”.

To convert a code cell into a Markdown cell, select the cell you want to convert and
press M on your keyboard, or click on Cell Cell Type > Markdown in the menu bar. You
can convert it back to a code cell when you press Y . A Markdown cell carries its
content by pressing + .

2.3 First Calculations
Henceforth, all commands and calculations in Sage are presented as follows:

sage: 2+3
5

Here, the prefix sage indicates that we are using the Sage command line. If you prefer
Jupyter instead, just type in the subsequent code. The kernel will do its job.

2.3.1 Basic Arithmetics
Notice that all common operations such as +, -, *, / and parentheses are carried out
as usual.

sage: (3+4)*2/6
7/3

To operate with exponents, we use ^ or **:

sage: 5^4
625
sage: 5**4
625

R Notice that Python’s syntax differs from Sage’s for exponents. In Python, we must type
** to use exponents, but since Sage is preferably designed for mathematical purposes,
the operation ˆ is allowed here, too.

Apart from usual divisions, Sage offers division operations with pure integers. The
so-called floor-division operator // divides two integers and cuts their decimals.

sage: 23/7
23/7
sage: 23//7
3

To compute its remainder, we use the modulus operator % instead.

2.3 First Calculations 17

General Arithmetics

Binary Operations a+b, a-b, a*b, a/b
Exponent a^b or a**b

Square Root sqrt(a)
n-th Root a^(1/n)

Integer Arithmetics

Floor-Division a // b
Remainder a % b

Floor-Division & Remainder divmod(a,b)
Factorial n! factorial(n)

Binomial Coefficient
(

n
k

)
binomial (n,k)

Table 2.1.: Basic Operations in Sage.

sage: 23%7
2
sage: (23//7)*7 + 23%7
23

Both operations can be carried simultaneously by using divmod.

sage: divmod(23,7)
(3, 2)

As we can extract from Table 2.1, there are more common integer operations such as
factorials and binomial coefficients.

sage: factorial(6)
720
sage: binomial(8,3)
56

When we carry out the ordinary division with two integers, Sage automatically returns
the explicit fraction. To obtain a numerical approximation instead, we can either
write one of the involved numbers with a decimal point or use the numerical_approx
function.

sage: 23./7
3.28571428571429
sage: numerical_approx(23/7)
3.28571428571429

Furthermore, we can specify the precision of the numerical approximation by determin-
ing the number of digits.

sage: numerical_approx(23/7, digits=20)
3.2857142857142857143

18 Chapter 2. Getting Started

Predefined Functions

Exponential, Natural Logarithm exp, log
Logarithm w.r.t. Base b log(a,b)

Trig. Functions sin, cos, tan
Inverse Trig. Functions arcsin, arccos, arctan

Hyp. Trig. Functions sinh, cosh, tanh
Inverse Hyp. Trig. Functions arcsinh, arccosh, arctanh

Absolute Value / Modulus abs(a)

Special Values / Constants

Imaginary Unit i I or i
Plus / Minus Infinity ±Infinity or ±oo

π pi
Euler’s Constant e

Euler-Mascheroni Constant γ euler_gamma
Golden Ratio ϕ = (1+

√
5)/2 golden_ratio

Table 2.2.: Predefined Functions and Constants.

2.3.2 Predefined Functions and Values
Several usual mathematical functions and constants are already implemented in Sage. A
comprehensive list is provided in Table 2.2. If not stated otherwise, their computation is
done with exact results,

sage: tan(pi/3)
sqrt(3)
sage: exp(I*pi)
-1
sage: sqrt(2)
sqrt(2)

even if the expression sometimes looks unnecessarily complicated.

sage: exp(I*pi/4)
(1/2*I + 1/2)*sqrt(2)

Simplification of such expressions will be discussed in Section 3.1.3. After all, if desired,
we can still get the numerical approximation:

sage: numerical_approx(sqrt(2))
1.41421356237310
sage: numerical_approx(exp(I*pi/4))
0.707106781186548 + 0.707106781186548*I

2.3.3 Simple Plots
As a short preview, we present the basic plot functionalities of Sage. Using plot or
plot3d, we can draw a graph with respect to one or two variables. The syntax for plot

2.3 First Calculations 19

is given as follows:

plot(expression, depending variable, min value , max value)

A simple example yields:

sage: x = var(’x’)
sage: plot(x*sin(x), x, -pi, pi)

3 2 1 1 2 3

0.5

1.0

1.5

The syntax for plot3d is quite similar as can be seen in the following example.

sage: x,y = var(’x,y’)
sage: plot3d(x*sin(y), (x,-2,2), (y,-2,2))

These are only the basic plot commands. The graphical capabilities of Sage are much
wider. We discuss them in Part III.

20 Chapter 2. Getting Started

2.4 Useful Features
We shortly introduce four useful tools which come in quite handy for further use.

1. It is recommended to always leave comments within the code. Comments are
lines between your code which are ignored by the interpreter. They are introduced
with a hashtag #:

sage: 5+5 # this is a comment
10

2. It is possible display all outputs in LATEX. To achieve this, we type

sage: %display latex

Then all following outputs will be printed in LATEX. This comes in convenient, es-
pecially with regards to Jupyter: the LATEX output will be automatically compiled
there. The option can be undone with:

sage: %display plain

3. Due to the open-source nature of Sage, we have full access to the documentation
and source code of all available methods and functions. To obtain the documanta-
tion page containing the function’s description, its syntax and some examples of
usage, we add a

3. Elementary Algebra and Calculus

3.1 Variables and Symbolic Expressions
3.1.1 Python vs. Sage

In Section 2.3, we discussed explicit calculations within Sage. Since Sage is interfaced
via the Python programming language, we can facilitate these calculations and assign
explicit values to so-called Python variables in the following manner:

sage: x = 1
sage: x + 1
2

As we can see, the Python variable x has been set to 1 and can be used for further
calculations. By default, Sage stores the last three results in the Python variables _,
__ and ___:

sage: 4+5
9
sage: _ + 6
15
sage: __
9

Even though Python variables can be named arbitrarily, it is not recommended to
redefine predefined constants or functions. This could lead to confusing results:

sage: pi = -I
sage: exp(I*pi)
e

22 Chapter 3. Elementary Algebra and Calculus

Fortunately, the original value can be restored via

sage: from sage.all import pi

To restore all predefined variables and functions instead, we use the command

sage: restore()

When, in addition, all user-defined Python variables should be deleted, we type

sage: reset()

This command delivers a full reset of Sage.
In contrast to pure programming, in mathematics we mostly deal with indeterminates

in order to solve equations or provide general results. In Sage, these indeterminates are
realized by so-called symbolic variables, which have to be distinguished from Python
variables very carefully. Remember that we already encountered symbolic variables to
create plots, see Section 2.3.3. To establish a symbolic variable, we type.

sage: x = SR.var(’x’)
sage: x
x

As illustrated above, the command SR.var(’x’) returns a symbolic variable with
name x. From now on, this symbolic variable is stored in the Python variable x and can
be utilized for further computations.

sage: x-3
x - 3

Alternatively, we can use the command var:

sage: var(’y’)
y
sage: y
y

This command creates the symbolic variable y and automatically assigns it to its Python
pendant y.

R Even though it is possible to assign symbolic variables to any other Python variable,
it is not recommended to do so. In fact, if the symbolic variable x is not linked to the
Python variable x the code might become quite confusing.

sage: z = SR.var(’x’)
sage: 2*z - 1
2*x - 1
sage: x = 1
sage: 2*x - 1
1
sage: 2*z - x
2*x - 1

3.1 Variables and Symbolic Expressions 23

It is also possible to assign more than one symbolic variables in a row by typing.

sage: a, b, c, x = var(’a␣b␣c␣x’)
sage: a*x^2 + b*x + c
a*x^2 + b*x + c

To create a large number of symbolic variables at once, we can use the syntax

x = SR.var(’x’, n)

where n denotes a positive integer. This creates the symbolic variables x0, . . . ,xn−1. Each
of them can be accessed via x[i], where i is an integer between 0 and n−1:

sage: x = SR.var(’x’, 3)
sage: x[0] + 2*x[1] + 3*x[2]
x0 + 2*x1 + 3*x2

3.1.2 Symbolic Expressions
In the previous section, we discussed symbolic variables. In fact, symbolic variables are
a special case of symbolic expressions:

sage: x = SR.var(’x’)
sage: type(x)
<class ’sage.symbolic.expression.Expression’>

Even our examples from the previous chapter are symbolic expressions, although explicit
numbers are involved:

sage: type(pi)
<class ’sage.symbolic.expression.Expression’>
sage: type(sqrt(2))
<class ’sage.symbolic.expression.Expression’>

Symbolic expressions literally represent expressions rather than mathematical objects or
values. Hence, it can happen that Sage does not recognize two mathematically equal
expressions.

sage: bool(arctan(1/abs(x)) == pi/2 - arctan(abs(x)))
False

R The reason for the output above is the way the equality test bool(x==y) works: At first,
Sage takes the difference between x and y. Then Sage tries to transform this expression
to identical zero. If that succeeds, the method returns the value True. Instead of ==, a
bunch of other comparisons are allowed as well1:

==, !=, <=, >=, <, >

When we want to assign a specific value to a symbolic variable in a given symbolic
expression, we can substitute it as follows:

1Notice here that != represents the mathematical 6=.

24 Chapter 3. Elementary Algebra and Calculus

sage: x = var(’x’); expr = cos(x)
sage: expr(x=1)
cos(1)

R The semicolon ; allows us to write more separate commands in one single line.

More complicated expressions can be treated with subs or substitute respectively.
These methods allows us to substitute more variables at once and also replace one
symbolic variable by another.

sage: a, x = var(’a␣x’)
sage: expr = cos(x+a) * (x+1)
sage: expr.subs(a == -x)
x + 1
sage: expr.subs(x == pi, a == pi)
pi + 1

We preferably use == instead of = to denote an equality in the mathematical sense,
since = is reserved for assignments of Python variables. A thorough discussion about
mathematical equalities is given in Section 3.2.2.

When dealing with mathematical expressions, we need to make sure that our symbolic
variables live in the right domain. For that, we can use assumptions. To state an
assumption in Sage we use the function assume. All previous assumptions can be
removed with forget.

sage: x = var(’x’)
sage: assume(x >= 0)
sage: bool(abs(x) == x)
True
sage: forget(x >= 0)
sage: bool(abs(x) == x)
False

Assumptions are stored globally and can be accessed by assumptions at any time:

sage: x = var(’x’); assume(abs(x) < 1)
sage: assumptions()
[abs(x) < 1]

It is also possible to assume n ∈ Z as demonstrated in the following example:

sage: n = var(’n’); assume(n, ’integer’)
sage: sin(n*pi)
0

R Keep in mind that we can use the help function, i.e. we can type assume? to obtain more
detailed information, see Section 2.4.

3.1 Variables and Symbolic Expressions 25

3.1.3 Simplifications
Even though symbolic expressions provide exact results, they sometimes appear unnec-
essarily complicated:

sage: x = var(’x’)
sage: cos(x)^2 + sin(x)^2
cos(x)^2 + sin(x)^2

Although it is well-known that this expression equals 1, Sage does not simplify this
expression immediately.

To clean such expressions up, Sage provides several simplification methods. The
most elementary method is given by simplify.

sage: x = var(’x’)
sage: (x^2 / x).simplify()
x

For more complicated expressions, the type of simplification has to be made explicit.
Expressions containing factorials can be simplified with simplify_factorial:

sage: n = var(’n’)
sage: expr = factorial(n+1) / factorial(n)
sage: expr.simplify_factorial()
n + 1

Similarly, simplify_rational simplifies expressions containing fractions:

sage: x = var(’x’)
sage: expr = (x^2-1) / (x+1)
sage: expr.simplify_rational()
x - 1

To simplify trigonometric expressions, we have to use simplify_trig instead.

sage: x = var(’x’)
sage: (cos(x)^2 + sin(x)^2).simplify_trig()
1

Furthermore, it is possible to linearize a trigonometric expression using reduce_trig,
or to anti-linearize it using expand_trig:

sage: x = var(’x’)
sage: (cos(x)^3).reduce_trig()
1/4*cos(3*x) + 3/4*cos(x)
sage: (sin(3*x)).expand_trig()
3*cos(x)^2*sin(x) - sin(x)^3

To deal with expressions such as square roots, logarithms or exponentials, we use
canonicalize_radical:

sage: x, y = var(’x␣y’)
sage: (sqrt(abs(x)^2)).canonicalize_radical()

26 Chapter 3. Elementary Algebra and Calculus

Common Simplifications

Elementary Simplification simplify
Simplify Factorials simplify_factorial
Simplify Rationals simplify_rational

Simplify Trig. Functions simplify_trig
Linearize Trig. Functions reduce_trig

Anti-linearize Trig. Functions expand_trig
Full Simplification simplify_full, full_simplify

Choose Branch and Simplify canonicalize_radical

Table 3.1.: Common Simplifications provided by Sage

abs(x)
sage: (log(x*y)).canonicalize_radical()
log(x) + log(y)

R The command canonicalize_radical is special among the simplification methods.
In general, roots and logarithms have different branches in the complex plane. For
instance, the expression

√
x2 is not uniquely defined in C. Namely, we can have x or

−x depending on the branch we have picked. The method canonicalize_radical
chooses one branch by heuristics and simplifies on that.

All aforementioned simplification are combined in the command simplify_full.
This command invokes various simplifications in the following order:

simplify_factorial→ simplify_factorial
→ simplify_trig
→ simplify_rational
→ expand_sum

We recommend to use the help function to get to know to the detais of the command
expand_sum.

In Table 3.1 we have arranged a list of all simplifications discussed so far. These
simplifications are already quite powerful, but not omnipotent.

sage: x = var(’x’)
sage: (x^2 + 2*x + 1).simplify_full()
x^2 + 2*x + 1

A reasonable simplification of this expression should be (x+1)2. This example shows
that “simplification” is not a well-defined term. We resolve this particular situation in
the upcoming Section 3.2.1.

R There is a significant difference between symbolic and numerical computations.

A computer algebra system is made to deal with mathematical expressions by applying
purely symbolic operations leading to exact results. However, we still have to treat

3.2 Elementary Algebra 27

that with care. For example, the expression a/a is always simplified to 1. Thus, the
program’s solution of the equation ax = a will return x = 1 without treating the special
case a = 0 separately.

The disadvantage of numerical calculations is that numerical methods only approximate
to a given precision. Hence, many results are rounded and solutions are in general not
exact. For example, a pocket calculator only manipulates integers exactly up to only
twelve digits; larger numbers are rounded. Thus, the expression (1+ 1050)− 1050 is
evaluated “incorrectly” to 0 there.

3.2 Elementary Algebra
3.2.1 Polynomial and Fractional Expressions

In mathematics, we have a vast pool of transformations to rewrite polynomials or
fractions in a much simpler form. In the following, we describe the most common
transformations on polynomials and fractions supported by Sage.

As discussed in Section 3.1.3, the aforementioned simplifications are limited when
it comes to an expression like x2 + 2x+ 1. If we want to simplify this expression to
(x+1)2, we have to invoke factor.

sage: x = var(’x’)
sage: (x^2 + 2*x + 1).factor()
(x + 1)^2

To turn it back to its expanded version, we call expand.

sage: x = var(’x’)
sage: ((x+1)^2).expand()
x^2 + 2*x + 1

Applying the command factor_list instead of factor returns a list of the factors
together with their multiplicity.

sage: x, y = var(’x␣y’)
sage: (x^3 - y^3).factor_list()
[(x^2 + x*y + y^2, 1), (x - y, 1)]

In general, if a polynomial expression involves parentheses, we can first use expand to
expand the polynomial and then collect to group terms according to the power of a
given variable.

sage: x, y = var(’x␣y’)
sage: p = (x+y) * (x+1)^2
sage: p.expand()
x^3 + x^2*y + 2*x^2 + 2*x*y + x + y
sage: p.expand().collect(x)
x^3 + x^2*(y + 2) + x*(2*y + 1) + y
sage: p.expand().collect(y)
x^3 + 2*x^2 + (x^2 + 2*x + 1)*y + x

28 Chapter 3. Elementary Algebra and Calculus

Transformations for Polynomial Expression p

Expanding p.expand()
Collect Terms w.r.t. x p.collect(x)

Factorizing p.factor()
List of Factors p.factor_list()

Transformations for Rational Expression r

Expanding r.expand()
Factorizing r.factor()

Combining Terms with the Denominator r.combine()
Partial Fraction Decomposition w.r.t. x r.partial_fraction(x)

Table 3.2.: Transforming Polynomials and Rationals.

These methods also apply to polynomials in more sophisticated sub-expressions of x
such as sin(x).

sage: x, y =var(’x␣y’)
sage: f = (x + y + sin(x))^2
sage: f.expand().collect(sin(x))
x^2 + 2*x*y + y^2 + 2*(x + y)*sin(x) + sin(x)^2

In case of rational functions, the method combine groups terms with a common denomi-
nator.

sage: a, b, x, y = var(’a␣b␣x␣y’)
sage: r = (a*x+b)/(y^2) + (4*y)/(b-x) - (a*x)/(y^2) - (2*y + 2*a)

/(b-x)
sage: r.combine()
-2*(a - y)/(b - x) + b/y^2

If the denominator of a rational function is a polynomial, we can obtain its partial fraction
decomposition with respect to a given variable by invoking partial_fraction:

sage: x, y = var(’x␣y’)
sage: r = 1 / ((x^3+1)*(y^2-1))
sage: r.partial_fraction(x)
-1/3*(x - 2)/((x^2 - x + 1)*(y^2 - 1)) + 1/3/((y^2 - 1)*(x + 1))
sage: r.partial_fraction(y)
-1/2/((x^3 + 1)*(y + 1)) + 1/2/((x^3 + 1)*(y - 1))

A list of transformations regarding polynomials and fractions is given in Table 3.2.

3.2.2 Equations
Solving equations is often a tedious task, even if we use all the simplifications discussed
in Section 3.1.3. For example it is well-known that there is no explicit solution formulas
for polynomials of degree 5 or higher. Thus, it is much more convenient to let Sage
solve the equations for us. However, there are various subtleties that have to be taken

3.2 Elementary Algebra 29

care of. Since the symbol = is reserved for assignments, we use == for equations.

sage: z, phi = var(’z␣phi’)
sage: eq1 = z^2 - 2/cos(phi)*z + 5/cos(phi)^2 == 4
sage: eq2 = 3/cos(phi)*z - 3/sin(phi)^2 == - 2

Here, the equations are stored in the Python variable eq. Thus, an equation is an Python
object. The left-hand side can be extracted with lhs, respectively the right-hand side
with rhs.

sage: eq1.lhs()
z^2 - 2*z/cos(phi) + 5/cos(phi)^2
sage: eq1.rhs()
4

Similar to symbolic expressions, we can do basic arithmetic with equations.

sage: eq1 + eq2
z^2 + z/cos(phi) + 5/cos(phi)^2 - 3/sin(phi)^2 == 2
sage: eq1 * eq2
3*(z^2 - 2*z/cos(phi) + 5/cos(phi)^2)*(z/cos(phi) - 1/sin(phi)^2)

== -8
sage: eq1 / eq2
1/3*(z^2 - 2*z/cos(phi) + 5/cos(phi)^2)/(z/cos(phi) - 1/sin(phi)

^2) == -2

Moreover, we can substitute symbolic expression in equations in the same way as we
have already seen in Section 3.1.2.

sage: eq1.substitute(z == cos(phi))
cos(phi)^2 + 5/cos(phi)^2 - 2 == 4

To solve eq1 for z we use the solve command.

sage: solve(eq1,z)
[
z == -(2*sqrt(cos(phi)^2 - 1) - 1)/cos(phi),
z == (2*sqrt(cos(phi)^2 - 1) + 1)/cos(phi)
]

By default, Sage solves equations over the complex numbers.

sage: y = var(’y’)
sage: solve(y^4 == y, y)
[
y == 1/2*I*sqrt(3) - 1/2,
y == -1/2*I*sqrt(3) - 1/2,
y == 1,
y == 0
]

Yet, solve can not only be used for equations but also for systems of equations, e.g.

30 Chapter 3. Elementary Algebra and Calculus

linear systems.

sage: x, y = var(’x␣y’)
sage: solve([x + y == 3, 2*x + 2*y == 6], x, y)
[
[x == -r1 + 3, y == r1]
]

Since the linear system in the above example is underdetermined Sage parameterizes the
set of solutions by introducing a variable r. representing a real number. If the solution
is parameterized by integers Sage introduces a variable z..

sage: x, y = var(’x␣y’)
sage: solve([sin(x) * cos(x) == 1/2, x + y == 0], x, y)
[
[x == 1/4*pi + pi*z32, y == -1/4*pi - pi*z32]
]

Last but not least, solve can also be applied to inequalities.

sage: solve(x^2 + x - 1 > 0, x)
[[x < -1/2*sqrt(5) - 1/2], [x > 1/2*sqrt(5) - 1/2]]

In many cases solve returns an explicit solution. However, it can happen that solve
returns “only” numerical approximations of the solution.

sage: x, y = var(’x␣y’)
sage: solve([x^2 * y == 24, x * y^2 == 18], x, y)
[
[x == 3.174802110817942, y == 2.381101376720901],
[x == (-1.5874010519682 + 2.749459273997207*I), y ==

(-1.19055078897615 + 2.062094455497903*I)],
[x == (-1.5874010519682 - 2.749459273997207*I), y ==

(-1.19055078897615 - 2.062094455497903*I)]
]

We discuss in Section 11.3 how to obtain exact solutions of polynomial systems.
Although the solve command is quite powerful it cannot deal with arbitrary compli-

cated expressions. For example, we consider the following two expressions:

sage: a = var(’a’)
sage: c1 = (a+1)^2 - (a^2 + 2*a + 1)
sage: c2 = cos(a)^2 + sin(a)^2 - 1

Since both expressions simplify to 0, the equations c1 · x = 0 and c2 · x = 0 are both
valid for any x ∈ C.

sage: eq1 = c1*x == 0
sage: solve(eq1, x)
[x == x]
sage: eq2 = c2*x == 0

3.2 Elementary Algebra 31

sage: solve(eq2, x)
[x == 0]

However, the solve command only returns for eq1 the right solution. In eq2 the
expression c2 is not recognized as being equal to 0 although Sage is able to simplify it
correctly.

sage: c2.simplify_trig()
0

If the equation is too complicated, solve does not return an explicit solution.

sage: solve(x^(1/x) == (1/x)^x, x)
[
(1/x)^x == x^(1/x)
]

But this does not imply that this equation can not be solved with Sage. It just means that
we have to proceed differently to solve such an equations. How to avoid these pitfalls
and solve more sophisticated equations in Sage is mainly discussed in Chapter 12 where
we use solve to obtain solutions of differential equations .

If the solution of the equation in consideration is an explicit number a numerical
approximation often suffices. In that case we can use find_root to obtain a numerical
approximation of the root of a symbolic expression or function of one variable in a given
interval. With find_root we can approximate solutions of equations that can not be
solved with solve.

sage: expr = sin(x) + sin(2*x) + sin(3*x)
sage: solve(expr == 0, x)
[
sin(3*x) == -sin(2*x) - sin(x)
]
sage: find_root(expr, 0.1, pi)
2.0943951023931957

Instead of find_root we could also use root which returns the roots together with
their multiplicity. By default, solutions are returned exactly, but we can also specify the
ring in which roots searches for solutions. If we declare the ring to be R (in Sage RR)
or to be C (in Sage CC) then roots returns numerical approximations.

� Example 3.1 In the following example, we consider the equation x3 + 2x+ 1 = 0.
This equation has one real and two complex roots. The output of roots depends on the
chosen ring.

sage: expr = x^3 - 4*x^2 + 6*x - 4
sage: expr.roots(x)
[(-I + 1, 1), (I + 1, 1), (2, 1)]
sage: expr.roots(x, ring=RR)
[(2.00000000000000, 1)]
sage: expr.roots(x, ring=CC)

32 Chapter 3. Elementary Algebra and Calculus

Solving Scalar Equations

Symbolic Solution solve
Numerical Solving find_root

Roots with Multiplicities roots
List of Factors p.factor_list()

Table 3.3.: Solving Scalar Equations

[(2.00000000000000, 1), (1.00000000000000 - 1.00000000000000*I, 1)
, (1.00000000000000 + 1.00000000000000*I, 1)]

�

3.3 Calculus
In this section we give a short introduction to the basic useful functions for analysis and
linear algebra. We will study these and more functions in greater detail in Part IV.

3.3.1 Symbolic Functions
Besides symbolic variables and symbolic expression we can also define symbolic func-
tions.

sage: x = var(’x’)
sage: f(x) = (2*x + 1)^3

Symbolic functions are useful to represent mathematical functions and can be modified
in the same way as symbolic expressions.

sage: f(-3)
-125
sage: f.expand()
x |--> 8*x^3 + 12*x^2 + 6*x + 1

R In Part II we discuss programming constructions called Python functions. The dif-
ference between Python functions and symbolic functions is similar to the difference
between Python variables and symbolic variables, see Section 3.1.1

3.3.2 Sums
Expressions like ∑

b
i=a f (i) are quite common in mathematics. In Sage such sums are

written as

sum(f(i),i, a,b)

Recall that all used symbolic variables have to be defined beforehand. For example, the
sum of the first n positive integer, i.e. ∑

n
k=1 k, is defined as follows:

sage: k, n = var(’k␣n’)

3.3 Calculus 33

sage: sum(k, k, 1, n)
1/2*n^2 + 1/2*n

As we can see, Sage simplifies this sum without further instructions. Many more
simplifications are possible, e.g. sums of binomial coefficients

sage: k, n = var(’k␣n’)
sage: sum(k * binomial(n, k), k, 0, n)
2^(n - 1)*n

or geometric sums

sage: a, q, k, n = var(’a␣q␣k␣n’)
sage: sum(a * q^k, k, 0, n)
(a*q^(n + 1) - a)/(q - 1)

We could also try to compute the corresponding infinite sum. However, without further
declarations we obtain an error.

sage: sum(a * q^k, k, 0, infinity)
Traceback (most recent call last):
...
ValueError: Sum is divergent.

As we know, this infinite sum only converges if |q|< 1. Thus, we have to use the assume
function, as explained in Section 3.1.1.

sage: a, q, k, n= var(’a␣q␣k␣n’)
sage: assume(abs(q) < 1)
sage: sum(a*q^k, k, 0, infinity)
-a/(q - 1)

� Example 3.2 The Riemann-zeta-function is given by

ζ : C→ C∪{∞},

s 7→
∞

∑
k=1

k−s.

Using the introduced methods we can evaluate ζ at any point.

sage: k= var(’k’)
sage: sum(k^(-2), k, 1, Infinity)
1/6*pi^2
sage: sum(k^(-4), k, 1, Infinity)
1/90*pi^4
sage: sum(k^(-5), k, 1, Infinity)
zeta(5)
sage: numerical_approx(sum(k^(-5), k, 1, Infinity))
1.03692775514337

Since the evaluation at s = 5 only leads to the correct but “useless” result zeta(5) we

34 Chapter 3. Elementary Algebra and Calculus

ask for a numerical approximation with arbitrarily large precision (depending on the
available memory of the used computer). �

3.3.3 Sequences and Series
Sage is a good tool to study the behavior of sequences and series. For example, limits
of sequences or functions can be easily computed with the limit method.

sage: x = var(’x’)
sage: limit((x^(1/3)-2) / ((x+19)^(1/3)-3), x = 8)
9/4

As we can see, limit has two arguments. The first is the function and the second is the
point at which we want to take the limit. Instead of limit we can use its alias lim. The
limit functions calculates by default the limit to the left. We can add the dir option as
a third argument to specify the direction of the limit. To calculate limits to the left we
choose the option ’minus’, respectively the option ’plus’ to calculate the limit to the
right.

sage: x = var(’x’); f(x) = (cos(pi/4-x)- tan(x))/(1-sin(pi/4+x))
sage: limit(f(x), x = pi/4)
Infinity
sage: limit(f(x), x = pi/4, dir=’minus’)
+Infinity
sage: limit(f(x), x = pi/4, dir=’plus’)
-Infinity

This and preceding introduced methods can be used to study the behavior of sequences.
We demonstrate this in an example: We want to study the sequence un =

n100

100n . First, we
calculate its first five terms by hand (we learn in Section 4.3 how to shorten this).

sage: n = var(’n’); u(n) = n^100 / 100^n
sage: u(1.)
0.0100000000000000
sage: u(2.)
1.26765060022823e26
sage: u(3.)
5.15377520732011e41
sage: u(4.)
1.60693804425899e52
sage: u(5.)
7.88860905221012e59

So far, it seems like u(n) tends to infinity. To study the behavior of this sequence on a
larger scale we plot the graph of the function n→ un.

sage: plot(u(n), n, 1, 40)

3.3 Calculus 35

5 10 15 20 25 30 35 40
0.0

0.5

1.0

1.5

1e90

Now we see that u(n) only increases up to around n = 22 and decreases afterwards.
According to the graphic, the limit seems to be 0, and indeed, Sage confirms this
suggestion.

sage: lim(u(n), n = Infinity)
0

To discuss the behavior of functions it is often useful to approximate them by a power
series . The command f(x).series(x == x0, n) returns the power series expansion
of the function f (x) of order n at x0.

sage: x = var(’x’)
sage: ((1+arctan(x))^(1/x)).series(x == 0, 3)
(e) + (-1/2*e)*x + (1/8*e)*x^2 + Order(x^3)

Here, Sage displays that there are terms of higher order. To extract the regular part of a
power series expansion obtained by the above method, we use the truncate method.

sage: ((1+arctan(x))^(1/x)).series(x == 0, 3).truncate()
1/8*x^2*e - 1/2*x*e + e

Another common way to obtain an asymptotic expansion of a function is the Taylor
series . To obtain the Taylor series of a function f (x) around x0 of order n we type
taylor(f(x), x, x0, n). It is also possible to calculate the Taylor series around
x0 = ∞.

sage: x = var(’x’)
sage: taylor((x^3+x)^(1/3)-(x^3-x)^(1/3), x, Infinity, 2)
2/3/x

� Example 3.3 We use Sage to prove Machin’s formula

π

4
= 4arctan

(
1
5

)
− arctan

(
1

239

)
. (3.1)

First we observe that 4arctan
(1

5

)
and π

4 + arctan
(1

239

)
have the same tangent:

sage: tan(4 * arctan(1/5)).simplify_trig()
120/119

36 Chapter 3. Elementary Algebra and Calculus

sage: tan(pi/4 + arctan(1/239)).simplify_trig()
120/119

This already proves Machin’s formula (3.1) as tan is injective on the interval (0,π).
Having this formula at hand, we can approximate the value of π using the power series
approximation of arctan.

sage: x = var(’x’)
sage: f = arctan(x).series(x, 10)
sage: f
1*x + (-1/3)*x^3 + 1/5*x^5 + (-1/7)*x^7 + 1/9*x^9 + Order(x^10)
sage: (16*f.subs(x == 1/5) - 4*f.subs(x == 1/239)).n()
3.14159268240440
sage: pi.n()
3.14159265358979

�

3.3.4 Derivatives and Integrals
To compute the derivative of a function in Sage we use derivative or its alias diff.

sage: derivative(sin(x^2), x)
2*x*cos(x^2)

It is also possible to differentiate symbolic functions. For example, we can display the
chain-rule.

sage: f = function(’f’)(x); g = function(’g’)(x)
sage: diff(f(g(x)), x)
D[0](f)(g(x))*diff(g(x), x)

For higher derivatives we simply add the order as an additional argument.

sage: derivative(sin(x^2), x, 2)
-4*x^2*sin(x^2) + 2*cos(x^2)

Within Sage we can also compute partial derivatives of functions with more than one
variable.

sage: x, y = var(’x,␣y’); f(x, y) = x*y + y*sin(x^2) + e^(-y)
sage: derivative(f, x)
(x, y) |--> 2*x*y*cos(x^2) + y
sage: derivative(f, y)
(x, y) |--> x - e^(-y) + sin(x^2)

To compute higher or mixed derivatives we simply add every derivative as an additional
argument. There, various syntax are possible.

sage: derivative(f, x ,x, y)
(x, y) |--> -4*x^2*sin(x^2) + 2*cos(x^2)
sage: derivative(f, x, 2, y)

3.3 Calculus 37

(x, y) |--> -4*x^2*sin(x^2) + 2*cos(x^2)

� Example 3.4 We can use Sage to verify that

f (x,y) =
1
2

ln(x2 + y2)

is a harmonic function on R2 \{0}.

sage: x, y = var(’x␣y’); f(x, y) = ln(x^2+y^2) / 2
sage: delta = diff(f, x, 2) + diff(f, y, 2)
sage: delta.simplify_rational()
(x, y) |--> 0

�

� Example 3.5 Let f : R2→ R defined by

f (x,y) =

{
xy x2−y2

x2+y2 , if (x,y) 6= (0,0),

0, if (x,y) = (0,0).

We show that ∂x∂y f (0,0) 6= ∂y∂x f (0,0). Since the denominator of f vanishes at 0 we
use the differential quotient.

sage: x, y, h = var(’x,␣y,␣h’)
sage: f(x,y) = x * y * (x^2 - y^2) / (x^2 + y^2)
sage: D1f(x, y) = diff(f(x, y), x) #D_y D_x f(0,0)
sage: limit((D1f(0,h)-0) / h, h = 0)
-1
sage: D2f(x, y) = diff(f(x, y), y) #D_x D_y f(0,0)
sage: limit((D2f(h,0)-0) / h, h = 0)
1

�

Definite integrals are computed in Sage with integrate or its alias integral. There
are two different syntax available to compute an integral.

sage: integrate(sin(x), x, 0, pi/2)
1
sage: sin(x).integrate(x, 0, pi/2)
1

If one of the integral limits is infinity, Sage returns the result, if the integral converges
and returns an error otherwise.

sage: integrate(1 / (1+x^2), x, -infinity, infinity)
pi
sage: integrate(exp(-x^2), x, 0, infinity)
1/2*sqrt(pi)

38 Chapter 3. Elementary Algebra and Calculus

sage: integrate(exp(-x), x, -infinity, infinity)
Traceback (most recent last call):
...
ValueError: Integral is divergent.

To compute an indefinite integral we simply drop the integral limits.

sage: integrate(1 / (1+x^2), x)
arctan(x)

� Example 3.6 For x ∈ R\{0} we define

varphi(x) :=
∫

∞

0

xcos(u)
u2 + x2 du.

We use Sage to find a simpler formulation of ϕ(x) without an integral.

sage: u, x = var(’u␣x’); f = x*cos(u) / (u^2+x^2)
sage: f.integrate(u, 0, Infinity)
Traceback (most recent last call):
...
ValueError: Computation failed since Maxima requested additional

constraints;
Is x positive, negative or zero?

As we can see, Sage needs additional constraints on x to be able to calculate the
integral. Hence, we treat the cases x positive and x negative separately using the assume
function.

sage: assume(x > 0)
sage: f.integrate(u, 0, Infinity)
1/2*pi*e^(-x)
sage: forget(); assume(x < 0)
sage: f.integrate(u, 0, Infinity)
-1/2*pi*e^x

Hence, we have derived the following simpler expression for ϕ .

ϕ(x) =
π

2
· sgn(x) · e−|x|.

�

Instead of an explicit symbolic result we can, as usual, ask for a numerical ap-
proximation. This can be done with numerical_approx, see Section 2.3.1, or with
integral_numerical, which returns a numerical approximation together with an esti-
mate of the corresponding error.

sage: integral_numerical(exp(-x^2),0,infinity)
(0.8862269254527568, 1.714774436012769e-08)
sage: integrate(exp(-x^2),x,0,infinity)
1/2*sqrt(pi)

3.3 Calculus 39

sage: (integrate(exp(-x^2),x,0,infinity) - integral_numerical(exp
(-x^2),0,infinity)[0]).numerical_approx(digits = 20)

1.1829120040267315783e-15

� Example 3.7 We want to show the BBP formula

∞

∑
n=0

(
4

8n+1
− 2

8n+4
− 1

8n+5
− 1

8n+6

)(
1

16

)n

= π. (3.2)

Our strategy is to represent the partial sums SN =∑
N
n=0
(4

8n+1 −
2

8n+4 −
1

8n+5 −
1

8n+6

)(1
16

)n

as an integral. First, we use Sage to verify the identity∫ 1√
2

0
f (t) ·

N

∑
n=0

t8ndt = SN , (3.3)

where f (t) = 4
√

(2)−8t3−4
√

(2)t4−8t5. To do so, we define

vn =

(
4

8n+1
− 2

8n+4
− 1

8n+5
− 1

8n+6

)(
1

16

)n

,

un =
∫ 1√

2

0
f (t)t8ndt.

and check (3.3) component wise.

sage: n, t = var(’n,␣t’)
sage: v(n) = (4/(8*n+1) - 2/(8*n+4) - 1/(8*n+5) - 1/(8*n+6))

*(1/16)^n
sage: assume(8*n+1 > 0) #ensures that the denominator never

vanishes.
sage: f(t) = 4*sqrt(2) - 8*t^3 -4*sqrt(2)*t^4 - 8*t^5
sage: u(n) = integrate(f(t)*t^(8*n), t, 0, 1/sqrt(2))
sage: (u(n) - v(n)).canonicalize_radical()
0

Using the linearity of the integral we obtain that

IN =
∫ 1√

2

0
f (t) ·

N

∑
n=0

t8ndt =
N

∑
n=0

un =
N

∑
n=0

vn = SN

Since ∑
∞
n=0 t8n converges on

[
0, 1√

(2)

]
we can interchange the limit and the integral and

conclude that

lim
N→∞

SN =
∫ 1√

2

0
f (t) · lim

N→∞

∞

∑
n=0

t8ndt

=
∫ 1√

2

0
f (t)

1
1− t8 dt =: J

Now, the infinite sum is “just” an integral which can be compute with Sage.

40 Chapter 3. Elementary Algebra and Calculus

Methods in Calculus

Symbolic Summation sum(f(k), k, kmin, kmax
Limit limit(f(x), x=a

Power Series of Order n at x = a f.series(x == a ,n
Taylor of Order n at x = a taylor(f(x), x, a, n)

Derivative diff(f(x), x)
n-th Derivative diff(f(x), x, n)

Indefinite Integral integrate(f(x), x)
Definite Integral integrate(f(x), x, a, b)

Numerical Integral integral_numerical(f(x), x, a, b)

Table 3.4.: Useful Functions in Analysis

sage: J = integrate(f(t) / (1-t^8), t, 0, 1/sqrt(2))
sage: J.canonicalize_radical()
pi + 2*log(sqrt(2) + 1) + 2*log(sqrt(2) - 1)

It remains to tell Sage to combine the log sums.

sage: J.simplify_log().canonicalize_radical()
pi

Thus, we have shown the BBP formula (3.2). and can use this formula to approximate π .

sage: a = sum(v(n), n, 0, 10)
sage: a.numerical_approx(digits = 30)
3.14159265358979312961417056404
sage: pi.numerical_approx(digits = 30)
3.14159265358979323846264338328
sage: (pi.numerical_approx(digits = 30) - a.numerical_approx(

digits = 30)).numerical_approx()
1.08848472819238e-16

These kind of formulas have been used to calculate in 2001 the 4 ·1015-digit of π . �

3.3.5 Vector and Matrix computation
Sage provides various functions on vectors and matrices. Here, we only discuss the basic
commands. We discuss more advanced methods on matrices and vectors in Chapter 10.

To construct a vector in Sage we use vector.

sage: vector([1,2,3,4])
(1, 2, 3, 4)

The euclidean scalar product is already implemented as dot_product and the corre-
sponding norm is calculated via norm.

sage: v = vector([1,2,0,0]); w = vector([0,2,3,0])

3.3 Calculus 41

Vector computations

Vector Construction vector
Standard Scalar Product v ·w v.dot_product(w)

Euclidean Norm ‖v‖ command(v)
Cross Product v×w v.cross_product(w)

Table 3.5.: Vector Computations

sage: v.dot_product(w)
4
sage: norm(v)
sqrt(5)

For elements of R3 Sage can compute the cross product of two vectors.

sage: v = vector([1,2,0]); w = vector([0,2,3])
sage: v.cross_product(w)
(6, -3, 2)

Next, we describe a few basic operations for matrix. First, we need to construct a
matrix in Sage using the matrix function.

sage: A = matrix([[1, 2], [3, 4]]); A
[1 2]
[3 4]

Besides all basic calculations, we can also compute the inverse and the transpose.

sage: A^(-1)
[-2 1]
[3/2 -1/2]
sage: A.transpose()
[1 3]
[2 4]

To solve a matrix equation Ax = b we use solve_right. Similarly the matrix equation
xA = b is solved with solve_left.

sage: b = vector([1, 0])
sage: A.solve_right(b)
(-2, 3/2)
sage: A.solve_left(b)
(-2, 1)

In the special case b = 0, i.e. if we want to determine the kernel of the linear map A, we
use right_kernel (for Ax = 0), respectively left_kernel (for xA = 0).

sage: A = matrix([[1, 0], [0, 0]])
sage: A.right_kernel()
Free module of degree 2 and rank 1 over Integer Ring

42 Chapter 3. Elementary Algebra and Calculus

Echelon basis matrix:
[0 1]
sage: A.left_kernel()
Free module of degree 2 and rank 1 over Integer Ring
Echelon basis matrix:
[0 1]

Moreover, Sage can give us more information regarding the properties of a matrix A,
like the vector space spanned by the columns, or by the rows, or the row echelon form.
For the column and row space Sage provides an echelon basis matrix, where the rows
are the basis vectors of the column and the row space respectively.

sage: A = matrix([[-2, 1, 1], [8, 1, -5]])
sage: A.column_space()
Free module of degree 2 and rank 2 over Integer Ring
Echelon basis matrix:
[1 1]
[0 2]
sage: A.row_space()
Free module of degree 3 and rank 2 over Integer Ring
Echelon basis matrix:
[2 4 -2]
[0 5 -1]
sage: A.echelon_form()
[2 4 -2]
[0 5 -1]

It is also possible construct block matrices withblock_matrix. The syntax is the same
as for matrix, except that the arguments are matrices instead of numbers or symbolic
expressions.

sage: block_matrix([[3*A, -A], [A, 4*A]])
[-6 3 3| 2 -1 -1]
[24 3 -15| -8 -1 5]
[-----------+-----------]
[-2 1 1| -8 4 4]
[8 1 -5| 32 4 -20]

� Example 3.8 We investigate the matrix

A =

2 −3 2 −12 33
6 1 26 −16 69

10 −29 −18 −53 32
2 0 8 −18 84

 .

First we determine a basis of the space of solutions of its kernel.

sage: A = matrix(QQ,[[2, -3, 2, -12, 33], [6, 1, 26, -16, 69],
[10, -29, -18, -53, 32], [2, 0, 8, -18, 84]])

3.3 Calculus 43

sage: A.right_kernel() #solving Ax = 0
Vector space of degree 5 and dimension 2 over Rational Field
Basis matrix:
[1 0 -7/34 5/17 1/17]
[0 1 -3/34 -10/17 -2/17]

Here, the QQ in the beginning means that we are calculating in the rational field. As a
consequence the results are returned as irreducible fractions. This is a first example of
the usage of computations domains which are discussed in Chapter 8.

Next, we determine a basis of the space F generated by the columns of A. This can
be done directly using the method column_space.

sage: A.column_space()
Vector space of degree 4 and dimension 3 over Rational Field
Basis matrix:
[1 0 0 1139/350]
[0 1 0 -9/50]
[0 0 1 -12/35]

To obtain a defining equation for F we first calculate the left kernel of A, i.e. the solution
space for xA = 0.

sage: A.left_kernel()
Vector space of degree 4 and dimension 1 over Rational Field
Basis matrix:
[1 -63/1139 -120/1139 -350/1139]

Since F is the orthogonal complement of the left kernel of A it follows that F is the
hyperplane of R4 defined by the equation 1139x−63y−120z−350t = 0. �

For the special case of square matrices Sage can calculate eigenvalues and -vectors,
and various normal forms. At this point we only introduce a few basic commands. More
advanced methods are discussed in 10.

The determinant and the characteristic polynomial of a square matrix are calculated
in Sage as follows.

sage: A = matrix([[2, 4, 3],[-4, -6, -3],[3 , 3, 1]])
sage: A.determinant()
4
sage: A.characteristic_polynomial()
x^3 + 3*x^2 - 4

While eigenvalues returns the eigenvalues of a matrix the method eigenvalues_right
returns triplets consisting of the eigenvalue, the corresponding eigenvector and its alge-
braic multiplicity.

sage: A.eigenvalues()
[1, -2, -2]
sage: A.eigenvectors_right()
[(1, [

44 Chapter 3. Elementary Algebra and Calculus

(1, -1, 1)
], 1), (-2, [
(1, -1, 0)
], 2)]

In the above example there is only one eigenvector shown for the second eigenvalue
although its algebraic multiplicity is two. Thus, we conjecture that the matrix A is not
diagonalizable. To prove this small conjecture we compute its Jordan normal form J
with Sage. Adding the option transformation = True returns the transformation
matrix T , i.e. T−1AT = J.

sage: A.jordan_form()
[1| 0 0]
[--+-----]
[0|-2 1]
[0| 0 -2]
sage: A.jordan_form(transformation=True)
([1| 0 0]
[--+-----]
[0|-2 1]
[0| 0 -2], [1 1 1]
[-1 -1 0]
[1 0 -1])

� Example 3.9 As a small comparison, we shortly show, how eigenvectors_right()
deals with diagonalizable matrices.

sage: B = matrix([[1, 0, 0], [0, 2, 0], [0, 0, 2]])
sage: B.eigenvectors_right()
[(1, [
(1, 0, 0)
], 1), (2, [
(0, 1, 0),
(0, 0, 1)
], 2)]

Here, eigenvectors_right() returns two eigenvectors for the second eigenvalue. �

3.3 Calculus 45

Usual Methods on Matrices

Matrix Constructor matrix
Transpose Matrix A A.transpose()

Solve Ax = b A.solve_right(b)
Solve xA = b A.solve_left(b)

Right/Left Kernel right_kernel, left_kernel
Row Echelon Form echelon_form

Column-Generated Vector Space column_space
Row-Generated Vector Space row_space

Block Matrix block_matrix

Operations for Square Matrices

Inverse of A A^(-1)
Determinant determinant

Characteristic Polynomial characteristic_polynomial
Minimal Polynomial minimal_polynomial

Eigenvalues eigenvalues
Eigenvectors with Properties eigenvectors_right

Jordan Normal Form jordan_form

Table 3.6.: Matrix Operations

II

4 Algorithmics . 49
4.1 Procedures and Functions
4.2 Conditionals
4.3 Loops
4.4 Output

5 Lists and Other Data Structures 59
5.1 Lists
5.2 Character Strings
5.3 Finite Sets
5.4 Dictionaries
5.5 More on Data Structures

Programming and Data
Structure

4. Algorithmics

In Part I we have only done one-line mathematical calculations. In this chapter we want
to demonstrate how we can program functions using sequences of instructions within
Sage. The Sage computer algebra system is in fact an extension of the Python computer
language 1. Hence, we can use, with a few exceptions, the Python programming
constructs. We explain how to use classical Python programming structures, like loops
and lists, in Sage without requiring to know the Python language. These constructions
will be familiar to those who are fluent in Python or another programming language.

The paradigm of structured programming consists in designing a computer program
as a finite sequence of instructions, which are executed in order. Those instructions can
be atomic or composed:

• atomic instructions are single commands, e.g. the assignment of a variable or a
result output.

• composed instructions are made up from several instructions which are themselves
atomic or composed, e.g. conditionals or loops.

4.1 Procedures and Functions
In Chapter 3 we have used many predefined procedures like sum, integrate,... . But,
as in other computer languages, we can define our own procedures and functions using
the def command. A Python function, respectively procedure, is a sub-program with
several arguments, which returns a result. For example, we can define the function
(x,y) 7→ x2 + y2 as a Python function which can be evaluated at any point (x,y).

sage: def fct(x,y):

1The Sage version considered here uses Python 3

50 Chapter 4. Algorithmics

....: return x^2 + y^2
sage: fct(3, 5)
34
sage: a = var(’a’)
sage: fct(a, 2*a)
5*a

The above example illustrates the syntax of def:

def ’name’(’arguments’):
’instructions’
return ’result’

The indentation here in the line after the colon : is essential. Only the indented
instructions belong to the body of the Python function ’name’. Usually, a Python
function ends with the return command returning the result. In the following sections
we describe various program constructions that can be used to design diverse Python
functions.

� Example 4.1 For two real numbers x,y the three classical Pythagorean means are

• the arithmetic mean x+y
2 ,

• the geometric mean
√

x · y,

• the harmonic mean 2
(

1
x +

1
y

)−1
.

We write a Python procedure returning these three means at once.

sage: def means(x,y):
....: a = (x+y) / 2 #arithmetic mean
....: g = sqrt(x * y) #geometric mean
....: h = 2 * (1/x + 1/y)^(-1) #harmonic mean
....: return a, g, h
sage: means(3, 5)
(4, sqrt(15), 15/4)
sage: means(6, 18)
(12, 6*sqrt(3), 9)

�

If a Python function only contains one line of instruction we can also use the lambda
construction. This shortens the code but might worsen the readability. Below we
redefine the Pythagorean means from the above example using the lambda construction.

sage: amean = lambda x, y: (x+y) / 2
sage: gmean = lambda x, y: sqrt(x * y)
sage: hmean = lambda x, y: 2 * (1/x + 1/y)^(-1)
sage: amean(3, 5), gmean(3, 5), hmean(3, 5)
(4, sqrt(15), 15/4)

4.2 Conditionals 51

4.2 Conditionals
The conditional is an important instruction, which enables us to execute some construc-
tion depending on the result of a boolean condition. There are two syntax possible:

if ’a condition’:
’instructions’

if ’a condition’:
’instructions’

else:
’other instructions’

For example, we know that a geometric sum ∑
∞
k=0 qk converges if and only if |q|< 1.

In Section 3.3.2 we resolved this problem by using the command assume(abs(q) <
1). Another possibility is to use a conditional. This has the advantage that no error is
raised if q does not satisfy the assumption.

sage: def geo_sum(q):
....: if abs(q) < 1:
....: k = var(’k’)
....: return sum(q^k, k, 0, oo)
....: else:
....: return ’This␣sum␣diverges.’
sage: geo_sum(1/2)
2
sage: geo_sum(2)
This sum diverges.

The if-else construction also allows nested tests in the else branch. There the
code can be shortened using elif. Hence, nested conditionals can be formulated in the
following two different ways.

if ’cond1’:
’inst1’

else:
if ’cond2’:

’inst2’
else:

if ’cond3’:
’inst3’
else:

’inst4’

if ’cond1’:
’inst1’

elif ’cond2’:
’inst2’

elif ’const3’:
’inst3’

else:
’inst4’

� Example 4.2 It is well-known that the roots of the equation ax2 + bx+ c = 0 are
given by

x1,2 =
−b±

√
b2−4ac

2a
.

Below we write a procedure that only returns the real roots of a quadratic equations with
real coefficients. We have to distinguish three cases: there are no real roots, if b2 < 4ac,
one real root if b2 = 4ac and two real roots if b2 > 4ac. Since this requires a nested
conditional construction we use the elif syntax.

52 Chapter 4. Algorithmics

sage: def realroot(a,b,c):
....: if b^2 < 4*a*c:
....: return(’There␣are␣no␣real␣roots.’)
....: elif b^2 == 4*a*c:
....: x=-b/(2*a)
....: return(x)
....: else:
....: x1 = (-b + sqrt(b^2 - 4*a*c))/(2*a)
....: x2 = (-b - sqrt(b^2 - 4*a*c))/(2*a)
....: return(x1, x2)
sage: realroot(1, 2, 1) #Apply to x^2 + 2x + 1 = 0
-1
sage: realroot(1, 0, 1) #Apply to x^2 + 1 = 0
There are no real roots.
sage: realroot(1, 1, -2) #Apply to x^2 + x - 2 = 0
(1, -2)

�

4.3 Loops
A loop is a program construct that performs the same calculation several times. Below
we describe the two most common loops: The enumerative loops and the while loops.
Roughly speaking, the main difference is that an enumerative loop performs the same
calculation for a fixed number of times, while the while loop performs the same
calculation as long as a given condition is satisfied.

An enumerative loop, also called for loop, performs the same calculation for a fixed
number of times, e.g. for all integer values of an index k ∈ [a,b]. For example, we can
use an enumerative loop to calculate the first square numbers.

sage: for k in srange(5):
....: print(k^2)
0
1
4
9
16

Here, we obtained the square numbers for 0≤ k ≤ 4, because

sage: srange(5)
[0, 1, 2, 3, 4]

The above for loop performs the calculation “taking squares” 5-times, where the
variable k runs from 0 to 4. Moreover, the code in the second line is indented. The
indentation means that the line print(k ^2) belongs to the body of the for loop. As
for Python functions, the indentation is essential for the program structure in Sage, as
can be seen in the following example.

4.3 Loops 53

� Example 4.3 We consider the following for loop.

sage: S = 0
sage: for k in srange(4):
....: S = S + k
....: S = 2 * S
sage: S
22

Here, both lines below the for loop are indented. Thus, both instructions are performed
whenever the loop is activated, i.e.

S = ((((0+0) ·2+1) ·2+2) ·2+3) ·2 = 22.

Without the indentation the for loop does not perform the instructions.

sage: S = 0
sage: for k in srange(4):
....: S = S + k
sage: S = 2 * S
sage: S
12

Here, the instruction S = 2 * S is only performed once after the loop, i.e.

S = (0+0+1+2+3)∗2 = 12.

�

At this point, we want to describe the modifications of srange in more detail. The
command srange(n) returns the list of the integers (0, . . . , n− 1). However, we
can modify more than just the endpoint. The extended syntax srange(i, j, k) with
i, j,k ∈R returns the list (i, i+k, i+2k, . . . , i+n ·k), where i+n ·k < j≤ i+(n+1) ·k.
We can also use negative values for k to obtain a decreasing list. Moreover, adding
the option ‘include_endpoint = True’ adds the endpoint j to the list constructed by
srange(i, j ,k).

sage: srange(1, 5, include_endpoint = True)
[1, 2, 3, 4, 5]
sage: srange(0, 10, 2)
[0, 2, 4, 6, 8]
sage: srange(10, 0, -2)
[10, 8, 6, 4, 2]
sage: srange(1, 5/2, 1/3)
[1, 4/3, 5/3, 2, 7/3]

One common application of for loops is the calculation of terms of a recurrent
sequence, e.g. the term u10 of the recurrent sequence (un)n with

u0 = 0, un =
1

1+u2
n−1

.

54 Chapter 4. Algorithmics

sage: u = 0
sage: for k in srange(1,10, include_endpoint = True):
....: u = 1 / (1+u^2)
sage: numerical_approx(u)
0.677538380912204

However, there are situations where a calculation should be performed until a specific
condition is satisfied but we do not know a priori how many repetitions we need. For
these kind of problems we use the while loop. Roughly speaking, the while loop
performs the instructions in its body as long as a given condition is fulfilled, e.g. for a
given number x > 1 we can determine the smallest integer n with x < 2n as follows.

sage: x = 10^4; u = 1; n = 0
sage: while u <= x:
....: n += 1
....: u = 2 * u
sage: n
14

The above while loop executes the indented instructions as long as the condition 2n ≤ x
is fulfilled. The loop terminates as soon as this condition is no longer fulfilled, i.e. when
x < 2n. The body of the loop, i.e. the intended instructions, are never carried out if
the condition is not satisfied. In particular, a while loop is not carried out at all if the
condition is already false at the first test.

R For short loop instructions it is also possible to write everything on a single line after
the colon :.

sage: x = 10^4; u = 1; n = 0
sage: while u <= x: n = n + 1; u = 2 * u
sage: n
14

The forand the while loop repeat the same instructions under fixed conditions. To
be more flexible, we can use break to exit the loop earlier or go directly to the next
iteration using continue. These commands allow us to check the terminating condition
at every place in the loop.

Below, we determine the smallest positive integer x satisfying log(x+1)≤ x
10 using

four different loop constructions. In this first attempt a for loop tries the first 100
integers and stops as soon as a solution is found.

sage: x = 1.0
sage: for x in srange(1,100, include_endpoint= True):
....: if log(x+1) <= x/10: break
sage: x
37

However, if no solution is found, we do not know if there is no solution at all or if there is
a solution for larger values of x. Hence, we use a while loop in our next construction to

4.3 Loops 55

look for the smallest solution. The downside here is that this loop might never terminate
if the condition is never fulfilled, i.e. if log(x+1)> x

10 for all x ∈ N.

sage: x = 1.0
sage: while log(x+1) > x / 10:
....: x += 1
sage: x
37.0000000000000

This problem is resolved in the next construction by setting the upper bound x < 100.
However, we again encounter the same problem as in the first attempt.

sage: x = 1.0
sage: while log(x+1) > x/10 and x < 100:
....: x += 1
sage: x
37.0000000000000

Although the next loop is unnecessarily complicated it illustrates the usage of continue
in combination with break.

sage: x = 1.0
sage: while True:
....: if log(x+1) > x/10:
....: x = x+1
....: continue
....: break
sage: x
37.0000000000000

4.3.1 Example: A Sequence with an unknown Limit
It is still an open problem whether the sequence

an =
1

n2 sin(n)
, n ∈ N.

converges or not. It is conjectured that this sequence tends to zero as n tends to infinity,
but no proof is known yet. We use the methods describe above to study the behavior
of this sequence for large values of n. First, we define the sequence in consideration in
Sage.

sage: n = var(’n’)
sage: seq(n) = 1 / (n^2 * sin(n))

and try to calculate the limit.

sage: n = var(’n’)
sage: limit(seq, n = Infinity)
und

56 Chapter 4. Algorithmics

The output und means “undefined”. Since Sage cannot compute the limit, we need to
try different methods. To obtain more insight in the problematic of this sequence we
plot it for 600≤ n≤ 700.

sage: plot(seq(n), n, 600, 700)

600 620 640 660 680 700
0.0000

0.0005

0.0010

0.0015

We observe that the sequence (an) behaves chaotic and does not uniformly approaches
0.

In a next step, we approach this problem from a more analytic point of view. Recall
that a sequence (an) tends to 0 if and only if for all ε > 0 there is an N ∈ N such that
|an| < ε for all n ≥ N. Since we need to deal with finite objects in Sage we have to
“approximate” this definition in the following way. Instead of all integers n≥ N we only
check all integers N ≤ n < N + Imax where Imax is a fixed number.

Hence, our goal is to write a program that estimates such an N for a given ε and Imax.
To do so, we first write a small sub-program check_epsilon that returns the value

min{n ∈ N| N ≤ n < Imax +N and |an| ≥ ε}

given a sequence (an), an ε > 0, a fixed number N and a fixed number Imax of maximal
iterations.

sage: def epsilon_check(seq, eps, N, I):
....: for n in srange(N, N+I):
....: if abs(seq(n)) >= eps:
....: return n
....: return Infinity

Here we used that the minimum of the empty set is infinity. Now, we use our function
epsilon_check to write the function N_estimate that estimates an N for a given ε

and Imax using a while loop.

sage: def N_estimate(seq, eps, I):
....: N = 1
....: while(True):
....: eps_check = epsilon_check(seq, eps, N, I)
....: if eps_check == Infinity:

4.4 Output 57

....: break

....: N = eps_check + 1

....: return(N)

In a final step we use the function N_estimate to further investigate the behavior of the
sequence (an)n.

sage: N_estimate(seq, 0.1, 1000)
4
sage: N_estimate(seq, 0.001, 1000)
33

Although Sage cannot prove that (an)n converges to 0 as n tends to infinity, it can give
us evidence that the conjecture might be true.

4.4 Output
This section is devoted to the main output command print. By default, the arguments
are printed one after the other, separated by spaces.

sage: print(2^2, 3^2, 4^2); print(5^2, 6^2)
4 9 16
25 36

The comma separates the various print commands and tells print to continue the output
on the same line. If we want to print text we can either use quotation marks ’...’
or the str function. The command str can also be used to transform numbers into
character strings and character strings can be concatenated with +, see Section 5.2 for
more informations to character strings.

sage: print(42, 3.14)
42 3.14
sage: print(42 + 3.14)
45.1400000000000
sage: print(str(42) + str(3.14))
423.1400000000000

The output can be modified with the %.d placeholder and the % operator.

sage: for k in srange(1,6):
....: print(’%2d!␣=␣␣%3d’ % (k, factorial(k)))
1! = 1
2! = 2
3! = 6
4! = 24
5! = 120

The % operator replaces the expression to its right (here ((k, factorial(k))) into the
character strings to its left, in place of the placeholder (% 2d) and (% 3d). Here, 3d
means that the placeholder % 3d gets at least three characters. If necessary, those are

58 Chapter 4. Algorithmics

replaced with white spaces. Analogously the %.4f placeholder allows only an output
with maximal 4 digits after the decimal point.

sage: print(’%.4f’, % numerical_approx(pi))
3.1416

5. Lists and Other Data Structures

In this chapter we describe various data structures available in Sage. The function
type() returns the type of an object. To convert an object obj to a type typ is simply
done by typ(obj).

sage: type(42) #this is a Sage integer
<class ’sage.rings.integer.Integer’>
sage: type(int(42)) #convert it to a Python integer
<class ’int’>

The standard types in Sage are bool, int, list, tuple set, str, dict. More specifi-
cally, the type bool has the two values: True and False. The Python types int and
long are used to represent integers of limited size. In contrast to that, Sage uses its own
type integer which also allows exact calculation with fractions. The remaining types,
i.e. lists, tuples, sets, character strings and dictionaries are described in more detail in
the following sections.

5.1 Lists
A list in computer science corresponds to an n-tupel in mathematics. Every object in a
list is determined by its value and its position, i.e. (a,b) 6= (b,a), contrary to a set.

In Sage a list is constructed by surrounding its elements with square brackets [...].
Accordingly, the empty list is defined as []. To construct large integer list we use the ..
operator

sage: L1 = [1, 2, 3];L1
[1, 2, 3]
sage: []
[]

60 Chapter 5. Lists and Other Data Structures

sage: L2 = [1..5, 9..12]
[1, 2, 3, 4, 5, 9, 10, 11, 12]
\end{Sage}
The \defstyle{length} of a list is the number of elements and can

be returned with \command{len}.
\begin{CustomSage}
sage: len(L1), len([]), len(L2)
(3, 0, 9)

The elements of a list are numbered consecutively starting with 0. The element of index
k in a list L is accessed via L[k]. We can also use negative indices to access end-of-list
elements, e.g. L[-1] refers to the last element of a list L. Hence, list elements are
indexed in two different ways.

L= [l0, l1, . . . , ln−1] = [l−n, l1−n, . . . , l−1].

The command L[p:q] extracts the sub-list [L[p], L[p+1], ..., L[q-1]], which is
empty if q≤ p. Moreover, L[p:] is equivalent to L[p:len(L)], and L[:q] to L[0:q].

sage: L = [11, 22, 33, 44, 55, 66]
sage: L[3], L[5]
(44, 66)
sage: L[-1], L[-3]
(66, 44)
sage: L[1:4]
[22, 33, 44]
sage: L[-4:4]
[33, 44]
sage: L[:3], L[2:]
([11, 22, 33], [33, 44, 55, 66])

Using these commands each list element L can be extracted and modified. The same can
be done with sub-lists. This can also change the length of a list, e.g. when we delete a
sub-list.

sage: L = [0, 1, 2, 3, 4, 5]
sage: L[0] = L[0] + 4; L #change an element
[4, 1, 2, 3, 4, 5]
sage: L[2:5] = [4, 3, 2, 1]; L #change sub-list
[4, 1, 4, 3, 2, 1, 5]
sage: L[1:3] = []; L #delete sublist
[4, 3, 2, 1, 5]

To examine lists we can use the operator in to check whether an element is contained in
a list and the comparison operator == to compare two lists element-wise.

sage: L = [1, 2, 4, 8, 16]
sage: L[2: len(L)-1] == L[1-len(L): -2]
False

5.1 Lists 61

sage: [4 in L, 5 in L]
[True, False]

5.1.1 Global List Operations
Two lists can be concatenated with +. Another way to concatenate lists is the iterated
concatenation which is done by “multiplying” the list with an integer.

sage: L1 = [11, 22, 33]; L2 = [44, 33, 22]
sage: L1 + L2
[11, 22, 33, 44, 33, 22]
sage: 3 * L1
[11, 22, 33, 11, 22, 33, 11, 22, 33]

In particular, the numbering of list elements is such that the concatenation of the two
sub-lists L[:k] and L[k:] reconstructs the original list L.

One way to modify all elements of a list at once is to apply a function to all of its
elements using the map command. For example, we can apply cos to a list of angles.

sage: list(map(cos, [0, pi/4, pi/3, pi/2]))
[1, 1/2*sqrt(2), 1/2, 0]

Since map returns an iterator and not a list we used list() to convert the result of
map to a list. Instead of predefined functions we can also combine map with a lambda
construction, see Section 4.1.

sage: list(map(lambda t: cos(t), [0, pi/4, pi/3, pi/2]))
[1, 1/2*sqrt(2), 1/2, 0]

The filter command builds an iterator out of those list elements satisfying a given
condition, e.g. all integers up to 45 that are prime. As before we use list() to convert
the result to a list.

sage: list(filter(is_prime, [1..45]))
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43]

The test condition can also be defined inside the filter command, e.g. using a lambda
construction, see Section 4.1. For example, we can write a procedure returning a list of
all divisors of a given number p.

sage: def divisor(p):
....: I = filter(lambda n: p % n == 0, [1,..,p])
....: return list(I)
sage: divisor(42)
[1, 2, 3, 6, 7, 14, 21, 42]
sage: divisor(123)
[1, 3, 41, 123]

The comprehension form [.. for .. x .. in ..] is another way to construct
a list with elements satisfying some conditions. For example, combining the com-
prehension form with an if condition yields an equivalent construction to filter.

62 Chapter 5. Lists and Other Data Structures

sage: list(filter(is_prime, [1..45]))
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43]
sage: [p for p in [1..45] if is_prime(p)]
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43]

Below, we show how each of the introduced commands can be used to construct a list
of all odd integers from 1 to 25.

sage: list(map(lambda n: 2*n +1, [0..12]))
[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25]
sage: list(filter(lambda n: n % 2 == 1, [1..25]))
[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25]
sage: [2*n+1 for n in [0..12]]
[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25]

These commands can also be combined, e.g. to construct a list of prime numbers
congruent to 1 modulo 4.

sage: list(filter(is_prime, [4*n+1 for n in [0..20]]))
[5, 13, 17, 29, 37, 41, 53, 61, 73]

In the above command Sage first constructs a list of all numbers congruent to 1 modulo
4 between 1 and 81. Then, Sage applies filter to this list and deletes all numbers that
are not prime using the is_prime test.

� Example 5.1 We use the above described list operations to compute the first four
derivatives of xex, once using map and once using the comprehension form.

sage: def f(n): #calculates n-th derivative of x*e^x
....: return factor(diff(x*exp(x), n*[x]))
sage: list(map(lambda n: f(n), [0..4]))
[x*e^x, (x + 1)*e^x, (x + 2)*e^x, (x + 3)*e^x, (x + 4)*e^x]
sage: [f(n) for n in [0..4]]
[x*e^x, (x + 1)*e^x, (x + 2)*e^x, (x + 3)*e^x, (x + 4)*e^x]

�

Next, we introduce the reduce command which operates by associativity from left
to right on the elements of a list. The command reduce requires two arguments: a
two-parameter function describing the composition of two list elements, and a list.

sage: reduce(lambda x, y: 10*x + y, [1, 2, 3, 4])
1234

In the above example, reduce applies the composition x? y = 10x+ y to all elements of
the list [1, 2, 3, 4] from left to right, i.e.

((1?2)?3)?4) = (12?3)?4 = 123?4 = 1234.

So far, reduce only makes sense for lists with at least two elements. For one-element
lists or the empty list we have to add a third argument describing the image of the

5.1 Lists 63

empty list. This element should corresponds to the neutral element of the considered
composition as the result might change otherwise.

sage: reduce(lambda x, y: 10*x +y, [9, 8, 7, 6], 1)
19876

� Example 5.2 We can use reduce to compute the product of odd integers.

sage: L = [2*n+1 for n in [0..9]]
sage: reduce(lambda x, y: x*y, L, 1)
654729075

Here we put 1 as a third element which is the neutral element for multiplication. �

As seen in the above example, reduce can be used to compute large sums or product.
For these two common composition Sage provides the predefined functions add1 for
addition and prod for multiplication.

sage: L = [2*n+1 for n in [0..9]]
sage: prod(L) #product of all list elements
654729075
sage: add(L) #sum of all list elements
100

For tests on list elements Sage provides the functions any and all. Their evaluation
terminates as soon as the result True, respectively False is returned. The remaining list
elements are not evaluated.

sage: fct = lambda x: 4/x == 2
sage: all(fct(x) for x in [2, 1, 0])
False
sage: any(fct(x) for x in [2, 1, 0])
True

The list constructions described so far can be combined to construct various “products”
of two lists deoending on the explicit combination in used. In the following example,
the leftmost for operator corresponds to the outermost loop.

sage: [[x, y] for x in [1..3] for y in [6..8]]
[[1, 6], [1, 7], [1, 8], [2, 6], [2, 7], [2, 8], [3, 6], [3, 7],

[3, 8]]

In nested comprehension forms, every comprehension form produces its own list.

sage: [[[x, y] for x in [1..3]] for y in [6..8]]
[[[1, 6], [2, 6], [3, 6]], [[1, 7], [2, 7], [3, 7]], [[1, 8], [2,

8], [3, 8]]]

If map has several lists as arguments it takes one element of each list in turn.

sage: list(map(lambda x, y: (x, y), [1..3], [6..8]))

1This command is different from the sum command, which looks for a symbolic expression of a sum.

64 Chapter 5. Lists and Other Data Structures

[(1, 6), (2, 7), (3, 8)]

Another way to combine two lists is the zip command which groups several lists
entry-wise.

sage: L1 = [0..2]; L2=[5..7]
sage: list(zip(L1, L2))
[[0, 5], [1, 6], [2, 7]]

As seen above it is possible that the elements of a list are lists themselves. This can
be iterated various times. The number of nested lists is called the level of a list. The
commandflatten reduces the level of a list. The degree of reduction can be customized
with the option max_level.

sage: L = [[1, 2, [3]], [4, [5, 6]], [7, [8, [9]]]]
sage: flatten(L, max_level = 1)
[1, 2, [3], 4, [5, 6], 7, [8, [9]]]
sage: flatten(L, max_level = 2)
[1, 2, 3, 4, 5, 6, 7, 8, [9]]
sage: flatten(L) #flattens everything
[1, 2, 3, 4, 5, 6, 7, 8, 9]

5.1.2 List Manipulation
Here, we introduce various methods which modify the given list in-place. This means
that the given list is lost and replaced by the modified list. We start by introducing
methods to rearrange the elements in the list. The most basic one is the reverse method
which simply reverts the order of the elements in a list. The sort the elements of a list
in increasing order we use the sort method. A decreasing order can be achieved by
adding the option reverse = True,

sage: L = [1, 8, 5, 2, 9]
sage: L.reverse(); L
[9, 2, 5, 8, 1]
sage: L.sort(); L
[1, 2, 5, 8, 9]
sage: L.sort(reverse = True); L
[9, 8, 5, 2, 1]

The sort command also accepts a key function as an additional argument. This can be
used to modify the sorting criteria of sort. For example, we can sort a list of integer
lists in the increasing order of their second element.

sage: def TakeSecond(x):
....: return x[1]
sage: L = [[2, 2], [3, 4], [4, 1], [1, 3]]
sage: L.sort(key = TakeSecond); L
[[4, 1], [2, 2], [1, 3], [3, 4]]

There are various other methods available to modify the elements of a list. In the code

5.1 Lists 65

List Operations

Reversing the Order of Elements L.reverse()
Sorting a List sort

Adding an Element at the End L.append(x)
Adding a List at the End L.extend(L1)

Inserting an Element x at Position i L.insert(i,x)
Counting Elements equal to x L.count(x)

Removing i-th Element L.pop(i)
Index of first Element equal to x L.index(x)

Removing first Element equal to x L.remove(x)
Removing a Sub-List del L[p:q]

Table 5.1.: List Operations

below we shortly introduce the most basic modifications methods.

sage: L = [1, 2, 3, 4]; L1 = [5, 6]
sage: L.append(7); L # equivalent to L[len(L):] = [7]
[1, 2, 3, 4, 7]
sage: L.extend(L1); L # equivalent to L[len(L):] = L1
[1, 2, 3, 4, 7, 5, 6]
sage: L.insert(1, 7); L # equivalent to L[1:1] = [7]
[1, 7, 2, 3, 4, 7, 5, 6]
sage: del L[2:3]; L # equivalent to L[2:3] = []
[1, 7, 3, 4, 7, 5, 6]

If we want to know how often an element x appears in a list L we can use the command
L.count(x). Another useful command is L.pop(i) which returns the element of index
i, respectively the last element if no index is declared, i.e. L.pop(). This element is also
removed from the list. Regarding a fix element x, L.index(x) returns the index of the
first element equal to x and L.remove(x) removes the first element equal to x. Both of
these methods do not deal with further elements equal to x and raise an error if x is not
contained in the list.

sage: L.count(7), L
(2, [1, 7, 3, 4, 7, 5, 6])
sage: L.pop(3), L
(4, [1, 7, 3, 7, 5, 6])
sage: L.pop(), L
(6, [1, 7, 3, 7, 5])
sage: L.index(7), L
(1, [1, 7, 3, 7, 5])
sage: L.remove(7); L
[1, 3, 7, 5]

66 Chapter 5. Lists and Other Data Structures

5.1.3 Example: The Sieve of Eratosthenes
The sieve of Eratosthenes is an ancient algorithm to find all prime numbers up to a given
upper limit N. Roughly speaking this algorithms works as follows:

• Start with a list of integers from 2 to N.

• Starting with 2 as the first prime number, remove all multiples of 2 from the list.

• Go to the next number q and remove all multiples of q from the list.

• Repeat the previous step until the end of the list is reached.

• The remaining numbers are all prime numbers smaller than or equal to N.

We want to write a Sage program that replicates this algorithm. First, we write a small
sub-program which removes all multiples of a given number p from a list.

sage: def rem(p, L):
....: for k in srange(2, ceil(L[-1]/p), include_endpoint =

True):
....: if k*p in L:
....: L.remove(k*p)
....: return L

Since the highest multiple of a number p in an integer list [2, ..., n] is bounded
from above by

⌈
n
p

⌉
we use this term as an upper bound to avoid unnecessary repetitions.

In the next step we use our rem function to define the sieve of Eratosthenes in Sage
using a while loop. The function eratos takes a number n and returns a list with all
prim numbers up to n

sage: def eratos(n):
....: L = [2..n]
....: i = 0
....: while i < len(L) or i <= sqrt(n):
....: rem(L[i], L)
....: i += 1
....: return L

In the above code the length of the list L changes with every iteration of the while loop.
As an additional upper bound we added sqrt(n). The reason is the small elementary
fact that a number n is prime if and only if all numbers smaller or equal to

√
n do not

divide n. Now, we can use our function eratos to obtain a list of all prime numbers up
to a given number n.

sage: eratos(10)
[2, 3, 5, 7]
sage: eratos(40)
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]

5.1 Lists 67

5.1.4 Example: The UlamSsequence
The Ulam sequence is a recursively defined sequence introduced by Stanislaw Ulam in
1964. The classical Ulam sequence starts with u0 = 1 and u1 = 2 but any distinct pair of
integer numbers is also possible. For n≥ 2, un is defined to be the smallest integer larger
than un−1 that can be represented in exactly one way as the sum of two earlier terms, i.e.
there exists exactly one pair (k, l), k 6= l, such that uk +ul = un and k, l < n. We want to
write a function in Sage that takes two starting values u0, u1 and an integer n≥ 2 and
returns a list containing the first n-terms of the Ulam sequence starting with u0 and u1.

One possible first step is to write a sub-programm next_elem that takes a list L =
[u0,..., un] of integers and calculates the next term following the Ulam algorithm.
The rough idea is to check for every integer starting with a = L[-1] + 1 whether it
can be represented in a unique way as a sum of two distinct elements of L. Therefore, we
use a for loop to go through the list and test if the difference a - L[k] is in L and not
equal to L[k]. If that is the case we add one to our counter pairs. After the for loop
has terminated we check whether pairs is equal to two. If that is the case, the value a is
returned, otherwise we repeat the whole procedure with a + 1. In our implementation
the correct value for the counter pairs is two and not one. The reason is the following:
a = L[k] + L[l] = L[l] + L[k] is in the mathematical sense one way of writing a
as a sum but the counter pairs will have the value 2 since the for loop adds one for
the pair (k, l) and one for the pair (l,k). Following these considerations the procedure
next_elem is written as follows.

sage: def next_elem(L):
....: # set starting integer:
....: a = L[-1] + 1
....: while True:
....: # start counter:
....: pairs = 0
....: for k in srange(0,len(L)):
....: if (a - L[k]) in L and L.index(a-L[k]) != k:
....: # raise counter if a is sum:
....: pairs += 1
....: if pairs == 2:
....: # stop if number of pairs is exactly 2:
....: break
....: else:
....: # otherwise repeat with next integer:
....: a += 1
....: return a

Now it is an easy task to write a procedure returning the list of the first n elements of
the Ulam sequence starting with u0 and u1. Using a for loop we simply add the first n
elements with our procedure next_elem.

sage: def ulam(u0, u1, n):
....: L = [u0, u1]
....: for k in srange(2, n+1):

68 Chapter 5. Lists and Other Data Structures

....: L.append(next_elem(L))

....: return L

Now we can determine the Ulam sequence with any pair of starting values (u0,u1).

sage: ulam(1, 2, 10) # the classical sequence
[1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26]
sage: ulam(5, 11, 15) # other starting values
[5, 11, 16, 21, 26, 27, 31, 36, 38, 41, 46, 48, 49, 51, 56, 58]

5.2 Character Strings
Character strings are mainly used for text. They are delimited by single or double quotes,
’...’, or "...".

sage: S = ’I␣am␣a␣character␣string.’

The comparison of two character strings is performed according to the internal
encoding of each character. Similar to lists, the length of a string can be returned with
len and concatenation is performed with the addition symbol + and the multiplication
symbol *. Accessing sub-strings of a given string S uses the same syntax as for lists, i.e.
S[n], S[p:q] and so on. The result is in that case again a character string. However,
the Python language forbids the replacement of an initial string by such an assignment
because character strings are immutable, see Section 5.5.2.

To convert a given object obj into a character string we type str(obj). The command
split cuts a given string at spaces and returns the single parts in a list. Moreover, we
can split a string with at any character by adding it as an additional argument to split.

sage: S = ’Let␣us␣split!’; S.split()
[’Let’, ’us’, ’split!’]
sage: S.split(’s’)
[’Let␣u’, ’␣’, ’plit!’]

5.3 Finite Sets
In contrast to lists, the set type only keeps track of whether an element is present or
absent without considering its position or its order of repetition, e.g. {a,b,a}= {b,b,a}.
Finite Sets are constructed in Sage by applying the Set function to a list of its elements.
Similar to mathematics, the output is with curly brackets.

sage: E = Set([1, 1, 2, 3, 5]); E
{1, 2, 3, 5}

Similar to lists, the operation in checks whether a set contains a specific element.
Moreover, Sage provides all usual set constructions, like the union of sets by + or |, the
intersection by &, the set difference by - and the symmetric difference by ^^.

sage: E = Set([1, 2, 4, 8]); F = Set([1, 3, 5, 7])
sage: 5 in E, 5 in F

5.3 Finite Sets 69

(False, True)
sage: E & F
{1}
sage: E + F
{1, 2, 3, 4, 5, 7, 8}
sage: E - F
{8, 2, 4}
sage: E ^^ F
{2, 3, 4, 5, 7, 8}

� Example 5.3 Using the union operator we can define a function include that checks
whether E is a subset of F .

sage: def included (E, F): return E + F == F

�

Analogously to lists, len returns cardinalityt. Also the operations map, filter and
the comprehension form apply to sets as well, but the type of the result does not change.
Accessing an element in a set E is done as usual via E[k]. In the following example we
construct the list of the elements of a set in two different ways using the comprehension
form.

sage: E = Set([4, 7, 1, 5, 8])
sage: [E[k] for k in [0..len(E)-1]]
[1, 4, 5, 7, 8]
sage: [t for t in E]
[1, 4, 5, 7, 8]

5.3.1 Example: The Inclusion-Exclusion Principle
Let (An)0≤n≤N be a family of finite sets. The inclusion-exclusion principle is a counting
technique to calculate the cardinality of

⋃N
n=0 An generalizing the familiar identity

|A∪B|= |A|+ |B|− |A∩B|.

for finite sets A,B. The pattern of the inclusion-exclusion principle can be seen more
clearly in the case of three finite sets A,B,C. There we have

|A∪B∪C|= |A|+ |B|+ |C|− |A∩B|− |B∩C|− |A∩C|+ |A∩B∩C|.

Generalizing this to a family (An)0≤n≤N the cardinality of
⋃N

n=0 An is calculated via∣∣∣∣∣ N⋃
n=0

An

∣∣∣∣∣= ∑
/0 6=I⊂{0,...,N}

(−1)|I|+1

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ . (5.1)

Here, the index I goes over all non-empty subsets of {0, . . . ,N}, i.e. I goes over all
non-empty elements of the power set P({0, . . .N}). Recall, that a power set P(A) of a
set A is the set of all subsets of A.

70 Chapter 5. Lists and Other Data Structures

Our goal is to write a Sage program inex that takes a set S = {A1, . . . ,AN} and returns
the cardinality of

∣∣⋃N
n=0 An

∣∣ using the inclusion-exclusion principle. Taking a look at
(5.1) we see that all summands have the structure |

⋂
i∈I Ai| for a given index set I. Thus,

we write a small sub-program indexsection that takes a set of sets S and an index set
I and returns the set

⋂
i∈I Ai.

sage: def indexsection(S, I):
....: r’’’
....:␣␣␣␣␣Return␣the␣intersection␣over␣a␣given␣index␣set
....:␣␣␣␣␣’’’
....: X = S[I[0]]
....: for k in srange(1, len(I)):
....: X = X & S[I[k]]
....: return X

Now we use this programm to write our procedure inex. Since, I goes over all non-
empty elements of the power set P({0, . . .N}), we use the function powerset in Sage.
However, for our purpose we want to have a list of all elements of the powerset, i.e.

sage: list(powerset([0..2]))
[[], [0], [1], [0, 1], [2], [0, 2], [1, 2], [0, 1, 2]]

With this command in our hand the procedure inex is written as follows:

sage: def inex(S):
....: # start the sum with 0:
....: res = 0
....: # create the indexset:
....: L = list(powerset([0..len(S)-1]))
....: for k in srange(1, len(L)):
....: if len(L[k]) % 2 == 0: #substract if even
....: res = res - len(indexsection(S, L[k]))
....: else: #add otherwise
....: res = res + len(indexsection(S, L[k]))
....: return res

Now, we can use the inclusion-exclusion principle in Sage.

sage: A1 = Set([1, 6,45, 2, 6,4,4])
sage: A2 = Set([4,23,6,23,6,1])
sage: A3 = Set([4,341,7,2,4,77,7,2])
sage: A4 = Set([4,23,7,33,76,2])
sage: S = Set([A1, A2, A3, A4])
sage: inex(S) == len(A1 + A2 + A3 + A4)
True

5.4 Dictionaries 71

5.4 Dictionaries
Like a dictionary in the usual sense, the Python type dictionary associates a value to a
given key. The syntax is similar to lists, using assignments from the empty dictionary
dict() or its alias {}.

sage: D = {}
sage: D[’one’] = 1; D[’two’] = 2; D[’three’] = 3
sage: D
{’one’: 1, ’two’: 2, ’three’: 3}
sage: D[’two’] + D[’three’]
5

In the above example we see how to add an entry (key, value) to a dictionary and how
to access the value associated to a given key. Similar to lists, the operator in checks
whether a given key x is contained in the dictionary and the commands del D[x] and
D.pop(x) erase the entry of key x in the dictionary.

sage: a_dict = {’color’: ’blue’, ’fruit’: ’apple’, ’pet’: ’dog’}
sage: ’fruit’ in a_dict
True
sage: ’plant’ in a_dict
False

Furthermore, we can iterate over the keys of dictionaries or over their values.

sage: a_dict = {’color’: ’blue’, ’fruit’: ’apple’, ’pet’: ’dog’}
sage: for key in a_dict:
....: print(key)
color
fruit
pet
sage: a_dict = {’color’: ’blue’, ’fruit’: ’apple’, ’pet’: ’dog’}
sage: for value in a_dict.values():
....: print(value)
blue
apple
dog

Similarly, we can iterate over both, keys and values, simultaneously.

sage: a_dict = {’color’: ’blue’, ’fruit’: ’apple’, ’pet’: ’dog’}
sage: for item in a_dict.items():
....: print(item)
(’color’, ’blue’)
(’fruit’, ’apple’)
(’pet’, ’dog’)

One possible application for dictionaries in mathematics is the representation of a

72 Chapter 5. Lists and Other Data Structures

function on a finite set, e.g.

A = {a0,a1,a2}, f : A→ B, f (ai) = bi.

The code below implements the above function and returns the input set A and the output
set Im f = f (A) via the aforementioned methods keys and values:

sage: D = {’a0’:’b0’, ’a1’:’b1’, ’a2’:’b2’}
sage: A = Set(D.keys()); B = Set(D.values())
sage: A, B
({’a0’, ’a1’, ’a2’}, {’b1’, ’b0’, ’b2’})

Dictionaries may also be constructed from list or pairs [key, value] via

dict([’a0’, ’b0’], [’a1’, ’b1’], ...)

� Example 5.4 The following test on the number of distinct values can be used to
determine whether a function f represented by D is injective.

sage: def injective(D):
....: return len(D) == len(Set(D.values()))

�

5.5 More on Data Structures
5.5.1 Shared or Duplicated Data Structure

Assigning a list to a variable only shares the data structure and does not duplicate the
data structure. In the following example the lists L1 and L2 remain identical, i.e. they
are two aliases of the same object. In particular, modifying L1 also modifies L2 and vice
versa.

sage: L1 = [1, 2, 3]; L1 = L2
sage: L1[1] = 42; L2
sage: [42, 2, 3]

In contrast, map, filter and flatten duplicate the data structures. The same holds
for list constructions by L[p:q], comprehension forms and the concatenations + and *.
Checking for shared data structure can be done in Sage with the is operator.

sage: L1 = [1, 2, 3]; L2 = L1; L3 = L1[:]
sage: [L1 is L2, L1 is L3, L1 == L3]
[True, False, True]

5.5.2 Mutable and Immutable Data Structure
As seen in Section 5.1 a list can be changed in-place with methods like reverse or
sort. This is only possible because lists are mutable data structures. In contrast to
that sets are immutable. This means that sets cannot be modified in-place after their
construction.

5.5 More on Data Structures 73

sage: L = [0..5]; L
[0, 1, 2, 3, 4, 5]
sage: L[0] = 10
[10, 1, 2, 3, 4, 5]
sage: S = Set([0..5]); S
{0, 1, 2, 3, 4, 5}
sage: S[0] = 10
Traceback (most recent call last):
...
TypeError: ’Set_object_enumerated_with_category’ object does not

support item assignment

The immutable counterpart to lists are sequences or tuples and are denoted by paren-
theses (...) instead of square brackets. A tuple with only one element is defined by
adding a comma after the element, to distinguish it from mathematical parentheses.

sage: S0 = (); S1 = (1,); S2 = (1, 2)
sage: S0, S1, S2
((), (1,), (1, 2))
sage: [1 in S1, (1) is S1]
[True, False]

The available operations on tuples are essentially the sames as those on lists, e.g. map,
filter and the comprehension form. However, the type of the result thus not change,
e.g. the comprehension form transforms a tuple into a list.

sage: S1 = (1, 4, 9, 16); [k for k in S1]
[1, 4, 9, 16]

III

6 2D Graphics . 77
6.1 Drawing Curves
6.2 Vector Fields
6.3 Complex Functions
6.4 Density and Contour Plots
6.5 Data Plot
6.6 More Graphic Primitives

7 3D Graphics . 107
7.1 Plotting Functions
7.2 Vector Fields
7.3 More Graphic Primitives

Graphics

6. 2D Graphics

Drawing the plot of a function or visualizing a series of data makes it often easier to
grasp a mathematical phenomena, e.g. the integration of a function, helps us make
conjectures, e.g. the integration of a function.

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

∫ b

a

f(x)dx

Sage provides many possibilities to draw a plane curve, e.g. as the graph of a function,
from a parametric system, using polar coordinates or by an implicit equation. In this
chapter we describe these cases and give various examples of data visualization.

6.1 Drawing Curves
6.1.1 Graphical Representation of a Function

In Section 2.3.3 we used the plot command to draw the graph of a symbolic or Python
function f (x) on an interval [a,b]. There the basic syntax is given by plot(f(x), x,
a, b). However, there are various options available that allow us to modify the plot in
many different ways. These modifications will be discussed in this section.

78 Chapter 6. 2D Graphics

sage: plot(x *sin(1/x), x, -2, 2)

2.0 1.5 1.0 0.5 0.5 1.0 1.5 2.0

0.2

0.2

0.4

0.6

0.8

First, we observe that Sage makes it easy to tell whether a graph is on both sides of
both axes, as the axes only cross if the origin is actually part of the viewing area. If one
of the axes labels are very large, the scientific notation, i.e. the e-notation, is used.

sage: plot(x^3, x, 200, 400)

200 250 300 350 400

1

2

3

4

5

6

1e7

We start with introducing a few basic options which do not need many explanations.

• plot_points are the minimal number of computed points. The default value
here is 200.

• xmin and xmax are the interval bounds over which the function is displayed.

• alpha is the option for the line transparency. Admissible values are between 0 for
invisible and 1 for completely non-transparent. The default value here is 1.

• thickness controls the line thickness. The default value here is 1. To thicken the
line we insert a larger number.

We consider a basic graph of the sinus function and modify it with the above options.

6.1 Drawing Curves 79

sage: plot(sin(x), x, -pi, pi) #standard plot
sage: plot(sin(x), x, -pi, pi, alpha = 0.2, thickness = 5) #

modified plot

3 2 1 1 2 3

1.0

0.5

0.5

1.0

Standard Plot of sin(x)

3 2 1 1 2 3

1.0

0.5

0.5

1.0

Modified Plot of sin(x)

Moreover, we can change the color of the graph with the color option. There we
have various possibilities to define the color.

• as a character string, e.g. ’blue’ (default value), ’red’, ...,

• as a RGB-triple (r, g, b), where the three values are between 0 and 1,

• as an HTML-color, such as #aaff0b

• as HSV-color, such as hue(0.5), where the number should be between 0 and 1.

sage: plot(sin(x), x, -pi, pi, color = ’purple’)

3 2 1 1 2 3

1.0

0.5

0.5

1.0

The linestyle option allows us to change the line style of the graph to one of the
following possibilities.

• "-" or "solid",

• "- -" or "dashed",

80 Chapter 6. 2D Graphics

• ":" or "dotted",

• "-." or "dash dot",

• " " or "None".

sage: plot(sin(x), x, -pi, pi, linestyle = "--")

3 2 1 1 2 3

1.0

0.5

0.5

1.0

If we have an empty linestyle and specify a marker, like a circle "o", a point ".", or a
square "s", we can see the points that have been actually computed. Also TeX symbol
can be used as marker.

sage: plot(sin(x), x, -pi, pi, plot_points = 10, linestyle = "␣",
marker = r’\star’)

3 2 1 1 2 3

1.0

0.5

0.5

1.0

Besides the appearance of the graph we can also change the scaling of the axes from its
default value linear to a logarithmic scale using the scale option. There, the possible
values are ’loglog’ if both axes should have logarithmic scale and ’semilogx’ and
’semilogy’ if only the x-, respectively the y-axis should have logarithmic scale. The
base of the logarithmic scale is by default 10 but can be changed to any value greater
than 1 using the base option. We can assign different bases to the separate axes via
base = (basex, basey). If the linear scale is chosen, the base option is ignored.
A more advanced scaling of the axes is done with the tick formatting. The command

6.1 Drawing Curves 81

ticks = [x, y] takes a list x and y containing all values that should be marked on
the x-, respectively y-axis. Alternatively, we can insert a positive real number defining
the new linear scaling. By default the labels are displayed the usual Sage format but
can be changed to a LATEXformat via tick_formatter = "latex". For trigonmetric
functions it is often useful to label the axis with multiplicites of π . To do so, we use the
option tick_formatter = pi.

sage: h1 = plot(sin(pi*x), (x, -8, 8), ticks
=[[-7,-3,0,3,7],[-1/2,0,1/2]])

sage: h2 = plot(2*x+1,(x,0,5),ticks=[[0,1,e,pi,sqrt(20)],2],
tick_formatter="latex")

sage: h3 = plot(sin(x),(x,0,2*pi),ticks=pi/3,tick_formatter=pi)

7 3 3 7

0.5

0.5

Plot h1

0 1 e π 2
√

5

2.0

4.0

6.0

8.0

10.0

Plot h2

1
3
π 2

3
π π 4

3
π 5

3
π 2π

−1.0

−0.5

0.5

1.0

Plot h3

Just as any other object discussed so far, also graphical objects can be assigned to a
Python variable, say g. Afterwards we can use the show command to display it. There,
we can add additional options like bounds for the y-axis, e.g. g.show(ymin = -1,
ymax = 3), the aspect ratio, e.g. g.show(aspect_ratio = 1) to have equal scales
for x and y. Moreover, the options axes_label,title and scale are also valid. To
export a graphical object, we use the save command, e.g. g.save(’filename.png’).
There we can choose between several formats, e.g. .pdf, .png, .ps, .eps, .svg and
.sobj.

R To include a graphic in a LATEXdocument using includegraphics we recommend to
use the eps format if the file is compiled with latex and the pdf format if the file is
compiled with pdflatex.

To draw the graphs of various functions into one graphical object we hand over a list
of functions as an argument in plot or by simply add the different plots.

sage: g1 = plot([x*exp(-n*x^2)/(0.4) for n in [1..5]],x, 0, 2)
sage: g2 = plot([]) #empty plot
sage: for n in [1..5]:
....: g2 += plot(x*exp(-n*x^2)/(0.4), x, 0, 2)

82 Chapter 6. 2D Graphics

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

Plot g1

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

Plot g2

Although we have plotted the same functions in both graphics the coloring is different.
The reason is the following. If a list of functions is inserted into plot, as done in g1, the
color changes by default from curve to curve. In the plot g2, however, the single curves
are first drawn in the default setting, i.e. the curves are blue, and added afterwards to the
plot g2. To modify the appearance of a plot, where a list of functions has been used as
an input, as in g1, we simply use lists as arguments for the various options.

sage: g3 = plot([x*exp(-n*x^2)/(0.4) for n in [1..3]],x, 0, 2,
color = [’blue’, ’red’, ’green’], linestyle = ["--", "-.", ":"
])

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

If more than one curve is contained in one plot it is recommended to use a label ex-
plaining the different curves. Such a label can be added with the option legend_label.
There TeX code can be used. Moreover the color of each label can be changed with
legend_color using the same ways as described for the color option. If multiple
functions are in one plot, their labels are combined in one legend.

sage: p1 = plot(sin(x), x, -pi, pi, color = ’red’, legend_label =
r’\sin’, legend_color = ’red’)

sage: p2 = plot(cos(x), x, -pi, pi, color = ’green’, legend_label
= r’\cos’, legend_color = ’green’)

sage: p = p1 + p2

6.1 Drawing Curves 83

3 2 1 1 2 3

1.0

0.5

0.5

1.0
sin
cos

If a list of functions is used in plot and legend_label is set to ’automatic’ Sage
creates a label for each function according to their internal representation. But as soon
as legend_label is any string different from ’automatic’ it will be repeated for all
members. To modify the single labels, we have to use a list with the desired labels,
i.e. legend_label = [’name1’, ’name2’,...] using the same syntax as for the
other plot options.

So far, we have only drawn the graph of functions which have been well-defined on
the whole interval. What happens if we try to plot a function with poles like the Gamma
function Γ.

sage: plot(gamma(x), -3, 4).show(ymin = -5, ymax = 5)

3 2 1 1 2 3 4

4

2

2

4

Here it is very important to add the bounds on the y-axis. Otherwise we would not be
able to see the original function because of the high values of the function values near
the poles. Since plot only connects computed function values vertical lines near the
poles appear. These vertical lines can be removed with detect_poles = True. Setting
detect_poles = ’show’ adds dashed vertical lines to highlight the position of the
poles.

sage: plot(gamma(x), -3, 4, detect_poles = ’show’).show(ymin = -5,
ymax = 5)

84 Chapter 6. 2D Graphics

3 2 1 1 2 3 4

4

2

2

4

Last but not least, we describe the basic filling options available in plot. The option
fill takes the following values:

• ’axis’: fills the space between the graph and the x-axis.

• ’min’: fills the space under the graph.

• ’max’: fills the space over the graph.

• some one-valued function: fills the space between the graph of the given function
and the plotted graph.

This filling comes with a default color and transparency which can be further modified
with fillcolor and fillalpha respectively. The usage of these options is the same as
for alpha and colors respectively.

sage: p1 = plot(sin(x), -pi, pi, fill=’axis’)
sage: p2 = plot(sin(x), -pi, pi, fill=’min’, fillalpha=1)
sage: p3 = plot(sin(x), -pi, pi, fill=’max’)
sage: p4 = plot(sin(x), -pi, pi, fill=(1-x)/3, fillcolor=’blue’,

fillalpha=.2)

6.1 Drawing Curves 85

3 2 1 1 2 3

1.0

0.5

0.5

1.0

Plot p1

3 2 1 1 2 3

1.0

0.5

0.5

1.0

Plot p2

3 2 1 1 2 3

1.0

0.5

0.5

1.0

Plot p3

3 2 1 1 2 3

1.0

0.5

0.5

1.0

Plot p4

If a list of functions is used in plot we can, as usual, either set a global option or
hand over a list with the desired filling options for each single function. In addition,
the dictionary key-value syntax {i: [j] } creates a filling between the i-th the j-th
function. Here, the square brackets around j are important since the syntax {i : j }
fills the space between the i-th function and the function y = j. In particular, we can fill
the space between the i-th function and an arbitrary function f (x) with {i : f(x) }.

sage: (f1, f2) = x*exp(-1*x^2)/.35, x*exp(-2*x^2)/.35
sage: p1 = plot([f1, f2], -pi, pi, fill={1: [0]}, fillcolor=’blue’

, fillalpha=.25, color=’blue’)
sage: p2 = plot([f1, f2], -pi, pi, fill={0: x/3, 1:[0]}, color=[’

blue’])
sage: p3 = plot([f1, f2], -pi, pi, fill=[0, [0]], fillcolor=[’

orange’,’red’], fillalpha=1, color={1: ’blue’})
sage: p4 = plot([f1, f2], (x,-pi, pi), fill=[x/3, 0], fillcolor=[’

grey’], color=[’red’, ’blue’])

86 Chapter 6. 2D Graphics

The Plot

Plotting a Function x plot(f(x), x, xmin, xmax)
Showing a Plot g g.show()

Saving a Plot g g.save(filename.png))

Plot Options

Number of Minimal Plot Points plot_points =)
Line Transparency alpha)

Line Thickness thickness
Line Color color
Line Style linestyle

Scaling of the Axes scale
Adding a Legend legend_label
Color of Legend legend_color

Filling fill
Transparency, Color of the Filling fillalpha, fillcolor

Table 6.1.: Plot Commands

3 2 1 1 2 3

1.0

0.5

0.5

1.0

Plot p1

3 2 1 1 2 3

1.0

0.5

0.5

1.0

Plot p2

3 2 1 1 2 3

1.0

0.5

0.5

1.0

Plot p3

3 2 1 1 2 3

1.0

0.5

0.5

1.0

Plot p4

6.1 Drawing Curves 87

6.1.2 Parametric Plot
Parametric curves (x= f (t),y= g(t)) can be drawn with the commandparametric_plot.
The command parametric_plot supports the same options as plot with one differ-
ence. The option fill only takes the boolean values True or False. Thus, there is only
fill or no fill. A further difference is that we cannot pass a list of functions.

sage: g1 = parametric_plot([cos(x) + 2 * cos(x/4), sin(x) - 2 *
sin(x/4)], (x, 0, 8*pi))

sage: g2 = parametric_plot([cos(x) + 2 * cos(x/4), sin(x) - 2 *
sin(x/4)], (x,0, 8*pi), fill = True)

2 1 1 2 3

2

1

1

2

A Hyptrochoid (g1)

2 1 1 2 3

2

1

1

2

A filled Hyptrochoid (g2)

6.1.3 Curves in Polar Coordinates
Besides the usual cartesian coordinates it is also quite common to endow R2 with polar
coordinates (r,φ), where the transformation is given by(

x
y

)
=

(
r sin(φ)
r cos(φ)

)
.

While plot takes a function f (x) with x ∈ [a,b] and draws the graph {(x, f (x))|x ∈ [a,b]
the command polar_plot takes a function ρ(φ) with φ ∈ [a,b] and draws the graph
{(ρ(φ),φ)|φ ∈ [a,b]} in polar coordinates which translates to {(ρ(φ)sin(φ),ρ(φ)cos(φ))|φ ∈
[a,b]} in cartesian coordinates. For example we can plot the rose-curves ρ(φ) =
(1+ e · cos(nφ)) for n = 20

19 and e ∈
{1

3 ,2
}

sage: t = var(’t’); n = 20/19
sage: r1 = polar_plot(1 + 1/3*cos(n*t), (t, 0, n*36*pi),

plot_points = 5000)
sage: r2 = polar_plot(1 + 2*cos(n*t), (t, 0, n*36*pi), plot_points

= 5000)

88 Chapter 6. 2D Graphics

1.0 0.5 0.5 1.0

1.0

0.5

0.5

1.0

Rose curve with e = 1
3 (r1)

3 2 1 1 2 3

3

2

1

1

2

3

Rose curve with e = 2 (r2)

Similar to parametric_plot all options for plot pass over to polar_plot, except
for the fill option. This option only takes the boolean values, False and True, and
symbolic functions in one variable. In addition, we can insert a list of functions in
polar_plot.

sage: p1 = polar_plot(sqrt, 0, 2 * pi, fill=True)
sage: p2 = polar_plot([(1.2+k*0.2)*log(x) for k in range(6)], 1, 3

* pi, fill={0: [1], 2: [3], 4: [5]})

1.5 1.0 0.5 0.5 1.0 1.5 2.0 2.5

2.0

1.5

1.0

0.5

0.5

1.0

A filled Spiral (p1)

4 2 2 4

3

2

1

1

2

3

4

Colorful Spirals (p2)

� Example 6.1 A conchoid is a curve derived from a fixed point O, another curve α ,
and a length d. These type of curves were invented by the ancient Greek mathematician
Nicomedes. The polar equation of a conchoid is given by ρ(θ) = α(θ)+d.

One example of conchoids are Pascal conchoids whose polar equation is given by
ρ(φ) = cos(φ)+ d for φ ∈ [0,2π] and d > 0. In the plot below we draw a family of
Pascal conchoids where the parameter d varies from 0 to 2 in steps of 0.1. To obtain a
colorful picture we varied the color using the hue-representation.

6.1 Drawing Curves 89

sage: t = var(’t’)
sage: L = [d + cos(t) for d in srange(0, 2, 0.1)]
sage: g = polar_plot(L, (t, 0, 2*pi), color = [hue(t/20) for t in

srange(0,20)])

0.5 0.5 1.0 1.5 2.0 2.5

2.0

1.5

1.0

0.5

0.5

1.0

1.5

2.0

�

6.1.4 Curve defined by an Implicit Equation
Sometimes, a curve is defined as the solution set of f (x,y) = 0 for a function f : R2→R,
i.e. the curve is given by an implicit equation. To plot these kind of course we use
the command implicit_plot (f, (x, xmin, xmax), (y, ymin,ymax)). Similar
with to the previous plot commands, we can use almost all options of plot to modify
the appearance of the plot. Some differences are the option fill which only takes the
boolean values True and False and the option thickness which has to be replaced by
the option linewidth. Furthermore, it is not possible to hand over a list of functions. In
the below example we plotted an ellipse given by the implicit equation x2

4 + y2

25 −2 = 0
and a hyperbel given by the implicit equation x2− 3

2y2 +2 = 0.

sage: x, y = var(’x␣y’)
sage: elip = implicit_plot(x^2 + y^2/9 - 2, (x, -5, 5), (y, -5, 5)

)
sage: hyp = implicit_plot(x^2 - 3/2*y^2 + 2, (x, -5, 5), (y, -5,

5), fill = True, color = ’red’)

90 Chapter 6. 2D Graphics

4 2 0 2 4

4

2

0

2

4

Ellipse elip

4 2 2 4

4

2

2

4

Hyperbel hyp

6.2 Vector Fields
In the previous sections we only considered curves. But these are not the objects
that can be drawn with Sage. Another possibility is the visualization of vector fields
with plot_vector_field. This command takes two function of two variables, e.g.
(f (x,y),g(x,y)) and plot vector arrows of the function over the specified range.

sage: x, y = var(’x␣y’)
sage: v = plot_vector_field((y, (cos(x)-2)*sin(x)), (x, -pi, pi),

(y, -pi, pi))

3 2 1 0 1 2 3

3

2

1

0

1

2

3

In plot_vector_field the options color and plot_points are available. Their
usage is the same as for plot, see Section 6.1.1. As usual, we can add graphics to
combine various vector fields in one plot. Below, we create a plot of two orthogonal
vector fields.

sage: a = plot_vector_field((x,y), (x,-3,3), (y,-3,3), color = ’
blue’)

sage: a += plot_vector_field((y, -x), (x, -3, 3), (y, -3, 3),
color = ’red’)

6.3 Complex Functions 91

3 2 1 0 1 2 3
3

2

1

0

1

2

3

6.3 Complex Functions
Beside real functions, the study complex functions f : C→ C is an interesting topic
on its own. In particular the study of holomorphic and meromorphic functions like the
Riemann-Zeta function ζ or the Gamma function Γ. Although C≡R2, Sage can visual-
ize the graph of functions f : C→ C . There we use the command complex_plot(f,
(xmin, xmax), (ymin, ymax)), where we interpret f (z) as f (x,y) by identifying
z = x+ iy. Then Sage represents the point f (x+ iy) at (x,y) using colors. To obtain
an intuition for this color encoding we take a look on the plot of the identity function
f (z) = z.

sage: z = var(’z’)
sage: p = complex_plot(z, (-5, 5), (-5, 5))

4 2 2 4

4

2

2

4

The above image shoes that Sage assigns a color to a complex number as follows: Sage
takes the complex number in polar coordinates, i.e. z = |z| · eiarg(z). Then the magnitude
|z| is indicated by the brightness, with zero being black and infinity being white, and the
argument, arg(z) is represented by the hue of a color with red being positive real and
increasing through orange, yellow, ... as the argument increases. With this color code
we can now represent meromorphic functions, like f (z) = (z−1+I)(z+2−I/2)3

(z+1+3∗I)2∗(z−2+2∗I) .

sage: g = complex_plot((z-1+I)*(z+2-I/2)^3/((z+1+3*I)^2*(z-2+2*I))
, (-5, 5), (-5, 5))

92 Chapter 6. 2D Graphics

4 2 2 4

4

2

2

4

6.4 Density and Contour Plots
In a similar fashion, as for complex plots, it is possible to plot the graph of a function of
two variables, f : R2→ R in a two dimensional graphic by representing the function
value f (x,y) with a color. This can be done with the command density_plot. The
input is a function of two variables together with their range and the output is, by default,
a two dimensional black white graphic, where white denotes high function values and
black denotes low function values.

sage: x, y = var(’x␣y’)
sage: d1 = density_plot(sin(x) * sin(y), (x, -2, 2), (y, -2, 2))

2.0 1.5 1.0 0.5 0.5 1.0 1.5 2.0

2.0

1.5

1.0

0.5

0.5

1.0

1.5

2.0

We can change the minimal calculated points, as usual, with plot_points (the
default value is 250) . To change the color we have to use colormaps. Roughly
spoken, a colormap is a map from an interval into a set of colors. Sage provides
many different colormaps. A list of the available colomaps within Sage is given by
sorted(colormaps).

sage: sorted(colormaps)
[’Accent’, ’Blues’, ’BrBG’, ’BuGn’, ’BuPu’, ’CMRmap’, ’Dark2’, ’

GnBu’, ’Greens’, ’Greys’, ’OrRd’, ’Oranges’, ’PRGn’, ’Paired’,
’Pastel1’, ’Pastel2’, ’PiYG’, ’PuBu’, ’PuBuGn’, ’PuOr’, ’PuRd
’, ’Purples’, ’RdBu’, ’RdGy’, ’RdPu’, ’RdYlBu’, ’RdYlGn’, ’

6.4 Density and Contour Plots 93

Reds’, ’Set1’, ’Set2’, ’Set3’, ’Spectral’, ’Wistia’, ’YlGn’, ’
YlGnBu’, ’YlOrBr’, ’YlOrRd’, ’afmhot’, ’autumn’, ’binary’, ’
bone’, ’brg’, ’bwr’, ’cool’, ’coolwarm’, ’copper’, ’cubehelix’
, ’flag’, ’gist_earth’, ’gist_gray’, ’gist_heat’, ’gist_ncar’,
’gist_rainbow’, ’gist_stern’, ’gist_yarg’, ’gnuplot’, ’
gnuplot2’, ’gray’, ’hot’, ’hsv’, ’jet’, ’nipy_spectral’, ’
ocean’, ’pink’, ’prism’, ’rainbow’, ’seismic’, ’spring’, ’
summer’, ’tab10’, ’tab20’, ’tab20b’, ’tab20c’, ’terrain’, ’
winter’]

To use such a colormap we use the option cmp = ’name’, where instead of ’name’ we
insert the name of the used color map as a string. This allows us to create quite colorful
density plots.

sage: d2 = density_plot(sin(x^2+ y^2) * cos(x) * sin(y), (x, -4,
4), (y, -4, 4), cmap = ’jet’)

4 3 2 1 1 2 3 4

4

3

2

1

1

2

3

4

A quite similar but yet different way of plotting the graph of function of two variables
in a two dimensional graphic is the command contour_plot. Given a function f (x,y)
of two variables together with their range, contour_plot draws a default choice of
contour lines lz = {(x,y) : f (x,y) = z} and fills the space between them.

sage: c1 = contour_plot(cos(x^2 + y^2), (x, -4, 4), (y, -4, 4))

94 Chapter 6. 2D Graphics

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4

As usual, Sage provides various options to modify the appearance of the plot. The
usage of the options plot_points, linewidth, linestyle and labels are the same
as discussed in Section 6.1.1. By default, the option fill is set to True and fills the area
between the contours. Furthermore, we can add a colormap using the option cmp. The
specific contour lines that are drawn can be customized with the option contours in two
ways: Either we insert a list of integers, determining the contour levels that are drawn,
or a single integer determining only the number of contour lines that are drawn. In the
second case the specific contour levels that are drawn are determined automatically.
In addition, we can add a colorbar via colorbar = True. There are various options
available to modify the appearance of the colorbar. We refer to the SageMathe reference
manual [3] for more information.

sage: c2 = contour_plot(sqrt(x^2 + y^2), (x, -3, 3), (y, -3, 3),
cmap = ’winter’, contours = 20, fill = False, colorbar = True,
colorbar_spacing = ’proportional’)

3 2 1 0 1 2 3
3

2

1

0

1

2

3

0.0

0.6

1.2

1.8

2.4

3.0

3.6

4.2

6.5 Data Plot 95

6.5 Data Plot
Besides functions and vector fields it is also useful to visualize data sets using charts.
One of the most common ones are bar charts. To draw a bar chart in Sage we insert
a list of Python integers, i.e. our data set, into the command bar_chart. Then Sage
draws vertical bars whose height is given by the list element. It is important to note that
we can only use Python integers. This means, we can use integers and fractions but not
symbolic expressions symbolizing irrational numbers, e.g. π . The two main options to
modify the bar charts are the options width and color to adjust the width and the color
of the drawn bars respectively. The option width simply takes a number and the usage
of the option color is the same as explained for plot in Section 6.1.1.

sage: b1 = bar_chart([randrange(15) for i in srange(20)], color =
’green’)

sage: b2 = bar_chart([x^2 for x in srange(1,20)], width = 0.2)

5 10 15 20

2

4

6

8

10

12

14

Bar Chart b1

5 10 15

50

100

150

200

250

300

350

Bar Chart b2

R In the first bar chart we used the command randrange(15) to obtain a random integer
between 0 and 14. The syntax of randrange is the same as for the command srange,
see Section 4.3, i.e. randrange(i,j,k) returns a random element from the list [i,
i+k, ..., i+n*k], where i+nk < j ≤ i+(n+1)k.

6.6 More Graphic Primitives
Plotting a curve using one of the methods described in the previous sections creates a
graphics object, the plot, consisting one graphics primitive, the drawn curve. But there
are more kinds of graphic primitives than curves which can be added to a graphics object.
In this section we describe the usage of some available graphics object in Sage. A few
of these graphics primitves can also be used in 3D-graphics which are discussed in the
next chapter. If this is the case, we indicate their three dimensional usage and refer to
Section 7.

First, we introduce the most simple graphics primitive: a point. The command point
takes either a single point or a list of points. Points are described using tuples with two
or three coordinates.

sage: p1 = point([(1, 2), (2, 0.5), (1, -1)])

96 Chapter 6. 2D Graphics

1.0 1.2 1.4 1.6 1.8 2.0

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Here, the options alpha, color, legend_label and marker which we already know
from plot are available, see Section 6.1.1. The size of the points is changed with the
option size.

sage: r = [(randrange(-4, 4), randrange(-4, 4)) for i in srange
(0,10)]

sage: p2 = point(r, color = ’orange’, size = 100)

3 2 1 1 2 3

4

3

2

1

1

2

3

If we want to point to something in our plot we can add an arrow to our plot with
arrow. Arrows can be used in 2D- or 3D-graphics. The command arrow needs two
arguments. The first argument denotes the starting point and the second one denotes the
ending point of the arrow, i.e. where the arrow is pointing at.

sage: a1 = arrow((0,0), (1,1))

6.6 More Graphic Primitives 97

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Here, the options linestyle, color and legend_label are available and used as
explained in Section 6.1.1. In addition, the width of the arrow shaft is controlled with
the option width and the size of the arrow head is changed with the option arrowsize.
If the arrow should have a head at the end and at the start of the arrow we simply add
head = 2. Combining these options we can create interesting images out of arrows,
like this colorful arrow circle.

sage: a2 = add([arrow((0,0), (cos(x),sin(x)),color = hue(x/(2*pi)
)) for x in [0..2*pi,step=0.1]])

1.0 0.5 0.5 1.0

1.0

0.5

0.5

1.0

To draw a list of linked points we use line(p), where p is a list of points in two
or three dimensions. As usual the coordinates of points are written in a tuple, see the
description of the command point above.

sage: l1 = line([(0,0), (1,1)])

98 Chapter 6. 2D Graphics

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Here, most options from plot are available, i.e. alpha, thickness, linestyle color,
legend_label. Their usage is described in Section 6.1.1.

sage: l2 = line([(cos(n/8 * 2*pi), sin(n/8*2*pi)) for n in
[1..21]], color = "green", thickness = 5, legend_label= "␣
Hexagon")

1.0 0.5 0.5 1.0

1.0

0.5

0.5

1.0
 Hexagon

� Example 6.2 During a random walk, a particle starts at the origin and moves a fixed
distance l every t seconds in a random direction, independently of the preceding moved.
We can use line to draw its trajectory. Then we add a red line that shows the direct way
from the initial to the final position.

sage: n = 1000; l = 1; x = 0; y = 0; p = [[0,0]]
sage: for k in srange(n):
....: theta = (2 * pi * random()).n(digits= 5)
....: x = x + l*cos(theta)
....: y = y + l*sin(theta)
....: p.append([x, y])
sage: g1 = line([p[n], [0,0]], color = ’red’, thickness = 5)
sage: g1 += line(p, thickness = 0.4)

6.6 More Graphic Primitives 99

12 10 8 6 4 2 2 4

5

10

15

20

25

�

� Example 6.3 Given a real sequence (un)n, we construct the polygonal line whose
successive vertices are the points in the plane R2 given by(

xN
yN

)
= ∑

n≤N

(
cos(2πun)
sin(2πun)

)
. (6.1)

If the sequence (un)n is uniformly distributed modulo 1, the polygonal line should
behave like a random walk, and thus not go too far away from the origin. Recall that a
sequence (un)n is uniformly distributed modulo 1 if for any interval [a,b)⊂ [0,1).

lim
N→∞

]{1≤ n≤ N : (un−bunc) ∈ [a,b)}
N

= b−a.

We study the following three sequences and plot the corresponding polygonal line.

• un = n
√

2 with N = 100,

• un = n log(n)
√

(2) with N = 500,

• un = bn ln(n)c
√

2 with N = 500.

First we define our series.

sage: n = var(’n’)
sage: u1(n) = n * sqrt(2)
sage: u2(n) = n * log(n) * sqrt(2)
sage: u3(n) = floor(n * log(n)) * sqrt(2)

Next, we construct the corresponding set of vertices. To do so, we have to calculate the
points pm = (xm,ym) using the assignment (6.1). To improve calculation time we use
the relation(

xN
yN

)
=

(
xN−1
yN−1

)
+

(
cos(2πuN)

sin(2πuN)DasB

)
and a numerical approximation of π as the approximated precision is sufficient for our
application.

100 Chapter 6. 2D Graphics

sage: def vert(seq, N): #constructing the list of points
....: L = [(0,0)]
....: for n in srange(1, N+1):
....: x = L[-1][0] + cos(2*pi*seq(n))
....: y = L[-1][1] + sin(2*pi*seq(n))
....: L.append((x,y))
....: return L

Now, we can plot everything.

sage: p1 = line(vert(u1, 100))
sage: p2 = line(vert(u2, 500))
sage: p3 = line(vert(u3, 500))

-1 -0.8 -0.6 -0.4 -0.2

-0.4

-0.2

0.2

0.4

0.6

un = n
√

2

5 10 15

-5

5

10

un = n log(n)
√
(2)

-6 -4 -2 2 4 6

-5

5

10

15

20

un = bn ln(n)c
√

2

�

As we have seen above, we can use line to draw a polygon. However, the possible
modifications are pretty limited. For example, we even can not fill a polygon whose
boundary is drawn with line. To surround this problem, Sage provides the polygon
function. This function takes a list of points and connects them with straight lines.
Afterwards it connects the last point with the starting point. Hence, the result is always
a closed curve. By default polygon creates a filled polygon.

sage: p1 = polygon([(0,0), (1,1), (0,1)])

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

6.6 More Graphic Primitives 101

The color and the transparency of the filling can be changed with the options color
and alpha respectively. To change the color of the boundary separately we use the
option edgecolor. Here, the usage is the same as for color. If no filling is desired we
can set fill = False. Morover, the options thickness and legend_label are also
available. Combining these tools allows us to draw interesting shapes, like the following
green blob:

sage: L = [[cos(pi*i/100)*(1+cos(pi*i/50)), sin(pi*i/100)*(1+sin(
pi*i/50))] for i in range(200)]

sage: blob = polygon(L, color= ’green’, legend_label = ’Blob’)

2.0 1.5 1.0 0.5 0.5 1.0 1.5 2.0

1.5

1.0

0.5

0.5

1.0

1.5 Blob

Also a simple circle can be added as a graphics primitve in Sage. To draw a simple
circle of radius r with middlepoint at p we use the command circle(p,r).

sage: c1 = circle((1,1), 1)

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

We can use the options alpha, thickness, linestyle and legend_label as ex-
plained in Section 6.1.1 to modify the appearance of the circle. Furthermore, setting
fill = True adds a filling to the circle. To change the color of the plot we use the

102 Chapter 6. 2D Graphics

options edgecolor and facecolor to change to color of the boundary and the filling
respectively.

sage: c2 = circle((2,3),1, fill = True, edgecolor = ’blue’,
thickness = 3, facecolor = ’orange’)

1.0 1.5 2.0 2.5 3.0

2.0

2.5

3.0

3.5

4.0

Combining these options it is also possible to create complicated and astonishing plots
with many circles of different colors.

sage: g = Graphics() #start with empty graphic
sage: step = 6; ocur = 1/5; paths = 16
sage: PI = math.pi # numerical for speed - fine for graphics
sage: for r in srange(1,paths+1):
....: for x,y in [((r+ocur)*math.cos(n), (r+ocur)*math.sin(n))

for n in srange(0, 2*PI+PI/step, PI/step)]:
....: g += circle((x,y), ocur, color=hue(r/paths))
....: rnext = (r+1)^2
....: ocur = (rnext-r)-ocur

6.6 More Graphic Primitives 103

200 100 100 200

200

100

100

200

Instead of circles, we can also draw ellipses with Sage. The command ellipse(p,
r1, r2, phi) returns an ellipse centered at the point p in R2, with radii r1, r2 and
angle phi. Here, the same options as for circle are available. Indeed, if r1 = r2 the
output is just a circle.

sage: e1 = ellipse((0, 0), 2, 1)
sage: e2 = ellipse((0, 0), 3, 1, pi/6, fill = True, edgecolor = ’

black’, facecolor = ’red’)

2.0 1.5 1.0 0.5 0.5 1.0 1.5 2.0

1.0

0.5

0.5

1.0

Ellipse e1

2 1 1 2

1.5

1.0

0.5

0.5

1.0

1.5

Ellipse e2

In some cases, we might not want to draw the whole circle or ellipses, but only a part
of it. To do so, we use the command arc. Here, the input is the same as for ellipse
together with a section in which the arc will be drawn. This section is defined by a two
tuple containing the start and the end angle. The options alpha, thickness, color and
linestyle can be used to modify the output as explained in Section 6.1.1.

sage: a1 = arc((0, 0), 1, sector = (pi/4, 3 * pi/4))
sage: a2 = arc((2, 3), 2, 1, sector = (0, pi/2))

104 Chapter 6. 2D Graphics

0.6 0.4 0.2 0.0 0.2 0.4 0.6

0.75
0.80
0.85
0.90
0.95
1.00

Arc of a Circle a1 2.0 2.5 3.0 3.5 4.0

3.0

3.2

3.4

3.6

3.8

4.0

Arc of an Ellipse a2

In the special case of circles Sage also provides the disk function to draw a filled
sector or wedge of a circle. Here, we insert the coordinates of the center, the radius and
a two tuple with the beginning and the ending angle.

sage: d1 = disk((0,0), 1, (pi/2, pi))

1.0 0.5 0.5 1.0

1.0

0.5

0.5

1.0

Some of the available options for disk are alpha, color and legend_label. Their
usage is explained in Section 6.1.1.

sage: bl = disk((0.0,0.0), 1, (pi, 3*pi/2), color=’yellow’)
sage: tr = disk((0.0,0.0), 1, (0, pi/2), color = ’yellow’)
sage: tl = disk((0.0,0.0), 1, (pi/2, pi), color = ’black’)
sage: br = disk((0.0,0.0), 1, (3*pi/2, 2*pi), color=’black’)
sage: P = tl+tr+bl+br

6.6 More Graphic Primitives 105

1.0 0.5 0.5 1.0

1.0

0.5

0.5

1.0

Last but not least it is also possible add text to our graphics object with the command
text. There, we insert a text as a character string and a point at which the text is
displayed.

sage: t1 = text("I␣am␣a␣text␣in␣a␣graphic!", (2, 4))

1.0 1.5 2.0 2.5 3.0

3.0

3.5

4.0

4.5

5.0

I am a text in a graphic!

Below we describe the basic available options to modify the output of text:

• fontsize: Changes the size of the text using an integer specifying the size in
points.

• fontstyle: The font style can be changed to ’italic’ or ’oblique’.

• fontweight: The thickness of the font is changed using a numeric value between
0 and 1000.

• alpha: Controls the transparency of the text

• rotation: Rotates the text with respect to a given angle.

• color: Changes the color of the text.

106 Chapter 6. 2D Graphics

2D Graphic Primitives

Point at (x,y) point((x,y))
Arrow from p to q g arrow(p, q)

Line from p to q line([p, q])
Filled Polygon with Corner p1, . . . , pn polygon([p1, ... , pn])

Circle around p with Radius r circle(p ,r)
Ellipse around p with Radii r1,r2 ellipse(p, r1, r2)

Arc of a Circle or an Ellipse from Angle φ1 to φ2 arc(p, r1, r2, phi1, phi2)
Sector of a Circle from Angle φ1 to φ2 disk(p, r, phi1, phi2)

Table 6.2.: 2D Graphic Primitives

• background_color: Changes the background color.

sage: t2 = text(’Just␣hanging␣around’, (0.3 ,1), color = ’red’,
fontweight = 800, rotation = 315)

0.5 0.5 1.0

0.5

1.0

1.5

2.0

Just hanging around

7. 3D Graphics

This chapter deals with the creation of 3D-graphics with Sage, like the graph of func-
tions f : R2 → R, parametrized surfaces or various basic three dimensional shapes.
Many command described below are three dimensional analogues of already discussed
commands in Chapter 6

7.1 Plotting Functions
7.1.1 Drawing the Graph of a Function

We have already encountered the standard command plot3d in Section 2.3.3. This com-
mand is used to draw the graph of a function f : R2→R, i.e. the surface {(x,y, f (x,y))∈
R3 | (x,y) ∈ R2. If a symbolic function is handed over, like in the example below we
need to ensure that all needed symbolic variables are defined beforehand.

sage: x, y = var(’x␣y’)
sage: plot3d(x^2 + y^2, (x, -1, 1), (y, -1,1))

108 Chapter 7. 3D Graphics

Instead of a symbolic function, we can also draw the graph of a Python function, e.g.
a lambda construction. For example, the following command returns the same plot as
above.

sage: plot3d(lambda x, y: x^2 + y^2,(x, -1, 1), (y, -1,1))

Similar to plot Sage provides many different option to modify the graph of plot3d:

• mesh: Shows the mesh grid lines if set to True.

• dots: Shows the dots of the mesh grid if set to True.

• plot_points: Initial number of sample points in each direction.

• opacity: Takes values between 0 (for invisible) and 1 (for non-transparent).

• color: Changes the color of the graph, see Section 6.1.1 for the usage.

Moreover, we can also add three dimensional graphics objects to combine the graphs of
various functions in one plot.

sage: L = plot3d(lambda x,y: 0, (-5,5), (-5,5), color="lightblue",
opacity=0.8)

sage: Q = plot3d(lambda x,y: x^3 + y^2 - 4, (-2,2), (-2,2), color=
’orange’)

sage: P = plot3d(lambda x,y: 4 - x^3 - y^2, (-2,2), (-2,2), color=
’green’)

sage: L + P + Q

7.1 Plotting Functions 109

Furthermore, we can use color maps to change the color of the graph. To do so, we
define a color function c(x,y) : R2→ [0,1] and combine it with an imported color map
from Matplotbib which assigns each value in [0,1] a color. The syntax is

color = (c, colormap.name)

where name has to be replaced with the name of the color map that is used, see Section
6.4 for a list of the available color maps. For example, we can color our parabel with the
color map PiYG and the color function c defined below.

sage: def c(x,y): return (sin(x)*cos(y))^2 #color function
sage: plot3d(x^2 + y^2, (x,-1, 1), (y,-1,1), color = (c, colormaps

.PiYG))

110 Chapter 7. 3D Graphics

In some situation, we are not interested in the graph of a function in cartesian coor-
dinates but in some other coordinate system like polar coordinates or cylindrical coor-
dinates. Such coordinate changes can be added to plot3d with the option transform.
There we insert a 4-tuple (x_fct, y_fct, z_fct, independent_vars), where the
first three entries are the transformation functions from the used coordinate system to
Cartesian coordinates in terms of u, v and fvar for which the value f in plot3d is
substituted. To be more concrete, we endow R3 with the coordinates (u,v,r), where the
transformation functions are given byu

v
r

 7→
x(u,v,r)

y(u,v,r)
z(u,v,r)

 .

Handing over this transformation to plot3d together with a function f (u,v) returns the
surface {(x(u,v, f (u,v)),y(u,v, f (u,v)),z(u,v, f (u,v))}.
� Example 7.1 The most common coordinate systems in R3 besides Cartesian coordi-
nates are spherical and cylindrical coordinates, where the transformation function for
spherical coordinates is given byu

v
r

 7→
r cos(u)sin(v)

r sin(u)sin(v)
r cos(v)

and the transformation function for cylindrical coordinates is given byu

v
r

 7→
r cos(u)

r sin(u)
v

Next, we declare u,v to be our independent variables, i.e. we will consider functions
f depending on u,v and the value of r will be replaced by the value f (u,v). Although
Sage provides the commands (spherical_plot3d and cylindrical_plot3d) for
these coordinate systems, we use them to illustrate the usage of transform.

sage: r, u, v= var(’r,␣u,␣v’)
sage: TS = (r * cos(u) * sin(v), r * sin(u) * sin(v), r * cos(v),

[u, v]) #spherical coordinates
sage: plot3d(2, (u, 0, 2*pi), (v, 0, pi), transformation = TS) #

sphere of radius 2
sage: TC = (r * cos(u), r * sin(u), v, [u, v]) #cylindrical

coordinates
sage: plot3d(2, (u, 0, 2*pi), (v, -2, 2), transformation = TC) #

cylinder of radius 2

7.1 Plotting Functions 111

Sphere of Radius Two Cylinder of Radius Two

�

We can unlock more customizing options by setting adaptive = True. This slows
down the computation time but might improve the result.

sage: plot3d(x^2 + y^2, (x,-1, 1), (y,-1,1), adaptive = True)

In that setting the default color is a rainbow of 128 colors. This can be changed in
various ways. For example, we can insert a list of colors that are then evenly distributed
over the plot. In particular, a list of two colors gives us a check board pattern according
to the mesh.

sage: plot3d(x^2 + y^2, (x,-1, 1), (y,-1,1), adaptive = True,
color = [’red’, ’black’])

112 Chapter 7. 3D Graphics

Another possibility is to use the rainbow(n, s) value, where n is the number of colors
that are used for the rainbow, always starting with red and ending with blue, and s is a
string denoting the used color modus, e.g. hex (default value) or rgbtuple.

sage: plot3d(x^2 + y^2, (x,-1, 1), (y,-1,1), adaptive = True,
color = rainbow (7, ’rgbtuple’))

There also other options available to change the color or to control the precision. We
refer to [3, 3D Graphics].

As in the two dimensional case, the show function allows us further modifications of
the output, e.g. we can change the scaling of the axis with the option aspect_ratio,
where aspect_ratio = [1, 1, 1] means that all axis are shown evenly, i.e. the
sphere looks perfectly round in this setting. The save command exports images using
the formats .png, .bmp, .gif. If we plot a 3D-graphics in the Jupyter Notebook we can
interact with 3D-plot and use the button on the bottom right to save the plot.

7.1.2 Parametric Plots
Similar to parametric_plot, the command parametric_plot3d draws parametrized
curves and surfaces in three dimensions. The syntax is similar to those of parametric_plot

7.1 Plotting Functions 113

and almost all options of plot3d carry over. The only difference is that there is no
adaptive available and therefore also all further options belonging to it.

sage: p1 = parametric_plot3d((sin(u), cos(u), u/10), (u,0,20))
sage: p2 = parametric_plot3d((cos(u), sin(u)+cos(v), sin(v)), (u

,0,2*pi), (v,-pi,pi))

A Spiral Curved, p1 A Parametrized Surface, p2

7.1.3 Implicit Plot
The command implicit_plot3d is the three dimensional analogue to implicit_plot,
see Section 6.1.4. The syntax is similar to those of implicit_plot. In addition, as for
parametric_plot3d, all option except for adaptive are available.

sage: implicit_plot3d(-(cos(x) + cos(y) + cos(z)), (x,-4,4), (y
,-4,4), (z,-4,4), color=’orchid’)

114 Chapter 7. 3D Graphics

7.2 Vector Fields
It is also possible to plot three dimensional vector fields using plot_vector_field3d.
The syntax is similar to the two dimensional analogue plot_vector_field, compare
with Section 6.2. Within this command only the options plot_point and color are
available.

sage: plot_vector_field3d((x*cos(z),-y*cos(z),sin(z)), (x,0,pi), (
y,0,pi), (z,0,pi),plot_points=[3,5,7])

7.3 More Graphic Primitives
As in the two dimensional setting, Sage provides many basic three dimensional shapes.
But we first have to import them with the following command before we can use them.

sage: from sage.plot.plot3d.shapes import *

The graphics primitives plot, arrow, line, polygon and text we introduced in
Section 6.6 also work in three dimensions. However, not all options might be available.
We can also call their three dimensional analogue directly by adding 3d after their name.

We summarize the other available three dimensional graphic primitives in Table 7.1.
For all of them, the options opacity and color are available. The shapes Cone and
Cylinder also have the additional option close which can be set to False if the basis
should not be displayed. Moreover, there is no argument for a center point. Instead,
the objects are by default always centered around the origin. To move the objects to
another position we can use the translation method which takes a translation vector.
Combining these different commands we can draw nice three dimensional objects, like
the following Christmas tree. Here, we only used cones and the translation method.

sage: T = sum(Cone(exp(-n/5), 4/3*exp(-n/5), color=(0, .5, 0)).
translate(0, 0, -3*exp(-n/5)) for n in [1..7])

sage: T += Cone(1/8, 1, color=’brown’).translate(0, 0, -3)

7.3 More Graphic Primitives 115

3D Graphic Primitives

Box with Side Lengths a,bc Box([a, b, c])
Cone with Radius r and Height h Cone(r, h)

Cylinder with Radius r and Height h Cylinder(r, h)
Sphere of Radius r Sphere(r)

Torus with Inner Radius r1 and outer Radius r2 Torus(r1, r2)

Table 7.1.: 3D Graphic Primitives

3Platonic Solids

Tetrahedron tetrahedron()
Cube cube())

Octahedron octahedron()
Dodecahedron dodecahedron())

Icosaeder() icosaeder()

Table 7.2.: Platonic Solids

Furthermore, there are all five platonic solids available in Sage. Recall that these are
the only five bodies where all sides and angles are equal. Hence, their size is completely
determined by the length of their sides. This length is changed with the option size
whose default value is 1. In addition we can specify a center point.

sage: G = tetrahedron((0,-3.5,0), color=’blue’) + cube((0,-2,0),
color=(.25,0,.5))

sage: G += octahedron(color=’red’) + dodecahedron((0,2,0), color=’
orange’)

sage: G += icosahedron(center=(0,4,0), color=’yellow’)

116 Chapter 7. 3D Graphics

Bodies.pdf Bodies.pdf

IV
8 Computational Domains 119
8.1 Sage is Object-Oriented
8.2 Elements and Parents
8.3 Domains with a Normal Form
8.4 Expressions vs. Computational Domains
8.5 Primality Test

9 Polynomial Rings . 139
9.1 Euclidean Arithmetic
9.2 Factorization and Roots
9.3 Rational Functions
9.4 Formal Power Series

10 Matrices . 159
10.1 Constructions and Elementary Manipulations
10.2 Matrix Computations
10.3 Spectral Decomposition

11 Polynomial Systems . 185
11.1 Polynomials in Several Variables
11.2 Polynomial Systems and Ideals
11.3 Solving Strategies

12 Differential Equations . 217
12.1 First Order Ordinary Differential Equations
12.2 Second Order Equations
12.3 The Laplace Transform
12.4 Systems of Linear Differential Equations

Algebra and Symbolic
Computation

8. Computational Domains

In mathematics, we always keep careful track on where our objects live, as the type
of our objects determines the available methods. For example, it is a huge difference
whether we are dealing with real numbers or with elements of a finite field. The same
holds for computer algebra systems like Sage. Sage provides various ways to specify
more or less rigorously the computational domain. In the following, we describe the
most common computational domains and their usage.

8.1 Sage is Object-Oriented
Sage uses heavily the object-oriented programming paradigm. This paradigm consists
in modeling each abstract entity we want to manipulate by a programming language
construction called an object. In most cases, as in Python, each object is an element
of a class. For example, a fraction is represented by an object, which is an element of
the Rational class. In particular, the type is specified by the fraction and not by the
Python variable.

sage: o = 12/35; type(o)
<class ’sage.rings.rational.Rational’>
sage: type(12/35)
<class ’sage.rings.rational.Rational’>

To be more precise, an object stores the required information to represent the corre-
sponding entity. In contrast to that a class defines two main properties:

1. The data structure of an object, i.e. how the information is organized in the
memory. For example, in the class Rational every object is characterized by two
integers, the numerator and the denominator.

2. The available methods.

120 Chapter 8. Computational Domains

For example, to obtain the factorization of an integer, we use the method factor.

sage: a = 300
sage: a.factor()
2^2 * 3 * 5^2

This syntax can be understood as follows: “Take the value of a and apply the method
factor without further arguments to it”. Hence, a.factor() is an abbreviation of

sage: type(a).factor(a)
2^2 * 3 * 5^2

which translates to “Request from the class of a the factorization method type(a).factor
and apply it to a”. Since the method factor is tied to the class of the object it does not
have to work in every class the same. For example, if we try to factorize 300 viewed as
a real number and not as an integer, the method factor does not return the expected
factorization into prime factors.

sage: type(300.0)
<class ’sage.rings.real_mpfr.RealLiteral’>
sage: (300.0).factor()
300.000000000000

Although there are many different classes with their own collection of methods, almost
all methods in Sage are polymorphic, i.e. they can be applied to different classes. For
example, the method factor can be applied to integers and to rational numbers. In
both cases, the syntax is a.factor(), but the class determines the explicit definition of
factor. Similarly, any product of two objects a, b is written as a * b, but the specific
definition of multiplication is determined by the class of the factors.

sage: 3 * 7 #integers
21
sage: (2/3) * (6/5) #rational numbers
4/5
sage: (1 + I) * (1 - I) #complex numbers
2
sage: (x + 2) * (x + 1) #symbolic expressions
(x + 2)*(x + 1)

One advantage of polymorphic methods is that we can write generic Python programs
which can be applied to all objects whose class admits the involved methods.

sage: def square(a):
....: return a * a
sage: square(2), square(3/2), square(I), square(x+1)
(4, 9/4, -1, (x + 1)^2)
sage: M = matrix([[0, -1], [1, 0]])
sage: square(M)
[-1 0]
[0 -1]

8.2 Elements and Parents 121

Sage objects also have some introspection features. This means that we can always
“ask” an object for its class, its methods, etc. and manipulate the obtained information.
As already described in Section 5, the type function returns the class of an object.

sage: type(5)
<class ’sage.rings.integer.Integer’>
sage: type(5/1)
<class ’sage.rings.rational.Rational’>

Moreover, as explained in Section ?? we have access to an on-line help of methods via

sage: 720.factor?

and to the source code via

sage: 720.factor??

Last but not least, the auto-completion can be used to obtain all available methods that
can be applied to an object o.

8.2 Elements and Parents
While the notion of objects and classes are well-known concepts from Python, Sage
introduces another concept closer to mathematics: the parent of an object. For example,
whether an element a is invertible or not depends not only on the element a itself but
also on the mathematical set A it belongs to. For example, the number 5 is invertible in
Q but not in Z since 1

5 is not an integer.

sage: a = 5; type(a)
<class ’sage.rings.integer.Integer’>
sage: a.is_unit()
False
sage: a = 5/1; type(a)
<class ’sage.rings.rational.Rational’>
sage: a.is_unit()
True

In Sage, the set A to which an element a belongs to is called the parent of a. Similar
to classes, we can retrieve the parent of an element a in Sage with the command
parent(a).

sage: parent(5)
Integer Ring
sage: parent(5/1)
Rational Field

The usual number domains Z,Q,R,C are already implemented in Sage.

sage: ZZ, QQ, RR, CC
(Integer Ring, Rational Field, Real Field with 53 bits of

precision, Complex Field with 53 bits of precision)

122 Chapter 8. Computational Domains

Analogous to data structures, we can also convert the parent of objects to another parent,
if possible.

sage: QQ(5).parent()
Rational Field
sage: ZZ(1/5)
Traceback (most recent call last):
...
Type Error: no conversion of this rational to an integer

In addition, parents are Python objects themselves, i.e. there are methods which can be
applied to them.

sage: cartesian_product([QQ, QQ])
The Cartesian product of (Rational Field, Rational Field)
sage: ZZ.fraction_field() #retrieve QQ as the fraction field of ZZ
Rational Field
sage: ZZ[’x’] #construction of a polynomial
Univariate Polynomial Ring in x over Integer Ring

8.3 Domains with a Normal Form
In this section, we describe the most commonly used parents in Sage. Each of them
is a computational domain with a normal form, where a normal form is a fixed way
of representing an object uniquely, e.g. any element of Q can be written in many
different ways but there is only one way to write is as a reduced fraction with integer
numerator and denominator. Hence, fixing a normal form allows, for instance, an easy
determination whether two elements are equal or not.

8.3.1 Elementary Domains
Elementary domains are the classical sets of elements with no indeterminates involved,
e.g. integers and rational numbers. Below, we describe the construction and properties
of these various elementary domains together with their normal form.

Integers
Integers are internally represented in radix two but printed in radix ten. As integers
have a unique representation they are already in normal form. As already seen above,
Sage integers are objects of the class sage.rings.integer.Integer and belong to
the parent Integer Ring. In particular, they differ from Python integers int. The
conversion between Sage Integer and Python int is usually done automatically.
Otherwise it can be conversed manually in the usual way.

sage: 5.parent()
Integer Ring
sage: type(5), type(int(5))
(<class ’sage.rings.integer.Integer’>, <class ’int’>)

8.3 Domains with a Normal Form 123

Rational Numbers
The normal form property of integers carries over to rational numbers , i.e. elements
of QQ. Every element in QQ is uniquely represented by a reduced fraction with integer
numerator and denominator. Any object in QQ is immediately put into normal. This
conversion is even done in-between every calculation step. For example, in

sage: factorial(99) / factorial(100) - 2/100
-1/100

Sage first evaluates the factorials and transforms the result to its normal form 1
100 . Then

Sage puts the second fraction in normal form, i.e. performs the calculation 2
100 = 1

50 .
Afterwards Sage takes the difference of these two fraction in normal form and reduces
the result again to its normal form. This kind of in-between transformations are done in
every domain with a normal form.

Floating-Point Numbers
Since irrational numbers can not be expressed in a finite format, their numerical value
is approximated by floating-point numbers. Within Sage, floating-point numbers are
encoded in radix two. As a consequence, also all rational numbers that can not be exactly
represented in binary, like 1

10 , are only approximated. Thus, the numerical value of the
input 0.1 differs slightly from the real numerical value of 1

10 .
The parent of a real floating-point number with p-bit significant is Reals(p). The

default value is p = 53 and is denoted by RR.

sage: RR, Reals(16)
(Real Field with 53 bits of precision, Real Field with 16 bits of

precision)

In calculations, floating-point numbers are dominant, i.e. as soon as a floating-point
number is involved, the complete expression is evaluated as a floating-point number.

sage: 3*4/22 - 6*0.7
-3.65454545454545
sage: cos(1), cos(1.0)
(cos(1), 0.540302305868140)

Complex Floating-Point Numbers
The floating-point approximations of complex numbers with precision p are elements of
Complexes(p), or its alias ComplexField(p), or simply CC for complex floating-point
numbers with the default precision p = 53. The normal form of complex numbers is the
representation z = x+ iy with x,y being real floating-point numbers.

sage: z = CC(1, 2); z
1.00000000000000 + 2.00000000000000*I

R We have already seen the imaginary unit i in computations with symbolic expressions in
Section 3.1. However, the parent of the symbolic expressions I is the symbolic ring and
not CC.

124 Chapter 8. Computational Domains

sage: (1 + 2*I).parent()
Symbolic Ring
sage: CC(1 + 2*I).parent()
Complex Field with 53 bits of precision

Booleans
Event though logic expressions form a computational domain with the two normal
forms True and False, the class of boolean values has no specific parent in Sage.
Nevertheless, they are essential in the construction of Python functions, for example as
conditions for if-else-constructions or while loops.

Logic expressions are simply evaluated from left to right. This means, the evaluation
of the operator or terminates as soon as the first True is encountered without bothering
the remaining elements. The same happens with and and False. Hence, the following
divisibility test of b by a does not produce an error if a = 0.

sage: a = 0; b = 12
sage: (a == 0 and b == 0) or (a != 0 and b % a == 0)
False

The boolean operators are ordered as follows: The operator not is dominant over the
operator and which in turn is dominant over the operator or. Thus, the above example
can be rewritten as follows:

sage: a == 0 and b == 0 or not a == 0 and b % a == 0
False

Furthermore, Sage allows multiple equality or inequality tests like in mathematics,
e.g. x ≤ y < z ≤ t corresponds to x <= y < z <= t. Usually, a boolean operation
is evaluated automatically. Otherwise we can use the command bool to force the
evaluation.

sage: x, y = var(’x,␣y’)
sage: bool((x-y)*(x+y) == x^2-y^2)
True

Integers Modulo n
The parent ring Z/nZ is constructed, in Sage, via

sage: Z4 = IntegerModRing(4); Z4
Ring of integers modulo 4

As done in mathematics, the normal form of an element in Z/nZ is its value modulo n.
Any computation involving an element from Z/nZ is automatically reduced modulo n.

sage: m = Z4(7); m
3
sage: 3 * m + 5
2

8.3 Domains with a Normal Form 125

If n is a prime number the quotient Z/nZ is not only a ring but a field. Since the
available operations for fields differs from those of rings, we can choose to build Z/pZ,
where p is a prime number, as a finite field. The normal form for finite fields is the
same as for the ringZ/nZ. Observe that the resulting parent is now field and not a ring.
Hence, IntegerModRing(3) is another parent than GF(3) althoug both describe the
mathematical set Z/3Z.

sage: Z3 = GF(3); Z3 #GF stands for Galois Field
Finite Field of size 3
sage: IntegerModRing(3) == GF(3)
False

8.3.2 Compount domains
In Sage we can use already defined computation domains with a normal form to con-
struct new computatio domains with a normal, so-called compount domains. The most
important ones are matrices, polynomials, rational functions and truncated power series.
The properties of these domains are mostly determined by the computation domain of
their coefficient. For example, polynomials with rational coefficients behave differently
than polynomials with coefficients in a finite field.

Matrices
A matrix with coefficients in the computation domain D is in normal form if all of its
entries are in the normal form corresponding to D.

sage: a = matrix(QQ, [[1, 2, 3], [2, 4, 8], [3, 9, 27]])
sage: (a^2 + 1) * a^(-1) #1 denotes the identity matrix
[-5 13/2 7/3]
[7 1 25/3]
[2 19/2 27]
sage: parent(a)
Full MatrixSpace of 3 by 3 dense matrices over Rational Field

Here, the matrix function is a shortcut for the following procedure: First, Sage builds
the corresponding parent and then uses it to construct the matrix. We replicate this
procedure below.

sage: M = MatrixSpace(QQ, 3, 3); M #first construct the parent
Full MatrixSpace of 3 by 3 dense matrices over Rational Field
sage: a = M([[1, 2, 3], [2, 4, 8], [3, 9, 27]]) #construct the

matrix with parent M

The usage of matrices is discussed in detail in Chapter 10.

Polynomials and Fraction Fields
Similar to matrices, the parent of a polynomial depends on the parent of the coefficients.
For example, the polynomial rings Z[x] and C[x,y,z] are build via

sage: P = ZZ[’x’]; P
Univariate Polynomial Ring in x over Integer Ring

126 Chapter 8. Computational Domains

sage: Q = CC[’x,␣y,␣z’]; Q
Multivariate Polynomial Ring in x, y, z over Complex Field with 53

bits of precision

We have already seen in Section 3.1.3 that there is no optimal representation. In Sage, an
element of a polynomial ring is in normal form if it is expanded and all the coefficients
are in normal form. Thus, a polynomial ring has a normal form if and only if the
computation domain of the coefficients has a normal form.

sage: p = P(x+1) * P(3*x^2 - 4); p
3*x^3 + 3*x^2 - 4*x - 4
sage: q = Q(x+1) * Q((3 + 2*I)*x)^2; q
(5.00000000000000 + 12.0000000000000*I)*x^3 + (5.00000000000000 +

12.0000000000000*I)*x^2

A fraction field of an integral domain R , i.e. a commutative ring where the products of
any two nonzero elements is nonzero, is the smallest field containing R. It is not hard to
see that the fraction field of a polynomial ring P[x] is given by

F(x) =
{

p(x)
q(x)

: p(x),q(x) ∈ P[x]
}
.

In Sage fraction fields are easily constructed with the method fraction_field. Similar
to the normal form of QQ, the normal form in a fraction field is given by a reduced fraction
with numerator and denominator being in normal form.

sage: F = P.fraction_field(); F
Fraction Field of Univariate Polynomial Ring in x over Integer

Ring
sage: p + 1/p
(9*x^6 + 18*x^5 - 15*x^4 - 48*x^3 - 8*x^2 + 32*x + 17)/(3*x^3 + 3*

x^2 - 4*x - 4)

We discuss the available methods for univariate polynomials in Chapter 9. The usage of
multivariate polynomials is explained in Chapter 11.

R Polynomials in a polynomial ring differ from the polynomial expressions in the symbolic
ring we have discussed in Section 3.2.1. If the coefficients are in the symbolic ring, there
is no well-defined coefficient type. However, the latter can be useful to mix polynomials
and other expressions, but the price we pay is that we have to modify the results manually
with commands like expand.

sage: p = (x + 1)*(x - 1)
sage: parent(p)
Symbolic Ring
sage: p
(x + 1)*(x - 1)
sage: ZZ[’x’](p)
x^2 - 1

8.3 Domains with a Normal Form 127

Algebraic Number Fields
An algebraic number field is a finite field extension of Q, i.e. they are fields containing
Q which have the structure of a finite dimensional vector space over Q. The study of
number fields is a central topic in algebraic number theory. One common way to obtain
these fields is to “add” algebraic numbers to it. We shortly recall that an algebraic
number is a complex number which can be realized as the root of a polynomial with
rational coefficients. For example, the roots of the polynomial x2 + 1 are ±i. Hence,
±i are algebraic numbers. The corresponding number field are the so-called Gaussian
rationals,

Q[i] = {a+ ib : a,b ∈Q}.

To construct this number field in Sage we use the construction NumberField together
with the defining polynomial x2 +1 of i.

sage: k.<a> = NumberField(x^2 + 1) #the added number is called a
sage: k
Number Field in a with defining polynomial x^2 + 1
sage: a^2 #behaves as the imaginary unit i
-1
sage: (3/2 + 4/3 * a) * (1/7 - 2/9 * a) #is put into normal form
-1/7*a + 193/378

Equivalently, we can construct number fields using the “mathematical syntax”.

sage: k.<a> = QQ[I]; k
Number Field in I with defining polynomial x^2 + 1 with I = 1*I
sage: a^2
-1

Sage also provides a parent for the field of all algebraic numbers, QQbar, or only its real
subfield, AA. These numbers are displayed using numerical approximations. Nevertheless
they are stored exactly and can be used for further computations. For example, we can
calculate the roots of the polynomial x2−2 explicitly in AA.

sage: p = AA[x](x^2 - 2)
sage: roots = p.roots(); roots
[(-1.414213562373095?, 1), (1.414213562373095?, 1)]
sage: a = roots[0][0]^2; a
2.000000000000000?
sage: a.simplify(); a
2

At this point, we shortly want to introduce two common methods for algebraic num-
bers. The method minpoly applied to an algebraic number a returns the minimal
polynomial of a, i.e. the polynomial of least degree having a as a root, and the method
deegree returns the degree of an algebraic number which is the degree of the minimal
polynomial.

sage: roots[0][0].minpoly(), roots[0][0].degree()

128 Chapter 8. Computational Domains

(x^2 - 2, 2)

8.4 Expressions vs. Computational Domains
During our first calculations with Sage, compare Chapter 3, we only worked with
symbolic expressions, whose computational domain is the symbolic ring.

sage: parent(sin(x))
Symbolic Ring

The properties of this ring are rather fuzzy. For example, all computation rules assume,
roughly speaking, that all symbolic variables are in C. Since a symbolic expressions
can have many different forms (polynomials, fractions, trigonometric expressions) there
is no distinctive normal form, i.e. one mathematical expression can be represented in
different ways. Therefore, Sage only performs basic simplifications automatically. Any
other transformation has to be done manually using the methods introduced in Section 3.

8.4.1 Symbolic Polynomials vs. Polynomial Rings
Here, we compare the behavior of polynomials in a constructed polynomial ring, as
introduced in Section 8.3.2, and polynomials viewed as symbolic expressions in the
symbolic ring. In the ring QQ[’x1, x2, x3, x4’] all elements are put automatically
into normal form, i.e. in the expanded form.

sage: R.<x1, x2, x3, x4> = QQ[’x1,␣x2,␣x3,␣x4’]
sage: R
sage: x1 * (x2 - x3) #any element is put into normal form
\end{Customsage}
Although a normal form makes it very easy to test whether two

elements are equal, the expanded form is not always optimal.
For example, the Vandermonde determinant $\prod_{1 \leq i < j
\leq n}$ has the following normal form.

\begin{sagecommandline}
sage: prod((a - b) for (a, b) in Subsets([x1, x2, x3, x4], 2))
\end{sagecommandline}
These are $4! = 24$ terms. Doing the same construction in the

symbolic ring, the Vandermonde determinant keeps his factored
form which is much more compact and readable.

\begin{sagecommandline}
sage: x1, x2, x3, x4 = SR.var(’x1,␣x2,␣x3,␣x4’)
sage: prod((a - b) for (a, b) in Subsets([x1, x2, x3, x4], 2))
\end{sagecommandline}
A factored representation allows faster gcd computations and shows

the roots of a polynomial. Although the factored form of a
polynomials is also a normal form, it is not recommended to
put every polynomial automatically into its factored form
since the factorization of a polynomial is computationally
expensive operation. Hence, we see that the normal form is not

8.4 Expressions vs. Computational Domains 129

always the optimal form. Thus, when working in the symbolic
ring, \Sage only does basic simplifications automatically and
provides further specialized commands that can be used to
modify the expression further. Moreover, the factorization in
the symbolic ring might not be the factorization we are
looking for. Since factorizing a polynomial means to write it
as a product of irreducible polynomials, \Sage should know
whether a polynomial is irreducible or not. But, this depends
on the domain of the coefficient. As there is no specified
domain for the coefficients in the symbolic, \Sage only
proposes one possible factorization.

\begin{sagecommandline}
sage: x = var(’x’); p = 54*x^4 + 36*x^3 - 102*x^2 - 72*x - 12
sage: factor(p)
\end{sagecommandline}
The factorization of the polynomial p becomes unique as soon as

we fix the polynomial ring in which p lives. Depending on
the polynomial ring, we obtain different factorizations.

\begin{sagecommandline}
sage: ZZ[’x’](p).factor() #factor p as a polynomial with integer

coefficients
sage: QQ[’x’](p).factor() #factor p as a polynomial with rational

coefficients
sage: GF(5)[’x’](p).factor() #factor p as a polynomial with

integer coefficients modulo 5
\end{sagecommandline}
Since $\sqrt{2}$ is the only irrational root, it might be useful

to build the number field $\bbQ(\sqrt{2})$ and interpret p
as a polynomial with coefficients in that number field. This
returns us an explicit factorization of p into linear
irreducible polynomials.

\begin{sagecommandline}
sage: QQ[sqrt(2)][’x’](p).factor()
\end{sagecommandline}

\subsection{Conclusion}
\begin{sagesilent}
reset()
\end{sagesilent}

We have seen that many computations can be carried out in the
symbolic ring or in a special computation domain. Both of
these computation domains have their own advantages and
disadvantages.

130 Chapter 8. Computational Domains

On the one hand, symbolic expressions are very flexible and can be
used to combine different expressions without any effort, e.g
.\ mixing polynomials and trigonometric expressions. However,
the simplification of symbolic expressions is a quite tedious
task which could also lead to misleading results. On the other
hand, we can construct our own computation domain explicitly.
This gives us full control over the available operations and,
if there is a normal form, we can easily recognize whether
two elements are mathematical equal. But, this setting is also
quite restrictive, e.g.\ adding a new variable means that we
have to construct a new computation domain which includes this
new variable and transform everything to this new computation
domain.

To summarize, the main advantage of symbolic expressions is their
easy usage: no explicit declaration of the computational
domain is needed, easy addition of new variables or functions,
easy change of the computations domains, use of all possible
calculus tools... The main advantage of computational domains
are the more rigorous computations, the normal form and an
easy access to more advanced constructions, like computations
in a finite field or in a number field. Thus, there is no
general recommendation. It depends on the explicit situation
in considerations which approach is more useful.

\chapter{Finite Fields}

Finite rings and fields are basic objects in number theory and
throughout computer algebra. Indeed, many algorithm in
computer algebra involve computations over finite fields. For
example the rational reconstruction and the Chinese remainder
Theorem can transform calculations on fractions into more
efficient calculations over finite fields.

\section{Finite Fields and Rings}
\begin{sagesilent}
reset()
\end{sagesilent}

As seen in Section \ref{subsubsec:part04:compdomain:modn}, the
parent corresponding to the ring $\bbZ / n \bbZ$ \index{
finite ring}\index{integer modulus ring} is built with the
command \command{IntegerModRing(n)}. All objects with this
parent are automatically put in their normal form, i.e.\ they
are reduced modulo n, without displaying it explicitly in

8.4 Expressions vs. Computational Domains 131

the output.
\begin{CustomSage}
sage: Z15 = IntegerModRing(15); Z17 = IntegerModRing(17)
sage: a = Z15(3); b = Z17(3); a, b #the output is the same
(3, 3)
sage: a == b #but they are not the same
False

Given an integer modulo n, we can retrieve the corresponding parent with the methods
base_ring or parent. The method characteristic applied to the computation
domain itself returns the value of n, i.e. the characteristic of the ring Z/nZ.

sage: a.parent(), a.base_ring()
(Ring of integers modulo 15, Ring of integers modulo 15)
sage: Z15.characteristic()
15

As Z/nZ is a ring, all basic arithmetic operations (addition, subtraction, and multiplica-
tion) are available. In calculations, ements of Z/nZ are dominant. This means that a
calculation is carried out modulo n as soon as one element of Z/nZ is involved.

sage: a - 14 + a^3
1

In general, Z/nZ is only a ring and not a field. Hence, not every element has a mul-
tiplicative inverse. Nevertheless, we can use the division operator / in Z/nZ. If the
division is defined, Sage carries out the calculation as usual. Otherwise an error is
raised.

sage: 1/(a+1) # 4 mod 15 is invertible since 4 * 4 mod 15 = 16 mod
15 = 1

4
sage: 1/a #3 mod 15 is not invertible since 3*5 mod 15 = 0
Traceback (most recent call last):
...
ZeroDivisionError: inverse of Mod(3, 15) does not exist

To lift an element a ∈ Z/nZ to Z we can either use the lift method or simply convert
it to an integer using ZZ.

sage: z = a.lift(); y = ZZ(a); z, y
(3, 3)
sage: z.parent() , y.parent()
(Integer Ring, Integer Ring)
sage: y == z

Next, we recall a few basic definitions for elements in Z/nZ. The additive order of an
element a ∈ Z/nZ is the smallest integer k > 0 such that ka = 0modn. It is not hard
to see that k = n

g , where g = gcd(a,n). In Sage, the additive order of an element is
returned by the method additive_order. The multiplicative order of an invertible

132 Chapter 8. Computational Domains

element a ∈ Z/nZ is the smallest integer k such that ak = 1modn and is calculated with
the method multiplicative_order.

In the special case, where the multiplicative order of an element a equals the number
of all invertible elements in Z/nZ, i.e. the order of multiplicative group (Z/nZ)∗, the
group (Z/nZ)∗ is cyclic with generator a.

sage: [[x, Z15(x).multiplicative_order()] for x in srange(1, 15)
if gcd(x, 15) == 1]

[[1, 1], [2, 4], [4, 2], [7, 4], [8, 4], [11, 2], [13, 4], [14,
2]]

sage: [[x, Z17(x).multiplicative_order()] for x in srange(1, 17)
if gcd(x, 17) == 1]

[[1, 1], [2, 8], [3, 16], [4, 4], [5, 16], [6, 16], [7, 16], [8,
8], [9, 8], [10, 16], [11, 16], [12, 16], [13, 4], [14, 16],
[15, 8], [16, 2]]

In the above example, the length of the lists corresponds to the order of the respective
multiplicative group. Hence, the multiplicative group (Z/15Z)∗ has 8 elements, but the
multiplicative order of all of its element is 4 or less. Thus, (Z/15Z)∗ is not a cyclic
group. In the case of the multiplicative group (Z/17Z)∗ , we observe that there are 8
elements whose multiplicative order is 16. As the order (Z/17Z)∗ is equal to 16, it is a
cyclic group and there are 8 possible generators {3,5,6,7,10,11,12,14}.

One further important operation on Z/nZ is the modular exponentiation, i.e. the
calculation ak mod n. For example, the RSA crypto-system relies on this operation.
Sage provides the method power_mod to do this calculation. The used algorithm is
much more efficient than computing first ak and then taking the residue. At this point,
we shortly mention that the calculation time can be displayed with%timeit. Note, that
the output of %timeit depends on the hardware and used memory. Thus, it can differ
from computer to computer.

sage: n = 3^100000; a = n-1; k = 100
sage: %timeit (a^k) % n
1 loop, best of 5: 1.37 s per loop
sage: %timeit power_mod(a,k,n)
10 loops, best of 5: 24.1 ms per loop

Among finite integer rings, the rings Z/pZ with p being a prime number, are special.
Since every element in Z/pZ except 0 has a multiplicative inverse, Z/pZ is not only
a finite ring but a finite field, also called Galois field. We have already seen in Section
8.3.1 that these finite fields can be constructed with GF.

sage: F17 = GF(17) #constructed Z17 as a finite field
sage: F17.parent(), Z17.parent() #parents are different
(<class ’sage.rings.finite_rings.finite_field_prime_modn.

FiniteField_prime_modn_with_category’>, <class ’sage.rings.
finite_rings.integer_mod_ring.
IntegerModRing_generic_with_category’>)

sage: [1/F17(x) for x in srange(1, 17)] #all elements are

8.4 Expressions vs. Computational Domains 133

invertible.
[1, 9, 6, 13, 7, 3, 5, 15, 2, 12, 14, 10, 4, 11, 8, 16]

8.4.2 Applications
One application of modular methods is the rational reconstruction which is based on
the following lemma.

Lemma 8.4.1 Let a,n ∈ N with 0 < a < n. Then there exists at most one pair of
coprime integers x,y ∈ Z such that x≡ aymodn and 0 < |x|,y≤

√n
2 .

This result allows us, in some cases, to replace the computation of the rational number
x
y by the computation of amodn and then recover the rational number with rational
reconstruction. The second approach is often more efficient, since rational computations
often involve costly gcd calculations due to the normal form in the computation domain
QQ, see Section 8.3.1. But, such a pair x,y does not exist for all a,n, e.g. a = 2 and
n = 5. To ensure that the rational reconstruction is possible, it is necessary to assume
that n is sufficiently large relative to x and y. Typically, a range for x and y is known
a priori, i.e. |x| ≤ N and 0 < y ≤ D. Then the rational reconstruction is possible for
all choices of n≥ 2ND and 0 < a≤ n. The method rational_reconstruction takes
two integers a,n and computes the rational reconstruction, i.e. it returns the fraction x

y
such that x≡ aymodn.

sage: rational_reconstruction(411, 1000)
-13/17
sage: (-13/17)%1000 #test
411
sage: rational_reconstruction(409, 1000) #this is not solvable
Traceback (most recent call last):
...
ArithmeticError: rational reconstruction of 409 (mod 1000) does

not exist

We illustrate the usage of rational reconstruction in the computation of harmonic numbers
Hn = 1+ 1

2 + . . .+ 1
n . The first naive attempt is to simply use rational numbers and just

type the above definition into a Python function.

sage: def harmonic(n):
....: return(add([1/x for x in srange(1, n+1)]))

Since Sage puts each intermediate result into its normal form, i.e. reduces the fraction
completely, there are many gcd calculations involved. These can be avoided by using
rational reconstructions, i.e. we choose a sufficiently large integer m. Then we calculate
Hnmodm := a and retrieve the harmonic number Hn via the rational reconstruction of
a and m. Since we need to ensure that the rational reconstruction is solvable, we need
to find a priori bounds on the numerator and denominator of Hn, as explained above.
First, we observe that Hn =

pn
qn

, where qn = lcm(1,2, . . . ,n). Next, we use the fact that
Hn ≤ (log(n)+1) and obtain the upper bound pn ≤ qn · (log(n)+1). Thus, we have to
choose an m > 2q2

n(log(n)+1).

134 Chapter 8. Computational Domains

sage: def harmonic_mod(n, m): #calculating H_n modulo
....: return add([1/x % m for x in srange(1, n+1)])
sage: def harmonic2(n):
....: q = lcm(srange(1, n+1))
....: pmax = RR(q * (log(n)+1))
....: m = ceil(2*pmax*q)+1
....: a = harmonic_mod(n, m)
....: return rational_reconstruction(a, m)
sage: harmonic(8) == harmonic2(8)
True

Another useful application of modular arithmetics involves the Chinese Remainder
Theorem.

Theorem 8.4.2 Let n1, . . . ,nk be pairwise coprime numbers and a1, . . . ,ak ∈ Z arbi-
trary. Then there exists exactly one integer x < ∏ j n j such that x≡ a j mod n j for all
1≤ j ≤ k.

In addition to this existence statement there is an explicit algorithm how to calculate this
number x. We shortly describe it in the case k = 2: Let m,n be two coprime integers,
and a,b ∈ Z be arbitrary. Our goal is to determine an x such that

x≡ amodm, x≡ bmodn.

Since xmodm = amodm there is a λ ∈ Z such that x = a+λm. Inserting this into the
second equality, we obtain λ0 =

b−a
m modn. Thus,

x = x0 +µnm

with x0 = a+λ0m and µ ∈ Z chosen such that 0 ≤ x < mn. This algorithm is imple-
mented in Sage and can be called with crt(a, b ,n, m).

sage: a = 2; b = 3; m = 5; n = 7
sage: lambda0 = ((b-a)/m) % n #Doing the algorithm manually
sage: a + lambda0*m
17
sage: crt(2, 3, 5, 7)
17

It is also possible to use two list of integers as arguments in crt(a,n), where the list
a contains the remainders and n contains the divisors. As an example we compute the
harmonic numbers Hn using the Chinese Remainder Theorem. There, we first compute
Hnmodmi with consecutive prime numbers m1, ldots,ml . Then the Chinese Remainder
Theorem returns us the value a = Hn mod m1 ·mk and we can recover Hn with the
rational reconstruction applied to a and m1 ·mk.

sage: def harmonic3(n):
....: q = lcm(range(1, n+1))
....: pmax = RR(q * (log(n)+1))
....: B = floor(2 * pmax^2) #calculating upper bound

8.4 Expressions vs. Computational Domains 135

....: a = 0; m = 1; p = 2^63

....: while m < B: #succesives application of crt

....: p = next_prime(p)

....: b = harmonic_mod(n,p)

....: a = crt(a, b, m, p)

....: m = m * p

....: return rational_reconstruction(a, m)
sage: harmonic3(8) == harmonic(8)
True

8.4.3 Example: The Aliquot sequence
The Aliquot sequence associated to a positive integer s0 is the sequence (sk)k∈N defined
by the recurrence relation

sk+1 = σ(sk)− sk,

where σ(sk) is the sum of the proper divisors of sk, i.e. sk+1 is the sum of all proper
divisors of sk without sk itself. The iteration stops as soon as sk = 1 which means that
sk−1 is prime. For example, the Aliquot sequence for s0 = 30 is

30,42,54,66,78,90,144,259,45,33,15,9,4,3,1.

But not every Aliquot sequence terminates. Sometimes, the sequence (sk)k enters a cycle.
If the cycle has length one, the corresponding number is called perfect, i.e. 6 = 1+2+3
or 28 = 1+ 2+ 4+ 7+ 14. When the cycle has length two, the two integers of the
cycle are called amicable, e.g. 220 and 284, and if the length of the cycle is larger than
two, the involved integers are called sociable. Using the sigma function we can write a
procedure calculating Aliquot sequences as follows:

sage: def aliquot(n):
....: L = [n]
....: while n != 1: #terminates if the last entry equals 1
....: n = sigma(n) - n
....: if n in L: #break if we enter a cycle
....: L.append(n)
....: break
....: L.append(n)
....: return L

In this procedure, the sequence terminates either if sk = 1 or if the sequence has entered
a cycle.

sage: aliquot(30)
[30, 42, 54, 66, 78, 90, 144, 259, 45, 33, 15, 9, 4, 3, 1]
sage: aliquot(220)
[220, 284, 220]

The length of the Aliquot sequence of s0 can be larger than s0 itself and can have large
peaks, e.g. if we choose s0 = 138.

136 Chapter 8. Computational Domains

sage: l = aliquot(138)
sage: l[0:5], l[-5:], len(l)
([138, 150, 222, 234, 312], [394, 200, 265, 59, 1], 178)
sage: P = [(x, l[x]) for x in srange(0, len(l))]
sage: p = line(P)

0 50 100 150

101

103

105

107

109

1011

It is still an open problem in mathematics whether any Aliquot sequences either ter-
minates or enters a cycle. The Catalan-Dickson conjecture claims that this should
be the case. However, there are numbers whose Aliquot might be infinite yet never
repeats. The first five candidate, whose complete Aliquot sequence is still unknown, are
276,553,564,660 and 966. These numbers are also called the Lehmer five.

8.5 Primality Test
To do symbolic calculations, a computer algebra system has to continuously check
whether an integer is prime or not. For example, the factorization of a polynomial with
integer coefficients starts by factoring it in Fp[x] for some prime number p, e.g. using
the Cantor-Zassenhaus algorithm, see [4, Section 21.3]. In particular, a suitable prime
number has to be found.

There are two main classes of primality tests . The most efficient ones are the pseudo-
primality tests. If a pseudo-primality test returns False then the number is certainly
not prime. But if the test result is True then no definite conclusion is possible, i.e. the
number can be either prime or not. The pseudo-primality test is_pseudoprime used in
Sage is based on Fermat’s little theorem.

Theorem 8.5.1 If p is prime then every integer 0 < a < p is an element of the
multiplicative group (Z/pZ)∗, i.e. ap−1 ≡ 1 mod p.

Hence, if ap−1 6≡ 1mod p, then p is certainly not prime. But if this is not the case, then
p we can not say for sure whether p is prime or not.

The second class of primality tests consists of true primality tests. The true primality
test is_prime always returns a correct answer, but it is in general less efficient than the
pseudo-primality test is_pseudoprime.

sage: p = previous_prime(2^600)

8.5 Primality Test 137

sage: %timeit is_pseudoprime(p)
100 loops, best of 5: 2.7 ms per loop
sage: %timeit is_prime(p)
1 loop, best of 5: 2.33 s per loop

Sage provides various commands to look for prime numbers:

• previous_prime(m) returns the larges prime number p < m,

• next_prime(m) returns the smallest prime number m < p,

• prime_range(m) constructs a list of all prime numbers up to m.

9. Polynomial Rings

In Section ?? we have dealt with polynomials as symbolic expressions in the symbolic
ring. Most of the introduced methods are also available when calculating in a poly-
nomial ring, but their implementation often differ, because Sage takes the properties
of the considered polynomial ring like Q[x] or Z/4Z[x] into account. One of the main
differences between the symbolic ring and the polynomial ring is that polynomials as
elements in the polynomial ring are always put into normal form while polynomials in
the symbolic ring just remain there appearance.

sage: x = var(’x’); p = (x^4 - 1)*(2*x + 1)*(x + 2)
sage: parent(p)
Symbolic Ring
sage: print("␣{}␣is␣of␣degree␣{}".format(p, p.degree(x)))
(x^4 - 1)*(2*x + 1)*(x + 2) is of degree 6
sage: x = polygen(QQ, ’x’); p = (2*x+1) * (x+2) * (x^4-1)
sage: parent(p)
Univariate Polynomial Ring in x over Rational Field
sage: print("␣{}␣is␣of␣degree␣{}".format(p, p.degree()))
2*x^6 + 5*x^5 + 2*x^4 - 2*x^2 - 5*x - 2 is of degree 6

Here, the line x = polygen(QQ, ’x’) translates to “assign the Python variable x to
the indeterminate of the polynomial ring in x with rational coefficients”. We need to
be aware that this assignment is not equivalent to x = var(’x’), where the Python
variable x is assigned to the symbolic variable x.

The available methods and functions on polynomials in a specified polynomial ring
are much wider and more efficient than those on polynomials as symbolic expressions.
Polynomials in Sage, like many other algebraic objects, in general have coefficients in a
commutative ring or in a field. To distinguish them we henceforth denote a commutative

140 Chapter 9. Polynomial Rings

ring by A and a field by K.
Before we can perform calculations in a polynomial ring R, we have to build R itself

in Sage. For example, the polynomial ring Q[x] is build as follows:

sage: R = PolynomialRing(QQ, ’x’)
sage: x = R.gen()

In the first line, ’x’ is simply a character string which represents the name of the
indeterminate, or the generator, of the ring. This generator ’x’ is then assigned to
the Python variable x in the second line. Now, the Python variable x represents the
polynomial x ∈Q[x]. Its parent is therefore the ring QQ[x]:

sage: x.parent()
Univariate Polynomial Ring in x over Rational Field

The command x = polygen(QQ, ’x’) is equivalent to x = PolynomialRing(QQ,
’x’).gen() and simultaneously builds the ring Q[x] and assigns the indeterminate
x to the Python variable x. However, the polynomial ring itself is not assigned to a
Python variable x. Instead of the command PolynomialRing(QQ, ’x’) we can use
the command QQ[x] which is closer to the mathematical syntax. This abbreviation is
often combined with the construction R.<x> = ... which simultaneously assigns the
structure Q[x] to the Python variable R and its generator x to the Python variable x.

sage: R.<x> = QQ[’x’]
sage: R
Univariate Polynomial Ring in x over Rational Field
sage: x, x.parent()
(x, Univariate Polynomial Ring in x over Rational Field)

The base ring, i.e. the ring of the coefficients, can be accessed with base_ring.

sage: R.base_ring()
Rational Field

R Similar to the assignment of symbolic variables, the name of the Python variable
and the name of the generator of the polynomial ring can differ. However, this is not
recommended as the code can get quite confusing.

sage: x = polygen(QQ, ’y’); y = polygen(QQ, ’x’)
sage: x^2 + 1
y^2 + 1
sage: (y^2 + 1).parent()
Univariate Polynomial Ring in x over Rational Field

After the construction of a polynomial ring R in Sage all calculations are carried out
in R as soon as one of its element is involved.

sage: R.<x> = QQ[’x’]
sage: p = x + 2; p
sage: p.parent()

141

Basic Commands for Polynomial Rings R = A[x]

Construction R.<x> = A[]
Accessing the base ring A R.base_ring()

Accessing the indeterminate x R.gen()

Table 9.1.: Polynomial Rings

Univariate Polynomial Ring in x over Rational Field

Similar to symbolic expressions we can substitute the indeterminate x in a polynomial p
with a specific value or another polynomial q. In the second case, Sage calculates the
composition p◦q.

sage: p = R.random_element(degree = 4); p #a random element in QQ
[’x’] of degree 4

sage: p.subs(matrix([[1, 2], [3, 4]])) #replace x by a matrix
[305/6 541/3]
[541/2 964/3]
sage: p.subs(x^2) #replace x by the polynomial x^2
x^8 - 2*x^6 - 1/6*x^4 - 73

There are also other modifications for polynomials available in Sage. For example, the
method map_coefficients() takes a function f and applies to all non-zero coefficients
of the considered polynomial.

sage: p.map_coefficients(lambda a: a^2) #square all coefficients
x^4 + 4*x^3 + 1/36*x^2 + 5329

Since any polynomial can be interpreted as a function we can also calculate its derivative
using the same methods as for symbolic expressions, see Section 3.3.4.

sage: p.derivative(), p.diff()
(4*x^3 - 6*x^2 - 1/3*x, 4*x^3 - 6*x^2 - 1/3*x)

Instead of defining a polynomial in the usual way, we can also transform a list L =
[a0, a1, ..., an] into the polynomial anxn + . . .+a1x+a0 in the polynomial ring
R using the usual conversion command R[L].

sage: p = R([0, 2, 0, 4, 0, 6]); p
6*x^5 + 3*x^3 + 2*x

Vice versa, the list of coefficients can be recovered with list(). Accordingly the coef-
ficient of xk is accessed with p[k] and leading_coefficient() returns the leading
coefficient. The method coefficients() only returns a list of all nonzero coefficients.
In particular, the numbering of the coefficients does not coincide with the numbering
as list elements. In addition, a dictionary “degree→ coefficient” of the non-zero coef-
ficients is obtained with the method dict(). Last but not least, Sage provides many
methods to test for different properties of a polynomial, e.g. is_monic(), is_constant,
... .

142 Chapter 9. Polynomial Rings

sage: p.degree()
5
sage: p.list()
[0, 2, 0, 4, 0, 6]
sage: p[1]
2
sage: p.leading_coefficient()
6
sage: p.coefficients()
[2, 4, 6]
sage: p.dict()
{1: 2, 3: 4, 5: 6}
sage: p.is_constant()
False

The list of available operations, their meaning, and their efficiency heavily depends on
the base ring. For example, we can ask for small roots in GF(p)[’x’] with the method
small_roots but not in QQ[’x’]. Thus, it might be useful to change the base ring A
of the polynomial ring A[x] to the base ring B with the method change_ring(B). This
conversion is usually given by a canonical morphism from A to B, e.g. the canonical
embedding Z ↪→Q or the projection Z� F3. Sometimes a change of the base ring can
be used to gain additional algebraic properties. For example, the following polynomial
is irreducible over Q but not over R and also not over F3.

sage: x = polygen(QQ, ’x’)
sage: p = x^2 - 16*x + 3
sage: p.factor()
x^2 - 16*x + 3
sage: p.change_ring(RR).factor()
(x - 15.8102496759067) * (x - 0.189750324093346)
sage: p.change_ring(GF(3)).factor()
x * (x + 2)

9.1 Euclidean Arithmetic
Apart from taking sums and products, the most elementary operations on polynomials
are the Euclidean division and determing the greatest common divisor (gcd). However,
these operations are often hidden by an additional abstract layer which we want to
unravel in the following.

9.1.1 Divisibility
The Euclidean division is well-defined if the base ring is a field or, more generally, if the
leading coefficient of the divisor is invertible. The used methods have the same name as
those we used for symbolic expressions, see Section ??.

sage: R.<t> = IntegerModRing(42)[’t’]
sage: p = t^20 - 1; d = t^5 + 8*t + 7

9.1 Euclidean Arithmetic 143

Accesing Data of a Polynomial p

Indeterminate x p.variables()
Coefficient of xk p[k]

Leading Coefficient p.leading_coefficient()
Degree p.degree()

List of Coefficients p.list()
List of non-zero Coefficients p.coefficients()

Dictionary: degree 7→ coefficients p.dict()
Tests (monic, constant, ...) p.is_monic(), p.is_constant(), ...

Transformations r

Substitution x := a p.subs(a)
Derivative p.derivative()

Transformation of Coefficients p.map_coefficients(f)
Change of Base Ring A[x]→ B[x] p.change_ring(B)

Table 9.2.: Transforming Polynomials and Rationals.

sage: p.quo_rem(d) #Euclidean divison
(t^15 + 34*t^11 + 35*t^10 + 22*t^7 + 28*t^6 + 7*t^5 + 34*t^3 + 35,

22*t^4 + 14*t^3 + 14*t + 6)
sage: p // d #exact divison
t^15 + 34*t^11 + 35*t^10 + 22*t^7 + 28*t^6 + 7*t^5 + 34*t^3 + 35
sage: p % d # the remainder
22*t^4 + 14*t^3 + 14*t + 6

To perform an exact division we use the operator //. Using the usual division operator
/ either raises an error, if the division is not well-defined, or returns an element of the
corresponding quotient field. In particular, the parent of the result is different from those
of the input.

sage: ((t^2 + t) / t).parent()
Traceback (most recent call last):
...
TypeError: self must be an integral domain.
sage: R.<x> = QQ[’x’]; R
Univariate Polynomial Ring in x over Rational Field
sage: ((x^2 + x) / x).parent()
Fraction Field of Univariate Polynomial Ring in x over Rational

Field

Similar to integers, we can also compute the gcd of two polynomials over a field, but
also over some rings, like Z.

sage: Z.<x> = ZZ[’x’]; p = 2 * (x^10 - 1) * (x^8 - 1)
sage: p.gcd(p.diff())
2*x^2 - 2

144 Chapter 9. Polynomial Rings

One way to determine the gcd by hand is the Euclidean algorithm . This algorithm
determines the gcd of two elements a,b of an Euclidean domain as follows. First, we set
r0 = b and do a euclidean division a = q1r0 + r1. In every further step, we do a further
euclidean division until there is no remainder.

r0 = q2r1 + r2,

r1 = q3r2 + r3,

...
rn−1 = qn+1rn +0.

The last nontrivial remainder is the gcd of a and b, i.e. gcd(a,b) = rn. It is also possible
to calculate the explicit relation gcd(p,q) = ap+ bq with p.xgcd(q). This is the
so-called Bézout relation of p and q.

sage: R.<x> = QQ[’x’]; p = x^5 - 1; q = x^3 - 1
sage: p.xgcd(q)
(x - 1, -x, x^3 + 1)
sage: print("The␣gcd␣of␣p␣=␣", p, "␣and␣q␣=␣", q, "␣is␣%s␣=␣(%s)*p

␣+␣(%s)*q" % p.xgcd(q))
The gcd of p = x^5 - 1 and q = x^3 - 1 is x - 1 = (-x)*p + (x

^3 + 1)*q

One way to determine the Bézout relation is the extended Euclidean algorithm. We
shortly illustrate this algorithm a = 99, b = 78 viewed as elements of Z. First, we apply
the classical Euclidean algorithm:

99 = 1 ·78+21,
78 = 3 ·21+15,
21 = 1 ·15+6,
15 = 2 ·6+3,
6 = 2 ·3+0.

Hence, gcd(99,78) = 3. To obtain the Bézout relation, we read these equations back-
wards:

3 = 15−2 ·6
= 15−2 · (21−1 ·15) = 3 ·15−2 ·21
= . . . = 3 ·78−11 · (99−1 ·78)
= 14 ·78−11 ·99.

R Although the method xgcd is available for polynomials in ZZ[’x’] the result is in
general no Bézout relation since Z[x] is not a principal ring. Nevertheless, ap+bq is
still an integer multiple of the gcd.

sage: R.<x> = ZZ[’x’]
sage: p = -x^2 - x - 1; q = -x^2 - x - 3
sage: B = p.xgcd(q)

9.1 Euclidean Arithmetic 145

Divisibility and Euclidean Division

Divisibility Test p|q p.divides(q)
Euclidean division p = qd + r q, r = p.quo_rem(d) or q = p // d, r = p % d

Greatest Common Divisor (gcd) p.gcd(q), gcd([p1, ... , pn])
Least Common Multiple p.lcm(q), lcm([p1, ..., pn])

Extended gcd g = up+ vq g, u, v = p.xgcd(q)

Table 9.3.: Division in Polynomial Rings

sage: B[1]*q + B[2]*q
4
sage: p.gcd(q)
1

We summarized the introduced methods together with a few further useful methods in
Table 9.3.

� Example 9.1 Usually, Sage represents polynomial in Q[x] in the monomial basis (xn)n.
Another common basis is given by the family of Chebyshev polynomials (Tn)n which
are defined by the relation Tn(cos(θ)) = cos(nθ). The first Chebyshev polynomials are
given by

sage: R.<x> = QQ[’x’]; [chebyshev_T(n, x) for n in [0..4]]

In the procedure below we use the Euclidean division to determine the coefficients of a
polynomial p ∈Q[x] with respect to the basis (Tn)n.

sage: def cheb_coeff(p):
....: L = []
....: for k in srange(p.degree(), 0, -1, include_endpoint =

True):
....: q, r = p.quo_rem(chebyshev_T(k, x))
....: L.append(q)
....: p = r
....: L.reverse()
....: return L
sage: p = R.random_element(degree = 6)
sage: p
1/3*x^6 - 5*x^5 - x^4 + 3*x^2 - x
sage: cheb_coeff(p)
[59/48, -33/8, 37/32, -25/16, -1/16, -5/16, 1/96]

�

9.1.2 Ideals and Quotients
Ideals of polynomial rings and quotients by these ideals are represented in Sage by
objects built from polynomial rings by the methods ideal and quo. An ideal of a

146 Chapter 9. Polynomial Rings

polynomial ring R is written in Sage either as the product of a tuple of polynomials
and the polynomial ring R or constructed with the method R.ideal(p), where p is a
collection of polynomials defining the ideal. Sage automatically reduces the collections
of defining polynomial to its minimum. Since K[x] are principal rings, each ideal in K[x]
is generated by one polynomial.

sage: R.<x> = QQ[’x’]
sage: J1 = (x^2 - 2*x + 1, 2*x^2 + x - 3)*R; J1
Principal ideal (x - 1) of Univariate Polynomial Ring in x over

Rational Field
sage: (x^2 - 2*x + 1) / (x - 1) #generators are multiple of (x-1)
x - 1
sage: (2*x^2 + x - 3) / (x - 1)
2*x + 3

Apart basic arithmetic like sums and product, we can reduce a polynomial modulo an
idea. In this case, the reduced polynomial remains an element of QQ[’x’].

sage: J2 = R.ideal(x^5 + 2); J2
Principal ideal (x^5 + 2) of Univariate Polynomial Ring in x over

Rational Field
sage: p = ((3*x+5) * J1 * J2).reduce(x^10); p
421/81*x^6 - 502/81*x^5 + 842/81*x - 680/81
sage: p.parent()
Univariate Polynomial Ring in x over Rational Field
sage: ((3*x+5) * J1 * J2).reduce(x^10 - p) #Difference is an

element of (3*x+5) * J1 * J2
0

Another way to obtain the reduction of p modulo an ideal J in QQ[’x’] is to first
construct the quotient of QQ[’x’] by the ideal J.

sage: B = R.quo((3*x+5) * J1 * J2); B
Univariate Quotient Polynomial Ring in xbar over Rational Field

with modulus x^7 + 2/3*x^6 - 5/3*x^5 + 2*x^2 + 4/3*x - 10/3

We observe that Sage introduces the variable xbar as indeterminate of the quotient
ring B. However, the new introduced variable xbar is not automatically assigned to the
Python variable xbar. If we need this indeterminate we have to do this assignment
manually.

sage: xbar
Traceback (most recent call last):
...
NameError: name ’xbar’ is not defined
sage: xbar = B.gen()
sage: xbar, xbar.parent()
(xbar,
Univariate Quotient Polynomial Ring in xbar over Rational Field

9.2 Factorization and Roots 147

Ideals and Quotient Rings Q = R/J

Construction of an Ideal (p,q) R.ideal(p, q) or (p, q) * R
Reduction of p modulo an Ideal J J.reduce(p)

Construction of the Quotient Ring R/J R.quo(J)
Access the Cover Ring of a Quotient Q Q.cover_ring()

Lift u from R/J to R u.lift()

Table 9.4.: Ideals and Quotients

with modulus x^7 + 2/3*x^6 - 5/3*x^5 + 2*x^2 + 4/3*x - 10/3)

Now we can project the element x10 to B. The parent of the projected element is then B.
To change the parent back to the polynomial ring, we have to lift it, i.e. use the lift
method.

sage: B(x^10) #x^10 projected down to the quotient ring B
421/81*xbar^6 - 502/81*xbar^5 + 842/81*xbar - 680/81
sage: B(x^10).parent()
Univariate Quotient Polynomial Ring in xbar over Rational Field

with modulus x^7 + 2/3*x^6 - 5/3*x^5 + 2*x^2 + 4/3*x - 10/3
sage: B(x^10).lift() #lift the element back
421/81*x^6 - 502/81*x^5 + 842/81*x - 680/81
sage: B(x^10).lift().parent()
Univariate Polynomial Ring in x over Rational Field

As quotient rings by ideals are again commutative rings, we can use them again as a
coefficient domain for a new polynomial ring, e.g. we can construct (F5[t]/〈t2 +3〉)[x]:

sage: R.<t> = GF(5)[’t’]
sage: p = R.quo(t^2 + 3)[’x’].random_element()
sage: p
0
sage: p.parent()
Univariate Polynomial Ring in x over Univariate Quotient

Polynomial Ring in tbar over Finite Field of size 5 with
modulus t^2 + 3

9.2 Factorization and Roots
A further elementary yet important operation on polynomials is the decomposition of a
polynomial into a product of irreducible factors. We have already seen in some examples
that the factorization of a polynomial depends on the polynomial ring it belongs to, e.g.
see the discussion in Section 8.4.1. Although the factorization of a polynomials is a
quite expensive operations there are many advantages like a simpler determination of
roots and greatest common divisors.

148 Chapter 9. Polynomial Rings

9.2.1 Factorization
To decompose a polynomial into a product of irreducible polynomials, we have know
what an irreducible polynomial is. The answer to this question depends on the base
ring. In Sage we can use the method is_irreducible to check whether a polynomial
is irreducible or not. For example, the polynomial 3x2−6 is irreducible over Q[x] but
not over Z[x].

sage: R.<x> = QQ[’x’]; p = 3*x^2 - 6
sage: p.is_irreducible()
True
sage: p.change_ring(ZZ).is_irreducible()
False
sage: p.change_ring(ZZ).factor()
3 * (x^2 - 2)

The irreducibility test and the factorization are performed on the base ring. For example,
the factorization of a polynomial over the integers contains a constant part, which itself
splits into prime factors, and a product of irreducible polynomials.

sage: p = 54*x^4 + 36*x^3 - 102*x^2 - 72*x - 12
sage: for A in [ZZ, QQ, ComplexField(16), GF(5), QQ[sqrt(2)]]:
....: print(str(A) + ":")
....: print(A[’x’](p).factor())
Integer Ring:
2 * 3 * (3*x + 1)^2 * (x^2 - 2)
Rational Field:
(54) * (x + 1/3)^2 * (x^2 - 2)
Complex Field with 16 bits of precision:
(54.00) * (x - 1.414) * (x + 0.3333)^2 * (x + 1.414)
Finite Field of size 5:
(4) * (x + 2)^2 * (x^2 + 3)
Number Field in sqrt2 with defining polynomial x^2 - 2 with sqrt2

= 1.414213562373095?:
(54) * (x - sqrt2) * (x + sqrt2) * (x + 1/3)^2

Since an element of a polynomial ring is always displayed in the normal form akxk+ . . .+
a1x+a0 the parent of a factorized polynomial f is not the polynomial ring but the class
Factorization. This class provides similar methods as the corresponding polynomial
ring, e.g. the methods gcm and lcm. To isolate a factor of a factorized polynomial f we
use the same syntax as for list elements, i.e. the i-th factor is accessed with f[i].

sage: f = QQ[’x’](p).factor(); f
(54) * (x + 1/3)^2 * (x^2 - 2)
sage: parent(f)
<class ’sage.structure.factorization.Factorization’>
sage: f[0], f[1]
((x + 1/3, 2), (x^2 - 2, 1))

Factorizing a polynomial is a computationally expensive operation. Especially for huge

9.2 Factorization and Roots 149

polynomials one might has to wait quite a long time for the result.
A weaker but way more efficient factorization is the square-free decomposition.

There a polynomial p is split into a product p = ∏
r
i=1 f mi

i of square-free polynomials fi.
Recall, that a polynomial f is square-free if its factorization only contains factors with
multiplicity one, i.e. f = q1 · · ·qk with qi being irreducible and qi 6= q j whenever i 6= j.
This decomposition is calculated with the method squarefree_decomposition.

sage: QQ[’x’](p).squarefree_decomposition()
(54*x^2 - 108) * (x + 1/3)^2

Since the square-free part f1 · · · fr of a polynomial p = ∏
r
i=1 f mi

i has, up to multiplic-
ity, the same roots as p the square-free decomposition of a polynomial is for many
applications sufficient.

9.2.2 Roots
There are various ways to determine the roots of a polynomial depending on the explicit
situation. Do we want complex or real roots? In which domain do we want to calculate
them? Do we need them exact or is a numerical approximation sufficient? With or with-
out multiplicities? The method roots returns the roots of the considered polynomials in
its base ring as a list of pairs consisting of the root and its multiplicity. In particular, the
result of roots depends on the base ring.

sage: p = (2*x^2 - 5*x + 2)^2 * (x^4 - 7)
sage: for A in [ZZ, QQ, ComplexField(16), GF(5), QQ[7^(1/4)]]:
....: print(str(A) + ":")
....: print(A[’x’](p).roots())
Integer Ring:
[(2, 2)]
Rational Field:
[(2, 2), (1/2, 2)]
Complex Field with 16 bits of precision:
[(-1.627, 1), (0.5000, 2), (1.627, 1), (2.000, 2), (-1.627*I, 1),

(1.627*I, 1)]
Finite Field of size 5:
[(3, 2), (2, 2)]
Number Field in a with defining polynomial x^4 - 7 with a =

1.626576561697786?:
[(a, 1), (-a, 1), (2, 2), (1/2, 2)]

Instead of changing the base ring we can also add the desired domain for the roots as
an additional argument in roots. For example, we can obtain the rational roots of a
polynomial in Z[x] without changing the base ring as follows:

sage: p = ZZ[’x’](p)
sage: p.roots(QQ), p.parent()
([(2, 2), (1/2, 2)], Univariate Polynomial Ring in x over Integer

Ring)

Since every root of a polynomial with rational coefficients is an algebraic we can use the

150 Chapter 9. Polynomial Rings

domain QQbar of algebraic numbers to compute the exact roots of p.

sage: roots = p.roots(QQbar); roots
[(-1.626576561697786?, 1),
(0.50000000000000000?, 2),
(1.626576561697786?, 1),
(2, 2),
(-1.626576561697786?*I, 1),
(1.626576561697786?*I, 1)]

Despite their appearance, the results are exact and not just approximated values. For
example, calculating the fourth power of the first root is exactly 7 and not just approxi-
mately. In particular, these roots can be reused in further exact calculations.

sage: a = roots[0][0]^4; a, parent(a)
(7.000000000000000?, Algebraic Field)
sage: a.simplify(); a
7

There are more possibilities to calculate roots numerically using approximation methods,
e.g. in the domains RR and CC. There it is often useful to first isolate the root, i.e.
determine an interval consisting exactly one root. The specific methods real_roots
and complex_roots offer additional options or give slightly different results from the
roots method.

9.3 Rational Functions
A rational function is a quotient of two polynomials of a polynomial ring R. The parent
of a rational function is the fraction field of the polynomial ring R. In Sage the fraction
field of a polynomial ring R is build with Frac(R).

sage: R.<x> = RR[’x’]
sage: Frac(R)
Fraction Field of Univariate Polynomial Ring in x over Real Field

with 53 bits of precision
sage: p = 1 + x; q = 1 - x^2; r = p / q
sage: r, r.parent()
((x + 1.00000000000000)/(-x^2 + 1.00000000000000), Fraction Field

of Univariate Polynomial Ring in x over Real Field with 53
bits of precision)

Since RR is an inexact ring, as its elements are approximations of mathematical objects,
the simplification is not done automatically. Here, we have to use the reduce method to
put the fraction in reduced form.

sage: r.reduce(); r
-1.00000000000000/(x - 1.00000000000000)

In exact rings, like ZZ or QQ, rational functions are automatically reduced.
The available operations on rational functions are similar to those on polynomials,

9.3 Rational Functions 151

e.g. substitution, derivative and factorization. In addition, we can isolate the numerator
and the denominator to work with them separately.

sage: r.numerator()
-1.00000000000000
sage: r.denominator()
x - 1.00000000000000

We have already seen that we can calculate the partial fraction decomposition of a
rational function r = p

q if considered as a symbolic expression, see Section 3.2.1. The
corresponding method partial_fraction_decomposition() is also available for
rational functions in a fraction field. The result contains a polynomial part and a list of
rational functions whose denominators are the irreducible factors of the denominator q.

sage: R.<x> = QQ[’x’]; r = x^10 / ((x^2 - 1)^2 * (x^2 + 3))
sage: r.partial_fraction_decomposition()
(x^4 - x^2 + 6, [17/32/(x - 1), 1/16/(x^2 - 2*x + 1), -17/32/(x +

1), 1/16/(x^2 + 2*x + 1), -243/16/(x^2 + 3)])

The above result tells us that the partial fraction decomposition of r is given by

r =
x10

(x2−1)2(x2 +3)
= x4− x2 +6+

17
32

x−1
+

1
16

(x−1)2 −
17
32

x+1
+

1
16

(x+1)2 −
243
16

x2 +3

In C the denominator of the last term is not irreducible. Thus, we can get a finer
partial fraction decomposition by changing the base ring to the complex numerical CC
if we want an approximate decomposition, or to Q[i] or QQbar, if we want an exact
decomposition.

sage: C = ComplexField(16)
sage: Frac(C[’x’])(r).partial_fraction_decomposition()
(x^4 - x^2 + 6.000, [0.5312/(x - 1.000), 0.06250/(x^2 - 2.000*x +

1.000), 4.384*I/(x - 1.732*I), (-4.384*I)/(x + 1.732*I),
(-0.5312)/(x + 1.000), 0.06250/(x^2 + 2.000*x + 1.000)])

sage: Frac(QQbar[’x’])(r).partial_fraction_decomposition()
(x^4 - x^2 + 6, [4.384253606658720?*I/(x - 1.732050807568878?*I),

(-4.384253606658720?*I)/(x + 1.732050807568878?*I),
0.53125000000000000?/(x - 1), 0.062500000000000000?/(x^2 - 2*x
+ 1), (-0.53125000000000000?)/(x + 1),
0.062500000000000000?/(x^2 + 2*x + 1)])

As for integers, the rational reconstruction also exists for polynomials with coefficients in
a commutative ring like A = Z/nZ. Given two polynomials m,s ∈ A[x] and two integers
dp,dq the command s.rational_reconstruct(m, dp, dq) computes, if possible,
two polynomial p,q ∈ A[x] such that

q · s≡ pmodm, deg p≤ dp, degq≤ dq.

If m is a prime number a nontrivial solution always exists if the degrees of p and q
satisfy the relation dp +dq ≥ degm−1.

152 Chapter 9. Polynomial Rings

Rational Functions r

Fraction Field of R Frac(R)
Numerator r.numerator()

Denominator r.denominator()
Simplification r.reduce()

Partial Fraction Decomposition r.partial_fraction_decomposition()
Rational Reconstruction of s mod m s.rational_reconstruct(m)

Table 9.5.: Rational Functions

sage: A = IntegerModRing(5); x = polygen(A)
sage: m = (1 + x) * (x^2 - 3); s = (x + 1) * (x^3 + 4*x - 2)
sage: m, s
(x^3 + x^2 + 2*x + 2, x^4 + x^3 + 4*x^2 + 2*x + 3)
sage: p, q = s.rational_reconstruct(m, 1, 3)
sage: p, q
(4*x + 4, x + 1)
sage: ((q*s) % m) == (p % m) #Test
True

9.4 Formal Power Series
A formal power series of indeterminate x with coefficients in a commutative ring A is a
formal sum ∑

∞
n=0 anxn, where (an)n is a sequence of elements in A, without considering

convergence. Together with the natural addition and multiplication operations,

∞

∑
n=0

anxn +
∞

∑
n=0

bnxn =
∞

∑
n=0

(an +bn)xn,(
∞

∑
n=0

anxn

)
·

(
∞

∑
n=0

bnxn

)
=

∞

∑
n=0

(
∑

i+ j=n
aib j

)
xn,

the formal power series form the ring A[[x]].
In computer algebra systems, these series are useful to approximate analytic functions

for which we have no closed form. However, since the computer only performs the
calculations, we have to ensure ourselves that the considered sequences converge.

9.4.1 Operations on Truncated Power Series
The ring Q[[x]] of formal power series with rational coefficients is constructed by

sage: R.<x> = PowerSeriesRing(QQ); R
Power Series Ring in x over Rational Field

or equivalently by its alias R.<x> = QQ[[’x’]], following more the mathematical
syntax. As a computer can only deal with finite objects, the elements of A[[’x’]] are

9.4 Formal Power Series 153

truncated power series, i.e. they are of the form

a0 +a1x+ . . .+an−1xn−1 +O(xn).

In particular, they are only approximations of the corresponding infinite sequences, i.e.
the ring A[[’x’]] is always an inexact ring, even if its base ring A is exact. Each
element of A[[’x’]] has its own truncation order which is automatically carried over
through computations.

sage: f = 1 + x + O(x^2); g = x + 2*x^2 + O(x^4)
sage: f, g
(1 + x + O(x^2), x + 2*x^2 + O(x^4))
sage: f + g
1 + 2*x + O(x^2)
sage: f * g
x + 3*x^2 + O(x^3)

The polynomial ring A[x] can be interpreted as a subset of A[[x]]. In fact, polynomials
are those formal power series with infinite precision.

sage: (1 + x^3).prec()
+ Infinity

A default precision is used, when it is necessary to truncate an exact result. This precision
can be modified either at the ring creation with the option default_prec, or afterwards
with the method set_default_prec.

sage: R.<x> = PowerSeriesRing(Reals(24), default_prec = 4); R
Power Series Ring in x over Real Field with 24 bits of precision
sage: 1/ (1 + numerical_approx(pi)*x)^2
1.00000 - 6.28319*x + 29.6088*x^2 - 124.025*x^3 + O(x^4)
sage: R.set_default_prec(8)
sage: 1/ (1 + numerical_approx(pi)*x)^2
1.00000 - 6.28319*x + 29.6088*x^2 - 124.025*x^3 + 487.046*x^4 -

1836.12*x^5 + 6729.73*x^6 - 24162.4*x^7 + O(x^8)

A consequence of the truncation is that we can not test whether two formal power series
are mathematically equivalent. Indeed, two elements in A[[’x’]] are considered as
equal as soon as they match up to the smallest of their precision. In particular, the test
O(x^2) == 0 returns True although 0 $ O(x2).

sage: R.<x> = QQ[[’x’]]
sage: 1 + x + O(x^2) == 1 + x + x^2 + O(x^3)
True
sage: O(x^2) == 0
True

All basic arithmetic operations on series works as for polynomials. Further available
methods include f.exp(), when f (0) = 0, derivatives and antiderivative methods.

sage: p = x + 3*x^2 - 2 * x^3 + O(x^4)

154 Chapter 9. Polynomial Rings

Truncated Power Series

Construction of A[[x]] PowerSeriesRing(A, ’x’, default_prec = n)
Coefficient of xk in f f[k]

Truncation x + O(x ^n)
Precision f.prec()

Useful Operations
√

f ,exp(f), . . . f.sqrt(), f.exp(), ...

Table 9.6.: Truncated Power Series

sage: p.exp()
1 + x + 7/2*x^2 + 7/6*x^3 + O(x^4)
sage: p.derivative()
1 + 6*x - 6*x^2 + O(x^3)
sage: p.integral()
1/2*x^2 + x^3 - 1/2*x^4 + O(x^5)

� Example 9.2 We can use formal power series to compute an asymptotic expansion of
1
x2 exp

(∫ x
0

√
1

1+t dt
)

as x→ 0 up to order 5 as follows:

sage: R.<x> = QQ[[’x’]]
sage: (1/(1+x)).sqrt().integral().exp() / x^2 + O(x^6)
x^-2 + x^-1 + 1/4 + 1/24*x - 1/192*x^2 + 11/1920*x^3 - 103/23040*x

^4 + 1177/322560*x^5 + O(x^6)

�

The above example also demonstrates that for two elements f ,g ∈ K[[x]] (recall that
K stands for a field) with g(0) = 0 the quotient f

g is a formal Laurent series. In contrast
to Laurent series in complex analysis, formal Lauren series only have a finite number of
term of negative exponent. The restriction is mandatory for the product of two formal
sums to be well-defined, as otherwise the coefficients of a product would be infinite
series on their own.

9.4.2 Applications involving Power Series
Padé Approximation
A Padé approximation of type (k,n− k) of a formal power series f ∈ K[[x]] is a rational
function p

q such that

• deg p≤ k−1,

• degq≤ n− k,

• q(0) = 1,

• p
q = f +O(xn), i.e. p

q ≡ f mod xn.

A Padé approximation of type (2,4) of the series f = ∑
∞
i=0(i+1)2xi with coefficients in

Z/101Z can be easily calculated with rational reconstruction.

9.4 Formal Power Series 155

sage: A = IntegerModRing(101); R.<x> = A[’x’]; R
Univariate Polynomial Ring in x over Ring of integers modulo 101
sage: f6 = sum((i+1)^2 * x^i for i in (0..5)); f6
36*x^5 + 25*x^4 + 16*x^3 + 9*x^2 + 4*x + 1
sage: num, den = f6.rational_reconstruct(x^6, 2, 4); num/den
(100*x + 100)/(x^3 + 98*x^2 + 3*x + 100)

To test our result, we expand the quotient back to a power series.

sage: S.<x> = A[[’x’]]; S
Power Series Ring in x over Ring of integers modulo 101
sage: S(num) / S(def) == f6 + O(x^6)
True

R Using Taylor series, we can also construct Padé approximations of functions.

Finding Fix Points
Another application of power series is to solve fixed-point equations like ex f (x) = f (x).
This procedure is based on the famous Banach fixed-point theorem:

Theorem 9.4.1 Let M be a closed subspace of a complete metric space (X ,d) and let
Φ : M→ X be a contraction, i.e. there exists a k ∈ [0,1) such that

d(Φ(x),Φ(y))≤ k ·d(x,y)

for all x,y ∈M. Then for any x0 ∈M the recursively defined sequence (xn)n with

xn = Φ(xn−1) = Φ
n(x0)

converges to the unique fix point x̃ ∈M, i.e. x̃ = Φ(x̃).

Since the solution of ex f (x) = f (x) in Q[[x]] is the fix point of the transformation
Φ : f 7→ ex f we want to apply Banach fixed-point theorem. First, we endow Q[[x]] with
the metric

d(∑
i

fixi,∑
j

g jx j) = 2−k,

where k = min{k ∈ N | fk 6= gk}. It is not hard to check that (Q[[x]],d) is a complete
metric space and that Φ is a contraction around 1∈Q[[x]]. Hence, by Banach fixed-point
theorem the solution f (x) is the limit of the sequence (Φn(1))n as n tends to infinity.

sage: S.<x> = PowerSeriesRing(QQ, default_prec = 6)
sage: f = S(1) #the series 1 is our starting point
sage: for i in srange(6):
....: f = (x*f).exp() #here the iteration happens
....: print(f)
1 + x + 1/2*x^2 + 1/6*x^3 + 1/24*x^4 + 1/120*x^5 + O(x^6)
1 + x + 3/2*x^2 + 5/3*x^3 + 41/24*x^4 + 49/30*x^5 + O(x^6)
1 + x + 3/2*x^2 + 8/3*x^3 + 101/24*x^4 + 63/10*x^5 + O(x^6)

156 Chapter 9. Polynomial Rings

1 + x + 3/2*x^2 + 8/3*x^3 + 125/24*x^4 + 49/5*x^5 + O(x^6)
1 + x + 3/2*x^2 + 8/3*x^3 + 125/24*x^4 + 54/5*x^5 + O(x^6)
1 + x + 3/2*x^2 + 8/3*x^3 + 125/24*x^4 + 54/5*x^5 + O(x^6)

We see that with each iteration process a new stable term appears. To explain this
behavior we take a closer look on the equation ex f (x) = f (x). By Banach fixed-point
theorem we know that this equation has a solution f (x) ∈ Q[[x]]. Since f is a power
series we can write it as f (x) = ∑

∞
n=0 fnxn. In addition, the exponential function can

be written as the power series et = ∑
∞
k=0

tk

k! . Inserting these two expansions into the
equation ex f (x) = f (x) leads to the relation

∞

∑
n=0

fnxn =
∞

∑
k=0

1
k!

(
x

∞

∑
j=0

f jx j

)k

=
∞

∑
n=0

 1
k! ∑

j1,..., jk∈N
j1+...+ jk=n−k

f j1 · f j2 . . . f jk

xn. (9.1)

In particular, that each coefficient fn can be calculated from the preceding coefficients
f0, . . . , fn−1. Hence, each iteration of Φ yields a new correct term.

� Example 9.3 We use this iteration process to determine the series expansion to
order 15 of tan(x) near zero using the differential equation tan′ = 1+ tan2. First, we
rewrite this as a fix point equation tan(x) =

∫ x
0 1+ tan(t)2dt. Since the transformation

f (x) 7→
∫ x

0 1+ f (t)2dt is a contraction around 0 = tan(0) we can determine the series
expansion of tan(x) as follows:

sage: S.<x> = QQ[[x]]
sage: t = S(0) #Setting the starting value 0
sage: for _ in srange(15): #do the iteration
....: t = (1 + t^2).integral() + O(x^15) #restrict the maximal

precision
sage: t
x + 1/3*x^3 + 2/15*x^5 + 17/315*x^7 + 62/2835*x^9 + 1382/155925*x

^11 + 21844/6081075*x^13 + O(x^15)
sage: S(tan(x)) == t
True

�

9.4.3 Lazy Power Series
There are many power series ∑

∞
n=0 anxn where the coefficients an can be either calculated

directly with a function a(n), e.g. a(n) = 1
n! for the exponential function ex = ∑n=0 ∞

xn

n!
or from the preceding coefficients a0, . . . ,an−1, as seen in (9.1). Hence, the complete
infinite sequence is defined by a finite number of relations. This motivates the definition
of so called lazy power series. These are not truncated sequences, but real infinite
sequences. The adjective “lazy” means here that the coefficients are computed on
demand only. As a counterpart, we can only represent series whose coefficients are
computable, e.g. the lazy power series for the exponential is defined by

sage: L.<x> = LazyPowerSeriesRing(QQ)

9.4 Formal Power Series 157

sage: lazy_exp = x.exponential(); lazy_exp
O(1)

A lazy power series is an object which contains in its internal representation all the
information needed to compute the series expansion of exp(x) to any order. The initial
output is O(1) as we have not asked for any coefficient so far. As soon as we ask
for another coefficient, e.g. the coefficient of x5, the corresponding computations are
performed, and the computed coefficients are stored.

sage: lazy_exp[5]
1/120
sage: lazy_exp
1 + x + 1/2*x^2 + 1/6*x^3 + 1/24*x^4 + 1/120*x^5 + O(x^6)

As discussed above, the coefficients of the solution of the equation ex f (x) = f (x) are
recursively defined, see (9.1). Therefore, we can also solve this equation with lazy power
series.

sage: f = L(1) #starting value is the LAZY sequence 1 with
rational coefficients

sage: for i in srange(5):
....: f = (x*f).exponential()
....: f.compute_coefficients(5) #forces the commputation
....: print(f)
1 + x + 1/2*x^2 + 1/6*x^3 + 1/24*x^4 + 1/120*x^5 + O(x^6)
1 + x + 3/2*x^2 + 5/3*x^3 + 41/24*x^4 + 49/30*x^5 + O(x^6)
1 + x + 3/2*x^2 + 8/3*x^3 + 101/24*x^4 + 63/10*x^5 + O(x^6)
1 + x + 3/2*x^2 + 8/3*x^3 + 125/24*x^4 + 49/5*x^5 + O(x^6)
1 + x + 3/2*x^2 + 8/3*x^3 + 125/24*x^4 + 54/5*x^5 + O(x^6)

Although the output is the same, the huge difference is, that we can now ask for higher
order coefficients, like f[7].

sage: f[7]
28673/630

If we would try to do this in the classic power series ring Sage would have raised an
error, because the truncation order of f is strictly smaller than 7. Nevertheless, f is not
the real solution but the iterate Φ5(1). The real power of lazy series is the possibility to
directly get the limit, by defining f itself as a lazy power series. As this a more advanced
application of lazy power series we have to import the specific package.

sage: from sage.combinat.species.series import LazyPowerSeries
sage: f = LazyPowerSeries(L, name = ’f’)
sage: f.define((x*f).exponential())
sage: f.coefficients(8)
[1, 1, 3/2, 8/3, 125/24, 54/5, 16807/720, 16384/315]

Here, the iterative computation did work due to the recursive relation we have discovered
in (9.1). In fact, Sage deduces this recursive relation and stores it in the Python variable

158 Chapter 9. Polynomial Rings

f. This allows Sage to store the explicit solution f as an infinite series, i.e. we can ask
for every coefficient of f.

10. Matrices

We have already learned some basic commands for computations with vectors and
matrices, in Section 3.3.5. In this chapter, we consider matrices and vectors with
coefficients in a specific computation domain, such as Z, finite fields or polynomial rings.
In particular, we discuss various normal forms of matrices and the study of eigenvalues
and eigenspaces with Sage.

10.1 Constructions and Elementary Manipulations
10.1.1 Matrix Spaces and Groups

Similar to polynomials, vectors and matrices are handled as algebraic objects belonging
to a space. Vector spaces are built with the constructor VectorSpace. The coefficients
of a vector field are, by definition, elements of a field. If the coefficients should be
elements of a ring, the analogous algebraic object to a vector space is a free module
which can be constructed with FreeModule.

sage: VS = VectorSpace(GF(5), 3); VS
Vector space of dimension 3 over Finite Field of size 5
sage: FM = FreeModule(IntegerModRing(4), 5); FM
Ambient free module of rank 5 over Ring of integers modulo 4

For matrices it suffices if the coefficient domain is a commutative ring. As usual in
Python, rows are always named before columns.

sage: MS1 = MatrixSpace(ZZ, 2, 3); MS1 #2 rows, 3 columns
Full MatrixSpace of 2 by 3 dense matrices over Integer Ring
sage: MS2 = MatrixSpace(QQ, 4, 2); MS2 #4 rows, 2 columns
Full MatrixSpace of 4 by 2 dense matrices over Rational Field

160 Chapter 10. Matrices

A canonical basis of a matrix space MI,J(A) is given by the matrices (Bi j)0≤i≤I−1
0≤ j≤J−1

, where

Bi j is the matrix whose (i, j)-th entry is equal to 1 and all other entries are equal to zero.
This canonical basis can be obtained with the methods basis or gen. Here, the output
is a dictionary “(i, j) 7→ Bi j”.

sage: B = MS1.basis()
sage: B
Finite family {(0, 0): [1 0 0]
[0 0 0], (0, 1): [0 1 0]
[0 0 0], (0, 2): [0 0 1]
[0 0 0], (1, 0): [0 0 0]
[1 0 0], (1, 1): [0 0 0]
[0 1 0], (1, 2): [0 0 0]
[0 0 1]}
sage: B[1,2]
[0 0 0]
[0 0 1]

Similar to polynomials, the method change_ring allows us to change the coefficient
domain of a given matrix space.

sage: MS1 = MatrixSpace(ZZ, 2, 3); MS1 #2 rows, 3 columns
Full MatrixSpace of 2 by 3 dense matrices over Rational Field
sage: MS1.change_ring(QQ)
Full MatrixSpace of 2 by 3 dense matrices over Rational Field

For many algebraic applications we do not need the whole matrix space, but only
particular matrix groups. The most common ones are already implemented Sage, see
Table ??.

We want to elaborate a little bit on the orthogonal group On(R) consisting of all
n×n-matrices with coefficients in R preserving a symmetric bilinear form. With only
one exception, there is, up to isomorphism, only one symmetric bilinear form. In these
cases, the orthogonal group is constructed with GO(n, R). However, if n is even and R
is a finite field, there are two inequivalent symmetric bilinear forms. In that case, we
have to choose one by adding a third parameter q ∈ {±1} in the constructor, i.e. the
orthogonal group with parameter q is built with GO(n, R, q). The same holds for the
special orthogonal group SOn(R).

sage: GO(4, GF(5), 1), SO(6, ZZ)
(General Orthogonal Group of degree 4 and form parameter 1 over

Finite Field of size 5,
Special Orthogonal Group of degree 6 over Integer Ring)

The method invariant_bilinear_form() returns the symmtric bilinear form which
is fixed by the group, i.e. the matrix m such that gmgt = m holds for all group elements g.
Similar, the method invariant_form() returns the invariant form fixed by a symplectic
group.

sage: GO(4, GF(5), 1).invariant_bilinear_form(), GO(4, GF(5), -1).

10.1 Constructions and Elementary Manipulations 161

invariant_bilinear_form()
([0 1 0 0]
[1 0 0 0]
[0 0 2 0]
[0 0 0 2], [0 1 0 0]
[1 0 0 0]
[0 0 4 0]
[0 0 0 2])
sage: Sp(4, QQ).invariant_form()
[0 0 0 1]
[0 0 1 0]
[0 -1 0 0]
[-1 0 0 0]

Vice versa, we can also construct the (special) orthogonal group with respect to a given
symmetric bilinear form m using the option invariant_form = m. The same can be
done for symplectic groups. Here the bilinear form m has to be skew-symmetric, i.e.
representing a symplectic form.

sage: m = matrix(QQ, [[-1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0],
[0, 0, 0, 1]])

sage: m
[-1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
sage: GO(4, QQ, invariant_form = m) #orthogonal group wrt the

minkowski metric m
General Orthogonal Group of degree 4 over Rational Field with

respect to non positive definite symmetric form
[-1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]

Furthermore, if we have a list of invertible matrices [A, B, ...] the constructor
MatrixGroup([A, B, ...]) returns the matrix group generated by these matrices.
All of the methods in Table 10.1 also apply to matrix groups.

sage: A = matrix(GF(11), 2, 2, [[1,0], [0, 2]]); B = matrix(GF(11)
, 2, 2, [[0, 1], [1, 0]]); A, B

(
[1 0] [0 1]
[0 2], [1 0]
)
sage: MG = MatrixGroup([A, B]); MG
Matrix group over Finite Field of size 11 with 2 generators (
[1 0] [0 1]

162 Chapter 10. Matrices

Matrix Spaces

Construction of the Matrix Space MI,J(A) M = MatrixSpace(A, I, J)
Canonical Basis of M M.basis() or M.gen()

Number of Generators M.ngens()
Number of Elements M.order()

Base Ring M.base_ring()
Changing the Ring M.change_ring()

Matrix Groups

General Linear Group GLn(R) GL(n, R)
Special Linear Group SLn(R) SL(n, R)

Orthogonal Group On(R) GO(n, R)
Special Orthogonal Group SOn(R) SO(n, R)

Symplectic Group Spn(R) Sp(n, R)
Matrix Group generated by A,B, . . . MatrixGroup([A, B, ...])

Table 10.1.: Matrix Spaces

[0 2], [1 0]
)
sage: MG.order()
200

10.1.2 Matrix and Vector Constructions
Matrices and vectors are generated as elements of their space by providing a list of
their coefficients. For matrices, the coefficients are listed in a row major mode, i.e. the
constructor takes a list of coefficients and fills the rows from left to right starting with
the top row.

sage: MS = MatrixSpace(ZZ, 3, 3)
sage: A = MS([1, 2, 3, 4, 5, 6, 7, 8, 9]); A
[1 2 3]
[4 5 6]
[7 8 9]

Sage provides constructors for the most common matrices.

sage: MS() #zero matrix
[0 0 0]
[0 0 0]
[0 0 0]
sage: MS.identity_matrix() #only works for square matrices
[1 0 0]
[0 1 0]
[0 0 1]
sage: MS.random_element()

10.1 Constructions and Elementary Manipulations 163

[1 4 -1]
[-1 0 -1]
[-3 1 0]
sage: jordan_block(3, 4)
[3 1 0 0]
[0 3 1 0]
[0 0 3 1]
[0 0 0 3]

Furthermore, it is possible to block matrices from several submatrices. There we can
either build the block matrix as described in Section 3.3.5, or hand over a single list
of matrices and use the optional arguments nrows and ncols to determine the size of
the block matrix. Whenever it makes sense, a scalar coefficient k is interpreted as the
corresponding multiple of the identity matrix.

sage: A = matrix([[1, 2], [3, 4]])
sage: block_matrix([[A, -A], [2*A, A^2]])
[1 2|-1 -2]
[3 4|-3 -4]
[-----+-----]
[2 4| 7 10]
[6 8|15 22]
sage: block_matrix([1, A, 0, 0, -A, 2], ncols = 3)
[1 0| 1 2| 0 0]
[0 1| 3 4| 0 0]
[-----+-----+-----]
[0 0|-1 -2| 2 0]
[0 0|-3 -4| 0 2]

In the special case of block diagonal matrices, the list of the diagonal blocks can be
directly passsed to the constructor block_diagonal_matrix.

sage: block_diagonal_matrix(A, A.transpose())
[1 2|0 0]
[3 4|0 0]
[---+---]
[0 0|1 3]
[0 0|2 4]

The block structure is only a display feature. Sage treats a block matrix just as any other
matrix of the corresponding size. This display mode can be disabled by providing the
additional argument subdivide = False.

10.1.3 Basic Manipulations and Arithmetic
Coefficients and submatrices of a matrix A are accessed through the square bracket
operator A[i, j] where i and j are the row and the column index respectively. The
entries i and j can be integers or intervals using the same notation as described for
accessing list elements, see Section 5.1. The entry i:j:k lists all elements between

164 Chapter 10. Matrices

i and j-1 by steps of k. Since matrices are mutable objects, we can modify their
coefficients and submatrices directly. After each change replaces the matrix be the
modified metric, i.e. the original matrix is lost if not saved otherwise.

sage: A = matrix(3, 3, srange(9)); A
[0 1 2]
[3 4 5]
[6 7 8]
sage: A[:, 1] = vector([1, 1, 1]); A
[0 1 2]
[3 1 5]
[6 1 8]
sage: A[::-1] #steps can be negative
[6 1 8]
[3 1 5]
[0 1 2]
sage: A[:, ::-1] #only change columns
[2 1 0]
[5 1 3]
[8 1 6]
sage: A[::2, -1]
[2]
[8]

R By default, matrix objects are mutable. i.e. we can modify their coefficients after
construction. If we want to protect a matrix A against such modifications we can make it
immutable via A.set_immutable(). Afterwards, it is still possible to create mutable
copies using the copy function copy(A).

Using the above syntax it can be quite a tedious task to extract a special submatrix. In
particular, if we are only interested in individual rows or columns. To ease this process
Sage provides further the methods matrix_from_rows, matrix_from_columnsto ex-
tract specified rows or columns, respectively. These two commands are combined in
matrix_from_rows_and_columns.

sage: B = matrix(ZZ, 4, 4, srange(16)); B
[0 1 2 3]
[4 5 6 7]
[8 9 10 11]
[12 13 14 15]
sage: B.matrix_from_rows([2, 3])
[8 9 10 11]
[12 13 14 15]
sage: B.matrix_from_columns([0, 3])
[0 3]
[4 7]
[8 11]
[12 15]

10.2 Matrix Computations 165

sage: B.matrix_from_rows_and_columns([0, 2, 3], [1, 2])
[1 2]
[9 10]
[13 14]

In addition, the command submatrix(i, j, m, n returns the submatrix of size m×n
whose upper left coefficient is at position (i, j).

sage: B.submatrix(0, 1, 2, 3)
[1 2 3]
[5 6 7]

The methods rows and columns return the rows and columns as a list, while the
methods nrows and ncols only returns the numbers of the rows ad columns, respectively.

sage: B.rows(), B.nrows()
([(0, 1, 2, 3), (4, 5, 6, 7), (8, 9, 10, 11), (12, 13, 14, 15)],

4)
sage: B.columns(), B.ncols()
([(0, 4, 8, 12), (1, 5, 9, 13), (2, 6, 10, 14), (3, 7, 11, 15)],

4)

The basic arithmetic operations on matrices are done with the usual operators +,
-, *, ^. In computations, a scalar is interpreted as the corresponding multiple of the
identity matrix, if the matrix space permits it. The only exception is the product, as the
scalar multiplication of a matrix is always well-defined. The methods transpose and
conjugate return the transpose and the conjugate of a matrix respectively.

10.2 Matrix Computations
In linear algebra, matrices are typically used to represent families of vectors, systems of
linear equations, linear transformations, or vector subspaces. Consequently, computing
properties such as the rank of a family of vectors, the solution to a linear system, the
eigenspaces of a linear transformations or the dimension of a subspace all boil down to
operations on the corresponding matrices.

Geometrically, these transformations often correspond to the change of the basis
of the considered vector spaces. This translates to the equivalence transformation
B = PAQ−1, where P,Q represent the base changes. In particular, P,Q have to be
invertible. Accordingly, two matrices are called equivalent, if such a transformation
exists. The resulting equivalence classes of matrices are characterized by normal forms
like the reduced echelon form or the Frobenius form.

10.2.1 Gaussian Elimination and Normal Forms
Gaussian elimination is a well-known algorithm in linear algebra which transforms
a matrix A into an upper triangular matrix using equivalence transformations. The
resulting upper triangular matrix reveals various fundamental properties of the original
matrix A such as the rank and the determinant. We shortly describe the elementary row

166 Chapter 10. Matrices

operations involved in Gaussian elimination and the corresponding methods in Sage.

• swap_rows(i1, i2): Putting two rows Li1 ↔ Li2 ,

• add_multiple_of_row(i1, i2, s): Add s · Li2 to the row Li1 , i.e. Li1 is re-
placed by Li1 + s ·Li2 .

The corresponding methods for columns are called by the methods swap_columns(j1,
j2) and add_multiple_of_column(j1, j2, s).

For an m×n matrix A = (ai j) the Gaussian elimination algorithm proceeds iteratively
from the leftmost column to the rightmost column. Assuming that the first k−1 first
columns have already been processed, generating p≤ k pivots, the k-th column is treated
as follows:

1. Find the first invertible coefficient aik in the column Ck in a row i > p. This
element is called the pivot.

2. If no pivot can be found, move to the next column.

3. Otherwise, swap the lines Li↔ Lp.

4. Eliminate all elements below apk via Li 7→ Li− aik
apk

Lp.

� Example 10.1 We transform the matrix

A =

 2 1 −1 8
−3 −1 2 −11
−2 1 2 −3

using the Gaussian elimination algorithm..

sage: A = matrix(QQ, [[2, 1, -1, 8], [-3, -1, 2, -11], [-2, 1, 2,
-3]]); A

[2 1 -1 8]
[-3 -1 2 -11]
[-2 1 2 -3]

Here, the entry a00 = 2 is our first pivot. Thus, we have to eliminate the elements below
it, as explained in step 4.

sage: A.add_multiple_of_row(1, 0, 3/2); A #L_1 is replaced by L_1
+ 3/2*L_0

[2 1 -1 8]
[0 1/2 1/2 1]
[-2 1 2 -3]
sage: A.add_multiple_of_row(2, 0, 1); A #L_2 is replaced by L_2 +

L_0
[2 1 -1 8]
[0 1/2 1/2 1]
[0 2 1 5]

Our next pivot is a11 =
1
2 . After eliminating the element below this pivot, we have found

an equivalent upper triangular matrix.

10.2 Matrix Computations 167

sage: A.add_multiple_of_row(2,1,-4); A
[2 1 -1 8]
[0 1/2 1/2 1]
[0 0 -1 1]

�

For a given matrix A the echelon form is an equivalent upper triangular matrix.
However, there are various upper triangular matrices equivalent to A. Any echelon form
of A can be further transformed to the reduced echelon form.

Definition 10.2.1 A matrix is in reduced echelon form if

• all zero rows are at the bottom,

• the leading coefficient of every non-zero row, called a pivot, is 1 and it to the
right of the pivot of the row above,

• pivots are the only non-zero elements in their column.

One main advantage of the reduced echelon form compared to the echelon form is
that every equivalence class of matrices over a field admits a unique reduced echelon
form, i.e. the reduced echelon form is a normal form.

Theorem 10.2.1 For every matrix A over a field there is a unique m×n matrix R in
reduced echelon form and an invertible m×m matrix such that UA = R.

In Sage, the reduced echelon form can be obtained in two different ways. The
method echelonize replaces the input matrix by its reduced echelon form, while the
method echelon_form returns an immutable matrix in reduced echelon form, without
modifying the input matrix.

sage: A.echelon_form()
[1 0 0 2]
[0 1 0 3]
[0 0 1 -1]

Apart from matrices over fields, it is also quite common to work with matrices over
commutative rings, e.g. matrices with integer coefficients. There, the pivot element
might be non-zero but not invertible. However, for the special case of Euclidean rings,
we can still define an equivalence transformation eliminating the leading coefficient in
a row with that of another row. The generalized Gauss elimination process works as
follows: Let

A =

(
a ∗
b ∗

)
, g = gcd(a,b).

Further, let u,v be the corresponding Bézout coefficients, i.e. g = u ·a+ v ·b. Setting
s =−b

g and t = a
g we obtain the unimodular transformation(

u v
s t

)(
a ∗
b ∗

)
=

(
g ∗
0 ∗

)
.

168 Chapter 10. Matrices

To be more precise, det
(

u v
s t

)
= 1 and its inverse is given by

(
t −v
−s u

)
.

This modified Gauss elimination process leads to the Hermite normal form, providing
a normal form for matrices over Euclidean rings, generalizing the reduced echelon form.

Definition 10.2.2 A matrix is in Hermite normal form if

• its zero rows are at the bottom,

• the leading coefficient of each non-zero row, called the pivot, is to the right of
the pivot of the preceding row,

• all coefficients above a pivot are reduced modulo the pivot.

Theorem 10.2.2 For any m× n matrix A over an Euclidean ring, there is a unique
m×n matrix H in Hermite normal form and a unimodular m×m matrix U such that
UA = H.

The Hermite normal form for matrices over a field coincides with the reduced echelon
form. Due to that correspondence, the method echelon_form returns the reduced
echelon form, if the matrix is build over a field, and the Hermite normal form, if the
matrix is build over an Euclidean ring which is not a field.

sage: A = matrix(ZZ, 4, 6, [2, 1, 2, 2, 2, -1, 1, 2, -1, 2, 1, -2,
2, 1, -2, -1, 2, 2, 2, 1, 1, -1, -1, -1]); A

sage: A.echelon_form() #the Hermite normal form
[1 2 0 5 4 -2]
[0 3 0 5 0 -6]
[0 0 1 3 3 0]
[0 0 0 9 12 3]
sage: A.change_ring(QQ).echelon_form() #the reduced echelon form
[1 0 0 0 16/9 13/9]
[0 1 0 0 -20/9 -23/9]
[0 0 1 0 -1 -1]
[0 0 0 1 4/3 1/3]

This Hermite normal form can be simplified further using unimodular right transform-
ing, i.e. the column actions swap_columns(j1, j2) and add_multiple_of_column(j1,
j2, s). In the end we obtain a diagonal normal form, called Smith normal form. Its
diagonal coefficients (s1, . . . ,sn) are the elementary divisors of the matrix. They are
totally ordered under the divisibility relation si|si+1.

Theorem 10.2.3 For any m×n matrix A with coefficients over a principal ideal ring,
there exist unimodular matrices U and V of dimension m×m and n×n respectively,
and a unique diagonal m×n matrix S such that S = UAV such that the coefficients
si = Si,i for 1 ≤ i ≤ m are the elementary divisors of A, satisfying si|si+1 for all
i < min{m,n}.

The method elementary_divisors returns the list of elementary divisors and the
Smith normal form is computed, together with the transformation matrices U,V , with
the method smith_form.

10.2 Matrix Computations 169

sage: A = matrix(ZZ, 4, 5, [-1, -1, -1, -2, -2, -2, 1, 1, -1, 2,
2, 2, 2, 2, -1, 2, 2, 2, 2, 2]); A

sage: S, U, V = A.smith_form(); S
[1 0 0 0 0]
[0 1 0 0 0]
[0 0 3 0 0]
[0 0 0 6 0]
sage: S == U*A*V
True
sage: A.elementary_divisors()
[1, 1, 3, 6]

� Example 10.2 One application of the Smith normal form is the following similarity
result:

Lemma 10.2.4 Two square matrices A,B over the same field are similar if and only
if the Smith normal form of the characteristic matrices x1−A,x1−B coincides.

Using this characterization, we write a procedure which determines whether two matrices
are similar or not.

sage: def charsmith(A): #calculating the smith normal form
....: R.<x> = A.base_ring()[’x’] #of the characteristic matrix
....: n = A.nrows()
....: M = MatrixSpace(R, n, n)
....: cA = x*M.identity_matrix() - M(A)
....: S, U, V = cA.smith_form()
....: return S
sage: def similar(A, B): #checking similarity
....: return charsmith(A) == charsmith(B)

Now, this procedure can determine whether two matrices over a field are equivalent.

sage: A = matrix(QQ, [[1, 2], [0, 1]])
sage: charsmith(A)
[1 0]
[0 x^2 - 2*x + 1]
sage: B = matrix(QQ, [[3, -4], [1, -1]])
sage: charsmith(B)
[1 0]
[0 x^2 - 2*x + 1]
sage: C = matrix(QQ, [[1, 0], [1, 2]])
sage: charsmith(C)
[1 0]
[0 x^2 - 3*x + 2]
sage: similar(A, B), similar(B,C)
(True, False)

�

170 Chapter 10. Matrices

Gaussian elimination reveals many matrix properties, such as the rank and the de-
terminant. These values can also be accessed directly with the methods det and rank.
More generally, the notion of rank profile is of interest when considering the matrix as a
sequence of vectors.

Definition 10.2.3 The column rank profile of an m× n matrix A of rank r is the
lexicographically minimal sequence of the r indices of the linearly independent
columns in A.

The column rank profile can be read directly off the reduced echelon form as the
sequence of column indices of the pivots. It is obtained directly with the method
pivots.

sage: B = matrix(GF(7), 5, 4, [4, 5, 1, 5, 4, 1, 1, 1, 0, 6, 0, 6,
2, 5, 1, 6, 4, 4, 0, 2]); B

[4 5 1 5]
[4 1 1 1]
[0 6 0 6]
[2 5 1 6]
[4 4 0 2]
sage: B.echelon_form()
[1 0 0 3]
[0 1 0 1]
[0 0 1 2]
[0 0 0 0]
[0 0 0 0]
sage: B.pivots()
(0, 1, 2)

The row rank profile is defined similarly when considering the matrix as a sequence of
m row vectors and can be obtained with pivot_rows. It is not hard to see that the row
rank profile is equivalent to the column rank profile of the transposed matrix.

sage: B.transpose().echelon_form()
[1 0 5 0 3]
[0 1 2 0 6]
[0 0 0 1 5]
[0 0 0 0 0]
sage: B.pivot_rows()
(0, 1, 3)
sage: B.transpose().pivots() == B.pivot_rows()
True

10.2.2 Linear System Solving, Image and Nullspace Basis
A linear system of equations can be represented by a matrix A and a right-hand or left-
hand side vector or matrix b in equations of the form Ax = b or xtA = bt , respectively.
In Section 3.3.5, we have already seen that A.solve_right(b) and A.solve_left(b)
solve these systems. Alternatively, we can also use A\b and b/A respectively. When

10.2 Matrix Computations 171

Gaussian Elimination and Applications

Row Transvection add_multiple_of_row(i1, i2, s)
Column Transvection add_mutiple_of_column(j1, j2, s)

Row, Column swapping swap_rows(i1, i2), swap_columns(j1,j2)
Reduced Row Echelon Form, Immutable echelon_form

Reduced Row Echelon Form, Mutable echelonize
Elementary Divisors elementary_divisors
Smith Normal Form smith_form
Determinant, Rank det, rank

Column, Row Rank Profile pivots, pivot_row

Table 10.2.: Gaussian Elimination

the system is given by a matrix over a ring, the resolution is performed over the corre-
sponding fraction field, e.g. a linear system over Z is solved over Q. A linear system
can have no solution, a unique solution or infinitely many solutions forming a vector
space. However, in the case of infinitely many solutions, Sage only returns one of the
solutions, zeroing out the coefficients corresponding to linearly dependent columns in
the system.

sage: R.<x> = GF(5)[’x’]; R
Univariate Polynomial Ring in x over Finite Field of size 5
sage: M = MatrixSpace(R, 2, 2); M
Full MatrixSpace of 2 by 2 dense matrices over Univariate

Polynomial Ring in x over Finite Field of size 5
sage: A = M([[2*x + 4, x^2 + 4*x + 3], [0, 3]]); A
[2*x + 4 x^2 + 4*x + 3]
[0 3]
sage: b = matrix(R, [[4*x + 1], [4*x + 2]]); b
[4*x + 1]
[4*x + 2]
sage: X = A.solve_right(b); X #solution is in the fraction field
[(x^3 + 2*x^2 + 2*x + 2)/(x + 2)]
[3*x + 4]
sage: A = matrix(QQ, 2, 2, [1, 1, 2, 2]); b = matrix(QQ, 2, 1, [3,

6]); A, b #has infinitely many solutions
(
[1 1] [3]
[2 2], [6]
)
sage: A.solve_right(b) #only one solution of this infinite system

is shown
[3]
[0]
sage: C = matrix(ZZ, [[1, 0], [0, 0]]); v = matrix(ZZ, [[0] ,[1]])

; C, v #has no solution

172 Chapter 10. Matrices

(
[1 0] [0]
[0 0], [1]
)
sage: C.solve_right(v) #thus, we obtain an error message.
Traceback (most recent call last):
...
ValueError: matrix equation has no solutions

How can we determine the complete solution space? Recall, that any m×n matrix
A can be interpreted as a linear map A : Kn → Km. Thus, A defines two subspaces:
the image and the kernel. The image is the set of all vectors in Km that are a linear
combination of the columns of A. This subspace, together with a basis in reduced
echelon form, is returned by image. The kernel is the subspace of Kn formed by all
vectors x satisfying Ax = 0. This is set is computed via right_kernel returning the
vector space with a basis in reduced echelon form. At this point, we shortly want to
recall the well-known dimension formula

dim(Kn) = dim(Im(A))+dim(ker(A)).

The left kernel is defined similarly as the set of vectors x ∈ Km such that xtA = 0,
which is equivalent to the right kernel of the transposed matrix A. It is calculated with
left_kernel or its alias kernel. Again, the basis is given in reduced echelon form.

sage: a = matrix(QQ, 3, 5, [2, 2, -1, 2, -1, 2, 1, 1, 2, -1/2, 2,
-2, -1, 2, -1/2])

sage: a
[2 2 -1 2 -1]
[2 1 1 2 -1/2]
[2 -2 -1 2 -1/2]
sage: a.image()
Vector space of degree 5 and dimension 3 over Rational Field
Basis matrix:
[1 0 0 1 -9/32]
[0 1 0 0 -1/8]
[0 0 1 0 3/16]
sage: a.right_kernel()
Vector space of degree 5 and dimension 2 over Rational Field
Basis matrix:
[1 0 0 -1 0]
[0 1 -3/2 9/4 8]

Now, the right kernel can be used to describe the set of all possible solutions of an
undetermined system Ax = b. If x̄ is a solution of Ax = b then x̄+ker(A) is the set of all
solutions. For example, the solution set of the equation(

1 1
2 2

)
x =

(
3
6

)

10.3 Spectral Decomposition 173

Linear Systems

Solving xtA = b b/A or A.solve_left(b)
Solving Ax = b A \b or A.solve_right(b)

Image Space image
Left Kernel, xtA = 0 kernel or left_kernel

Right Kernel, Ax = 0 right_kernel

Table 10.3.: Linear Systems

is determined as follows.

sage: A = matrix(QQ, 2, 2, [1, 1, 2, 2]); b = matrix(QQ, 2, 1, [3,
6]);

sage: xbar = A.solve_right(b)
sage: xbar
[3]
[0]
sage: A.right_kernel()
Vector space of degree 2 and dimension 1 over Rational Field
Basis matrix:
[1 -1]

Thus, the solution space is(
3
0

)
+Q ·

(
1
−1

)
.

sage: k = matrix(QQ, [[5], [-5]]);
sage: A * k
[0]
[0]
sage: A * (xbar + k) == b
True

10.3 Spectral Decomposition
A square matrix can be seen as the representative of an endomorphism Φ in a given basis.
Any change of basis corresponds to a similarity transformation B =U−1AU , where U is
the basis change. Thus, B represents the endomorphism Φ in another basis. Two square
matrices A and B are similar, if they represent the same endomorphism Φ, i.e. there is
an invertible matrix U such that B =U−1AU . Thus, the properties of the endomorphism
Φ are encoded in the similarity invariants of the matrix A, like the determinant and the
rank.

Another similarity invariant of a square matrix A is its characteristic polynomial
χA(A) = det(x1−A) and its roots, the eigenvalues. It is immediate that for each eigen-
value λ the matrix λ1−A has a nontrivial kernel Eλ , called the eigenspace of λ . In

174 Chapter 10. Matrices

conclusion, eigenvalues can be viewed either from the algebraic point of view, as roots of
the characteristic polynomial, or from the geometric point of view, considering the action
of the linear operator A. Although, we obtain the same eigenvalues, there multiplicity
might differ. The algebraic multiplicity of an eigenvalue is its multiplicity as the root
of the characteristic polynomial, and the geometric multiplicity is the dimension of the
corresponding eigenspace. The geometric multiplicity of eigenvalues is less than or
equal to the algebraic multiplicity. In particular, a square matrix A is diagonalizable if
and only if the geometric and the algebraic multiplicity of all of its eigenvalues coincide.

10.3.1 Cyclic Invariant Subspaces and the Frobenius Normal Form
Let A be an n× n matrix over a field K. The minimal polynomial of the matrix A is
defined as the least degree monic polynomial ϕA satisfying ϕA(A) = 0. In particular, the
characteristic polynomial χ(A) is a multiple of ϕA. These polynomials are calculated
in Sage with the methods characteristic_polyomial and minimal_poynomial,
respectively. Alternatively, we can also use their alias charpoly and minpoly

sage: A = matrix(ZZ, 3, 3, [0, 1, 0, 1, 0, 0, 0, 0, 1]); A
[0 1 0]
[1 0 0]
[0 0 1]
sage: A.characteristic_polynomial()
x^3 - x^2 - x + 1
sage: A.minimal_polynomial()
x^2 - 1

The Krylov sequence of a vector u ∈ Kn is the family (u,Au,A2u, . . . ,Anu) of n+1
vectors in Kn. Hence, there exists a minimal index d ≤ n such that (u,Au, . . . ,Adu) is
a linear dependent family. Thus, Adu = ∑

d−1
i=0 αiAiu for some coefficients αi ∈ K. The

associated monic polynomial

ϕA,u(x) = xd
d−1

∑
i=0

is called the minimal polynomial of u with respect to the matrix A. By construction
ϕA,u(A)u = 0. Since the minimal polynomial ϕA of A satisfies by definition ϕA(A) = 0,
it follows that ϕA(A)u = 0. Hence, ϕA has to be a multiple of ϕA,u. Furthermore,
there always exists a vector u whose minimal polynomial coincides with the minimal
polynomial of A.

Proposition 10.3.1 Let A be an n×n matrix over a field K. Then there exists a vector
u ∈ Kn such that its minimal polynomial coincides with the minimal polynomial of
A, i.e. ϕA,u = ϕA.

The command A.maxspin(u) returns the Krylov iterates (ut ,utA, . . . ,utAd). To
obtain the Krylov iterates in our convention, we have to apply the method maxspin to
the transpose of the matrix.

sage: A = matrix(GF(7), 5, 5, [0, 0, 3, 0, 0, 1, 0, 6, 0, 0, 0, 1,

10.3 Spectral Decomposition 175

5, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 1, 5]); At = A.transpose();
A

[0 0 3 0 0]
[1 0 6 0 0]
[0 1 5 0 0]
[0 0 0 0 5]
[0 0 0 1 5]
sage: e1 = identity_matrix(GF(7), 5)[0]; e4 = identity_matrix(GF

(7), 5)[3] #first and fourth basis vector
sage: At.maxspin(e1) #here d = 3
[(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0)]
sage: A.maxspin(e4) #here d = 2
[(0, 0, 0, 1, 0), (0, 0, 0, 0, 1)]
sage: At.maxspin(e1 + e4) #here d = 5
[(1, 0, 0, 1, 0),
(0, 1, 0, 0, 1),
(0, 0, 1, 5, 5),
(3, 6, 5, 4, 2),
(1, 5, 3, 3, 0)]

In particular, A3 · e1 and A2 · e4 are not linear independent of the other Krylov iterates
anymore.

sage: A^3 * e1
(3, 6, 5, 0, 0)
sage: A^2 * e4
(0, 0, 0, 5, 5)

In the above example, we can read off the corresponding minimal polynomials immedi-
ately.

ϕA,e1 = x3−
(
5x2 +6x+3

)
,

ϕA,e4 = x2− (5x+5) .

The companion matrix associated to a monic polynomial P = xk−∑
k−1
i=0 αixi is the

matrix

CP =

0 α0
1 α1

.
1 αk−1

 .

By construction P is the minimal polynomial of CP.

Proposition 10.3.2 Let Ku = (u,Au, . . . ,Ad−1u) be the matrix formed by the first
d = degϕA,u Krylov iterates of the vector u. Then AKu = KuCϕA,u .

If d = n, Ku is an invertible matrix. Hence K−1
u AKu =CϕA,u . Since this is a similarity

transformation it preserves the characteristic and the minimal polynomial. But now, we

176 Chapter 10. Matrices

can read off the minimal polynomial directly from the last column of the companion
matrix CϕA,u .

sage: A = matrix(GF(97), 4, 4, [86, 1, 6, 68, 34, 24, 8, 35, 15,
36, 68, 42, 27, 1, 78, 26]); A

[86 1 6 68]
[34 24 8 35]
[15 36 68 42]
[27 1 78 26]
sage: e1 = identity_matrix(GF(97), 4)[0]; e1
(1, 0, 0, 0)
sage: U = matrix(A.transpose().maxspin(e1)).transpose(); U, U.rank

()
(
[1 86 44 24]
[0 34 52 82]
[0 15 12 19]
[0 27 57 69], 4
)
sage: F = U^(-1)*A*U; F
[0 0 0 83]
[1 0 0 77]
[0 1 0 20]
[0 0 1 10]
sage: K.<x> = GF(97)[’x’]
sage: P = x^4 - add(F[i, 3] * x^i for i in srange(4)); P #the

minimal polynomial
x^4 + 87*x^3 + 77*x^2 + 20*x + 14
sage: A.characteristic_polynomial() == P
True

If d ≤ n the iterates u, . . . ,Ad−1u form a basis of an A-invariant linear subspace I i.e.
AI ⊂ I. Such a subspace I is called a cyclic invariant subspace. The dimension of a
cyclic invariant subspace is equal to the degree of the minimal polynomial ϕA,u. Thus, it
is bounded by the degree of the minimal polynomial of A.

If the dimension of I1 is maximal, i.e. equals the dimension is equal to the degree of
the minimal polynomial ϕA, the space is generated by the Krylov iterates of the vector
u1 from Proposition 10.3.1. Considering the complementary A-invariant subspace V , we
can repeat the same computation modulo I1 to find a second cyclic invariant subspace I2
whose basis is given by the Krylov iterates of a vector u2. Continuing this procedure,
we can iteratively build the block matrix K = Diag(Ku1,Ku2, . . . ,Kuk). The matrix K is
invertible and

K−1AK =

Cϕ1
. . .

Cϕk

Let ϕi be the minimal polynomial of ui. By construction, each ui is annihilated by each

10.3 Spectral Decomposition 177

minimal polynomial ϕ j with j ≤ i. Thus, we have the division order ϕi|ϕi−1 for any
2 ≤ i ≤ k. One can show that for every matrix A, there is a unique sequence of such
polynomials ϕ1, . . . ,ϕk. Therefore, the block diagonal matrix Diag(Cϕ1 , . . . ,Cϕk) is a
normal form, called the Frobenius normal form.

Theorem 10.3.3 For every matrix A over a field there is a unique matrix F =
Diag(Cϕ1 , . . . ,Cϕk) with ϕi|ϕi−1 for all i≤ k, that is similar to A.

So far, Sage can only compute the Frobenius normal form over Q of matrices with
coefficients in Z. There is a slight abuse of notation involved, because formally the
Frobenius normal form is defined for matrices over a field, here Q, but the method
frobenius is only available for matrices with integer coefficients

sage: A = matrix(ZZ, [[6, 0, -2, 4, 0, 0, 0, -2], [14, -1, 0, 6,
0, -1, -1, 1], [2, 2, 0, 1, 0, 0, 1, 0], [-12, 0, 5, -8, 0, 0,
0, 4], [0, 4, 0, 0, 0, 0, 4, 0], [0, 0, 0, 0, 1, 0, 0, 0],
[-14, 2, 0, -6, 0, 2, 2, -1], [-4, 0, 2, -4, 0, 0, 0, 4]]); A

[6 0 -2 4 0 0 0 -2]
[14 -1 0 6 0 -1 -1 1]
[2 2 0 1 0 0 1 0]
[-12 0 5 -8 0 0 0 4]
[0 4 0 0 0 0 4 0]
[0 0 0 0 1 0 0 0]
[-14 2 0 -6 0 2 2 -1]
[-4 0 2 -4 0 0 0 4]
sage: A.frobenius()
[0 0 0 4 0 0 0 0]
[1 0 0 4 0 0 0 0]
[0 1 0 1 0 0 0 0]
[0 0 1 0 0 0 0 0]
[0 0 0 0 0 0 4 0]
[0 0 0 0 1 0 0 0]
[0 0 0 0 0 1 1 0]
[0 0 0 0 0 0 0 2]

Now we can read off the corresponding polynomial ϕ1,ϕ2,ϕ3. But we can also obtain
the polynomials directly by passing 1 as an argument.

sage: A.frobenius(1)
[x^4 - x^2 - 4*x - 4, x^3 - x^2 - 4, x - 2]

Moreover, inserting 2 as an argument returns the transformation matrix K. Observe
that K is here the transposed inverse of the matrix containing the Krylov iterates we
discussed above. The reason is that Sage prefers rows over columns. hence, inverting
and transposing K gives us the matrix consisting of the Krylov iterates and we can read
off the used vectors u1,u2,u3.

sage: F, K = A.frobenius(2); invK = K.transpose()^(-1); At = A.
transpose()

178 Chapter 10. Matrices

sage: u1 = invK[0]; At.maxspin(u1)
[(1, 0, 0, 0, 0, 0, 0, 0),
(6, 14, 2, -12, 0, 0, -14, -4),
(-8, 8, 14, 18, 0, 0, -8, 12),
(-28, 8, 10, 70, 0, 0, -8, 36)]

sage: u2 = invK[4]; At.maxspin(u2)
[(17/128, 17/64, 17/448, -51/224, 1, 0, -17/64, -17/224),
(-17/448, 187/448, 17/56, 51/448, 0, 1, -187/448, 17/112),
(-153/224, -39/56, 51/112, 187/112, 0, 0, 95/56, 51/56)]

sage: u3 = invK[7]; At.maxspin(u3)
[(-3/16, -135/64, -45/32, -21/64, 0, 0, 135/64, 3/8)]

� Example 10.3 As an application, we write procedure that determines whether two
input matrices A and B are similar and, in the case of similarity, returns the transformation
matrix U .

sage: def Similar(A, B):
....: F1, U1 = A.frobenius(2)
....: F2, U2 = B.frobenius(2)
....: if F1 == F2:
....: return True, U2^(-1)*U1
....: else:
....: return False, None

Below we test this procedure at an explicit example.

sage: B = matrix(ZZ, [[0, 1, 4, 0, 4], [4, -2, 0, -4, -2], [0, 0,
0, 2, 1], [-4, 2, 2, 0, -1], [-4, -2, 1, 2, 0]]);B

[0 1 4 0 4]
[4 -2 0 -4 -2]
[0 0 0 2 1]
[-4 2 2 0 -1]
[-4 -2 1 2 0]
sage: U = matrix(ZZ, [[3, 3, -9, -14, 40], [-1, -2, 4, 2, 1], [2,

4, -7, -1, -13], [-1, 0, 1, 4, -15], [-4, -13, 26, 8, 30]]); U
[3 3 -9 -14 40]
[-1 -2 4 2 1]
[2 4 -7 -1 -13]
[-1 0 1 4 -15]
[-4 -13 26 8 30]
sage: A = (U^-1* B * U).change_ring(ZZ); A
[-887 -1349 3191 2979 -5240]
[3320 5028 -11917 -11197 19893]
[3622 5453 -12996 -12386 22478]
[-3975 -5963 14259 13705 -25178]
[-759 -1137 2723 2627 -4852]
sage: ok, V = Similar(A, B); ok
True

10.3 Spectral Decomposition 179

sage: V^{-1}*B*V == A
True
sage: ok, V = Similar(2*A, B); ok
False

�

10.3.2 Eigenvalues and Eigenvectors
Let A be a n×n matrix over a field K with Frobenius normal form F =Diag(Cϕ1, . . . ,Cϕk)
and let ϕ1 = ψ

m1
1 · · ·ψ

ms
s be the factorization into irreducible polynomials. Since ϕi|ϕ1

for all 1 ≤ i ≤ k every further minimal polynomial can be written as a product ϕi =

ψ
mi,1
1 · · ·ψmi,s

s with 0 ≤ mi, j ≤ m j. Thus, each companion block Cϕi in the Frobenius
normal form can be replaced by the diagonal block Diag(C

ψ
mi,1
1

, . . . ,C
ψ

mi,s
s

).

C
ψ

m1
1

. . .
Cψ

ms
s

[

C
ψ

m2,1
1

. . .

]
. . . [

C
ψ

mk,1
1

. . .

]

If an irreducible factor ψ j has degree and multiplicity equal to 1, its companion block
Cψ j is simply a 1×1 matrix containing the simple root λ j of ψ j. In particular, it follows
that λ j is an eigenvalue. If all minimal polynomial ϕi split and are square-free the matrix
A is diagonalizable.

In Sage, the eigenvalues of a matrix can be obtained with the method eigenvalues.

sage: A = matrix(GF(7), 4, [5, 5, 4, 3, 0, 3, 3, 4, 0, 1, 5, 4, 6,
0, 6, 3]); A

[5 5 4 3]
[0 3 3 4]
[0 1 5 4]
[6 0 6 3]
sage: A.eigenvalues()
[4, 1, 2, 2]

There are various methods available in Sage that return more information of the corre-
sponding eigenspaces. First, the methods eigenvectore_right and eigenvectors_left
return a list consisting of 3-tuples containing the eigenvalue, the right, respectively left,
eigenvectors and the algebraic multiplicity. In addition Sage provides the methods
eigenspaces_right and eigenspaces_left which return the right, respectively left
eigenspaces together with a basis of eigenvectors. Last but not least, the methods
eigenmatrix_right and eigenmatrix_left return a tuple containing the diagonal-

180 Chapter 10. Matrices

ized matrix together with the transformation matrix of right, respectively left, eigen-
vectors. Keep in mind that the definition of eigenvalues described in linear algebra
correspond to the right eigenvectors.

sage: A.eigenvectors_right()
[(4, [
(1, 5, 5, 1)
], 1), (1, [
(0, 1, 1, 4)
], 1), (2, [
(1, 3, 0, 1),
(0, 0, 1, 1)
], 2)]

sage: A.eigenspaces_right()
[
(4, Vector space of degree 4 and dimension 1 over Finite Field of

size 7
User basis matrix:
[1 5 5 1]),
(1, Vector space of degree 4 and dimension 1 over Finite Field of

size 7
User basis matrix:
[0 1 1 4]),
(2, Vector space of degree 4 and dimension 2 over Finite Field of

size 7
User basis matrix:
[1 3 0 1]
[0 0 1 1])
]
sage: A.eigenmatrix_right()
(
[4 0 0 0] [1 0 1 0]
[0 1 0 0] [5 1 3 0]
[0 0 2 0] [5 1 0 1]
[0 0 0 2], [1 4 1 1]
)
sage: T = A.eigenmatrix_right()[1]; T^(-1)*A*T

If the considered matrix A has eigenvalues outside the fraction field of the base ring,
we can still obtain all eigenspaces with option format = ’all’. Another option is to
request a single eigenspace for each irreducible factor of the characteristic polynomial
using the option format = ’galois’. There, Sage presents the eigenspaces in finite
field extensions of the base ring.

sage: MS = MatrixSpace(QQ, 2, 2)
sage: A = MS([1, -4, 1, -1])
sage: A.charpoly() #i*sqrt(3) is not a rational number
x^2 + 3

10.3 Spectral Decomposition 181

sage: A.eigenspaces_right(format = ’all’)
[
(-1.732050807568878?*I, Vector space of degree 2 and dimension 1

over Algebraic Field
User basis matrix:
[1 0.25000000000000000?

+ 0.4330127018922193?*I]),
(1.732050807568878?*I, Vector space of degree 2 and dimension 1

over Algebraic Field
User basis matrix:
[1 0.25000000000000000?

- 0.4330127018922193?*I])
]
sage: A.eigenspaces_right(format = ’galois’)
[
(a0, Vector space of degree 2 and dimension 1 over Number Field in

a0 with defining polynomial x^2 + 3
User basis matrix:
[1 -1/4*a0 + 1/4])
]

10.3.3 Jacobi Normal Form
It is well-known that not every n×n matrix A is diagonalizable. To be more precise,
a matrix is diagonalizable if and only if the minimal polynomial splits over the base
field such that all factors have multiplicity 1. If the minimal polynomial does not split at
all, the “best” normal form we can achieve is the Frobenius normal form, see Theorem
10.3.3. In the intermediate case, i.e. when the minimal polynomial splits but has factors
with multiplicity strictly larger than 1, we can still transform A to an upper triangular
matrix with the eigenvalues on its diagonal. The most reduced form is the Jordan
normal form. This is an upper triangular matrix build out of Jordan blocks Jλ ,k. To be
more precise, a Jordan block Jλ ,k of order k associated to an eigenvalue λ is the k× k
matrix

Jλ ,k =

λ 1

.
λ 1

λ

The Jordan block Jλ ,k is built with the command jordan_block(lambda, k). The
characteristic polynomial of a Jordan block Jλ ,k equals its minimal polynomial and is
given by (x−λ)k.

sage: jordan_block(2, 3)
[2 1 0]
[0 2 1]
[0 0 2]

182 Chapter 10. Matrices

sage: jordan_block(2, 3).charpoly().factor()
(x - 2)^3

Every matrix A whose minimal polynomial splits admits a Jordan normal form, i.e. it
is similar to a matrix of the form

JA =

Jλ1,m1
. . .

Jλ2,m2

 ,

where λ1 ≤ . . . ≤ λs are the eigenvalues of A. In Sage, the Jordan normal form is
calculated with jordan_form. Adding the argument transformation = True returns
the corresponding transformation matrix U .

sage: A = matrix(ZZ, 4, [3,-1, 0, -1, 0, 2, 0, -1, 1, -1, 2, 0, 1,
-1, -1, 3]); A

[3 -1 0 -1]
[0 2 0 -1]
[1 -1 2 0]
[1 -1 -1 3]
sage: A.jordan_form()
[3|0|0 0]
[-+-+---]
[0|3|0 0]
[-+-+---]
[0|0|2 1]
[0|0|0 2]
sage: J, U = A.jordan_form(transformation = True)
sage: U^(-1)*A*U == J
True

� Example 10.4 The following program first test whether the minimal polynomial of
the given matrix A splits. If this is the case, the program returns the Jordan normal form.
Otherwise it returns a string saying that A does not have a Jordan normal form.

sage: def split_minpoly(A): #checks if minimal polynomial splits
....: p = A.minpoly().factor() #factorize minimal polynomial
....: L = list(p) #list of factors with multiplicity
....: B = True #start Boolean
....: for i in srange(len(L)):
....: if L[i][0].degree() != 1:
....: B = False
....: break
....: return B
sage: def jordan_check(A):
....: if split_minpoly(A) == True:
....: return A.jordan_form()
....: else:
....: return ’This␣matrix␣has␣no␣Jordan␣normal␣form.’

10.3 Spectral Decomposition 183

Spectral Decomposition

Minimal Polynomial minimal_polynomial or minpoly
Characteristic Polynomial characteristic_polynomial or charpoly

Krylov Iterates of u on the Left-hand Side maxspin(u)
Frobenius Normal Form frobenius

Eigenvalues eigenvalues
Left, Right Eigenvectors eigenvectors_left or eigenvectors_right
Left, Right Eigenspaces eigenspaces_left or eigenspaces_right

Diagonalization eigenmatrix_left, eigenmatrix_right
Jordan Normal Form jordan_form

Table 10.4.: Spectral Decomposition

In the following we test this program at two matrices: one of them admitting a normal
form and the other not.

sage: A = matrix(QQ, [[2, 4, 3], [-4, -6, -3], [3, 3, 1]]); A
sage: A.minpoly().factor() #has Jordan normal form
(x - 1) * (x + 2)^2
sage: jordan_check(A)
[1| 0 0]
[--+-----]
[0|-2 1]
[0| 0 -2]
sage: B = matrix(QQ, [[2, 2, 2], [-2, 1, 2], [1, 0, 1]]); B
[2 2 2]
[-2 1 2]
[1 0 1]
sage: B.minpoly().factor() #has no Jordan normal form
x^3 - 4*x^2 + 7*x - 8
sage: jordan_check(B)
’This␣matrix␣has␣no␣Jordan␣normal␣form.’

�

11. Polynomial Systems

A polynomial system is a system of polynomial equations in several variables. Compared
to univariate polynomials, i.e. polynomials with one indeterminate, polynomials with
several variables, so-called multivariate polynomials yield nice mathematical properties,
but also new difficulties. One of them is that the ring K[x1, . . . ,xn] for a field K is not
principal anymore. In this chapter, we describe various methods how to study and solve
polynomial systems over fields.

11.1 Polynomials in Several Variables
Similar to other algebraic structures in Sage, we first have to construct our computa-
tion domain, the polynomial ring A[x1, . . . ,xn]. This is done analogously to univariate
polynomial rings, see Chapter 9.

sage: R = PolynomialRing(QQ, ’x,␣y,␣z’) #constructing the ring
sage: x, y, z = R.gens() #assign indeterminates
sage: R.<x, y, z> = QQ[’x,␣y,␣z’]; R #short version
Multivariate Polynomial Ring in x, y, z over Rational Field

Moreover, we can construct multivariate polynomial rings with a large family of indeter-
minates with the same name and integer indices.

sage: R = PolynomialRing(QQ, ’x’, 10)
sage: x = R.gens(); x
(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9)

After assigning the n-tuple to a Python variable, here x, the single indeterminates xi are
accessed via x[i].

sage: sum(x[i] for i in srange(5))

186 Chapter 11. Polynomial Systems

x0 + x1 + x2 + x3 + x4

In the above construction it is not possible to use the short version R.<x>= PolynomialRing(QQ,
’x’, 10).

sage: R.<x>= PolynomialRing(QQ, ’x’, 10)
Traceback (most recent call last):
...
TypeError: variable names specified twice inconsistently: (’x0’, ’

x1’, ’x2’, ’x3’, ’x4’, ’x5’, ’x6’, ’x7’, ’x8’, ’x9’) and (’x’
,)

Although, we can construct polynomial rings with arbitrarily many indeterminates,
it might happen that we do not know a priori how many variables we need in the end.
In that case the usage of PolynomialRing can be quite tedious. Each time, we need
to introduce a new variable, we have to construct a new polynomial ring with more
variables and convert everything we have done so far to that new computation domain.
To circumvent this problem, Sage provide the constructorInfinitePolynomialRing.
This command creates a polynomial ring with an infinite number of variables. Each
generator of InfinitePolynomialRing corresponds to a family of variables indexed
by integers. In particular, we can construct multivariate polynomial rings with one or
several infinite families of indeterminates.

sage: R.<x, y> = InfinitePolynomialRing(ZZ); R
Infinite polynomial ring in x, y over Integer Ring
sage: p = mul(x[k] - y[k] for k in srange(2)); p
x_1*x_0 - x_1*y_0 - x_0*y_1 + y_1*y_0
sage p + x[20]
x_20 + x_1*x_0 - x_1*y_0 - x_0*y_1 + y_1*y_0

Although infinite polynomial rings are quite useful and flexible, they are way less
efficient than the usual polynomial ring constructed with PolynomialRing. Therefore,
we recommend to change back to a classical polynomial ring as soon as the number
of variables is fixed. The method polynomial changes the parent of an element of an
infinite polynomial ring to the corresponding polynomial ring with all variables which
have been produced so far. The obtained ring is in general not the optimal choice.

sage: p.polynomial().parent()
Multivariate Polynomial Ring in x_20, x_19, x_18, x_17, x_16, x_15

, x_14, x_13, x_12, x_11, x_10, x_9, x_8, x_7, x_6, x_5, x_4,
x_3, x_2, x_1, x_0, y_20, y_19, y_18, y_17, y_16, y_15, y_14,
y_13, y_12, y_11, y_10, y_9, y_8, y_7, y_6, y_5, y_4, y_3, y_2
, y_1, y_0 over Integer Ring

Another possibility to define multivariate polynomials is to define a univariate polyno-
mial ring with coefficients in another polynomial ring. However, the polynomial ring
A[x][y] behaves differently than the polynomial ring A[x,y]. In A[x][y] the variable y is
the main variable while x behaves more like a parameter. Starting with A[x,y] we can
use the method polynomial to isolate one or more variables. In the example below,

11.1 Polynomials in Several Variables 187

p.polynomial(t) returns a polynomial in t with coefficients in QQ[’x, y, z’].

sage: R.<x, y, z, t> = QQ[’x,␣y,␣z,␣t’]; p = (x + y + z*t)^2
sage: p.polynomial(t)
z^2*t^2 + (2*x*z + 2*y*z)*t + x^2 + 2*x*y + y^2
sage: p.polynomial(t).parent()
Univariate Polynomial Ring in t over Multivariate Polynomial Ring

in x, y, z over Rational Field

The other conversion is done by a simple “parent change”. We observe that the same
polynomial is represented in different ways depending on the parent.

sage: x = polygen(QQ); y = polygen(QQ[x], ’y’)
sage: p = x^3 + x*y + y + y^2; p, p.parent()
(y^2 + (x + 1)*y + x^3,
Univariate Polynomial Ring in y over Univariate Polynomial Ring

in x over Rational Field)
sage: q = QQ[’x,␣y’](p); q, q.parent()
(x^3 + x*y + y^2 + y, Multivariate Polynomial Ring in x, y over

Rational Field)
sage: s = QQ[’y’][’x’](q); s, s.parent()
(x^3 + y*x + y^2 + y,
Univariate Polynomial Ring in x over Univariate Polynomial Ring

in y over Rational Field)

Univariate polynomial rings A[x] have the well-defined canonical normal form p =
akxk + . . .+a1x+a0. It is not possible to generalize this normal form to multivariate
polynomials since we have to choose a way to order the different monomials, e.g. we
have to choose between x2y+xy2 and xy2+yx2. By default, Sage first ranks monomials
according to their total degree and, in a second step, by the lexicographic order of the
degrees of the indeterminates. Thus, viewing the same polynomial p(x,y) once in Q[’x,
y’] and once in QQ[’y, x’] leads to equal polynomials with different parents and
different representation.

sage: R.<x, y> = QQ[’x,␣y’]; p1 = x^3 + x^2*y + x*y^2 + y^3 + x^2
+ x*y + y^2 + x + y + 1; p1

x^3 + x^2*y + x*y^2 + y^3 + x^2 + x*y + y^2 + x + y + 1
sage: R.<y, x> = QQ[’y,␣x’]; p2= x^3 + x^2*y + x*y^2 + y^3 + x^2 +

x*y + y^2 + x + y + 1; p2
y^3 + y^2*x + y*x^2 + x^3 + y^2 + y*x + x^2 + y + x + 1
sage: p1.parent(), p2.parent()
(Multivariate Polynomial Ring in x, y over Rational Field,
Multivariate Polynomial Ring in y, x over Rational Field)

sage: p1 == p2, p1 is p2
(True, False)

It is also possible to customize the indices of the indeterminates. For example, we
can define the ring Q[x2,x3, . . . ,x37] whose indeterminates are indexed by the prime
numbers less than 40 together with the corresponding Python variables x2, x3, ...,

188 Chapter 11. Polynomial Systems

x37 to access them.

sage: [’x%d’ % n for n in primes(40)] #constructing list of
indetermiantes

[’x2’, ’x3’, ’x5’, ’x7’, ’x11’, ’x13’, ’x17’, ’x19’, ’x23’, ’x29’,
’x31’, ’x37’]

sage: R = PolynomialRing(QQ, [’x%d’ % n for n in primes(40)]); R
Multivariate Polynomial Ring in x2, x3, x5, x7, x11, x13, x17, x19

, x23, x29, x31, x37 over Rational Field
sage: R.inject_variables()
Defining x2, x3, x5, x7, x11, x13, x17, x19, x23, x29, x31, x37
sage: (x2 + x5*x11).parent()
Multivariate Polynomial Ring in x2, x3, x5, x7, x11, x13, x17, x19

, x23, x29, x31, x37 over Rational Field

Henceforth, R = A[x1, . . . ,xn] denotes a multivariate polynomial ring with coefficients
in A. A monomial is an expression of the form xα1

1 xα2
2 · · ·xαn

n = xα . The n-tupel α =
(α1, . . . ,αn) is called the exponent of the monomial. A term is the product of a monomial
and its coefficient.

As there is no unique way to order the terms of a multivariate poynomial there is no
well-defined notion of a leading coefficient in the mathematical sense. Nevertheless,
once an order has been fixed at the ring construction, Sage defines leftmost written term
as the leading term, consisting of the leading coefficient an the leading monomial. They
are returned by the methods lt, lc and lm.

sage: R.<x, y, z> = QQ[’x,␣y,␣z’]
sage: p = 7*x^2*y^2 + 3*y*x^2 + x^3 + 6
sage: p.lc(), p.lm()
(7, x^2*y^2)
sage: p.lc()*p.lm() == p.lt()
True

The usual arithmetic operations + - and *, as well as most of the operations for univariate
polynomials are also available for multivariate polynomials.

sage: p.coefficients() #return non-zero coefficients
[7, 1, 3, 6]
sage: p.dict() #returns non-zero coefficients as a dict
{(2, 2, 0): 7, (3, 0, 0): 1, (2, 1, 0): 3, (0, 0, 0): 6}
sage: p.derivative(x) #derivative wrt to x
14*x*y^2 + 3*x^2 + 6*x*y

For multivariate polynomials, the square-bracket operator [] accepts as parameter either
a monomial or its exponent and returns the corresponding coefficient. Here, the order of
the indeterminates is essential.

sage: p[x^2*y] == p[(2, 1, 0)] == p[2, 1, 0] == 3
True

Likewise, if we want to evaluate a polynomial we need to give values to all indetermi-

11.1 Polynomials in Several Variables 189

nates. Otherwise we use subs to substitute arbitrary expressions.

sage: p(0, 3, -1)
6
sage: p.subs(x = 1, z = x^2 + 1)
7*y^2 + 3*y + 7

In contrast to univariate polynomials a multivariate polynomial has various notions of
degree, e.g. we can ask for the total degree or the degree in one of its indeterminates.
This is done with the methods degree and degrees.

sage: p.degree() #total degree
4
sage: p.degree(x) #degree in a chosen variable (here x)
3
sage: p.degrees() #partial degrees (here: (in x, in y, in z))
(3, 2, 0)

All methods discussed so far can be applied to multivariate polynomials with coefficients
in any commutative ring A. However, the more advanced methods and function available
in Sage are in general limited to multivariate polynomials over a field. Therefore,
we only consider multivariate polynomial rings R = K[x1, . . . ,xn] over a field K in the
remainder.

As for univariate polynomial rings, we have to discuss the division operation in more
details. Here, we encounter our first problem. Since multivariate polynomial rings are
not principal, they are also not Euclidean. Thus, the Euclidean division is not well-
defined. Nevertheless, Sage provides the method quo_rem and its associated operation
// and % for multivariate polynomials. They still satisfy the relation (p // q)*q + (p
% q) == q and coincide with the Euclidean division whenever p and q only depend
on one common variable. Although it is not a Euclidean division in the mathematical
sense, it is still useful when the division is exact or when the divisor is a monomial. The
different cases can be treated by reducing a polynomial modulo an ideal using the mod
method. This method takes the monomial order of the multivariate polynomial ring R
into account.

sage: R.<x, y> = QQ[’x,␣y’]; p = x^2 + y^2; q = x + y
sage: p//q, p%q
(-x + y, 2*x^2)
sage: (p//q)*q + p%q == p
True
sage: p.mod(q) #this is NOT the same as p%q
2*y^2

The methods divides, gcd, lcm and factor for univariate polynomials also apply to
multivariate polynomials.

sage: R.<x, y> = QQ[exp(2*I*pi/5)][’x,␣y’]
sage: (x^10 + y^5).gcd(x^4 - y^2)
x^2 + y

190 Chapter 11. Polynomial Systems

Construction of Polynomial Rings

Construction of the Ring A[x,y] PolynomialRing(A, ’x, y’) or A[’x, y’]
Construction of the Ring A[x0, . . . ,xn−1] PolynomialRing(A, ’x’, n)

ring A[x0,x1, . . . ,y0,y1, . . .] InfinitePolynomialRing(A, [’x’, ’y’])
n-tuple of Generators R.gens()
1st, 2nd, ... Generator R.0, R.1, ...

Indeterminates of R = A[x,y][z][. . .] R.variable_names_recursive()
Conversion A[x1,x2,y]→ A[x1,x2][y] p.polynomial(y)

Access to Coefficients

Non-Zero Coefficients p.coefficients()
Coefficient of the Monomial x2y p[x^2*y] or p[2,1]

Degree (total, in x, partial) p.degree() p.degree(x), p.degrees()
Leading Monomial / Coefficient / Term p.lm(), p.lc(), p.lt()

Basic Operations

Partial Derivative d/dx p.derivative(x)
Evaluation p(x,y)|x=a,y=b p.subs(x = a, y = b or p(a, b)

Factorization p.factor()
gcd, lcm p.gcd(q), p.lcm(q)

Table 11.1.: Multivariate Polynomials

sage: (x^10 + y^5).factor()
(x^2 + y) * (x^2 + (a^3)*y) * (x^2 + (a^2)*y) * (x^2 + (a)*y) * (x

^2 + (-a^3 - a^2 - a - 1)*y)

11.2 Polynomial Systems and Ideals
Solving a polynomial system is not an easy task. Even if the solution set is finite it is
not always the optimal choice to simply list the solution points. In many occasions it
is handier to find a suitable parametrization of the solution set or to decompose it into
several subsets. The main tool of characterizing and determining the solution set of a
polynomial system are ideals J of the corresponding multivariate polynomial ring R and
the corresponding quotient rings R/J. This section is devoted to solving strategies for
polynomial systems and characterizations of the solution set.

11.2.1 A first Example
Here, we shortly present different ways to find and understand the solutions of a polyno-
mial system along the explicit example

x2yz = 18,
xy3z = 24,
xyz4 = 6.

(11.1)

11.2 Polynomial Systems and Ideals 191

If we use symbolic variables and the solve method as discussed in Section 3.2.2, Sage
returns one exact solution and 16 numerical complex solutions.

sage: x, y, z = var(’x,␣y,␣z’)
sage: L = solve([x^2*y*z == 18, x*y^3*z == 24, x*y*z^4 == 6], x, y

, z)
sage: len(L), L[:5]
(17, [[x == 3, y == 2, z == 1], [x == (1.337215067329613 -

2.685489874065195*I), y == (-1.700434271459228 +
1.052864325754712*I), z == (0.9324722294043555 -
0.3612416661871523*I)], [x == (1.337215067329613 +
2.685489874065194*I), y == (-1.700434271459228 -
1.052864325754712*I), z == (0.9324722294043555 +
0.3612416661871523*I)], [x == (-2.550651407188846 -
1.579296488632072*I), y == (-0.5473259801441661 +
1.923651286345638*I), z == (-0.9829730996839015 -
0.1837495178165701*I)], [x == (-2.550651407188845 +
1.57929648863207*I), y == (-0.5473259801441662 -
1.923651286345638*I), z == (-0.9829730996839015 +
0.1837495178165701*I)]])

In particular, we only obtain a simple list of numerical approximations without revealing
any kind of structure.

However, translating this system to multivariate polynomial rings, Sage provides
various methods which can be used to solve this system exactly and study the structure
of the solution set, but no direct methods. Hence, we have to combine our mathematical
knowledge with the available methods in Sage. The interpret the equation in an algebraic
way, i.e. we consider the ideal generated by the equations of (11.1) in the multivariate
polynomial ring Q[x,y,z]. To generate this ideal in Sage we use the method ideal
where the arguments are the polynomials that should be equal to 0.

sage: R.<x, y, z> = QQ[’x,␣y,␣z’]
sage: J = R.ideal(x^2*y*z - 18, x*y^3*z - 24, x*y*z^4 - 6)

The dimension of the solution space of (11.1) is equal to dimension of the ideal J, which
can be computed with dimension.

sage: J.dimension()
0

Since J is a zero dimensional ideal, the system S only has a finite number of solution.
In that case, we can apply method variety to the ideal to determine the solutions. By
default, variety computes the solutions in the base field of the polynomial ring.

sage: J.variety()
[{z: 1, y: 2, x: 3}]

Thus, (3,2,1) is the only rational solutions of S. To find all explicit complex solutions
switch to the algebraic closure of Q, i.e. the field of algebraic numbers Q.

192 Chapter 11. Polynomial Systems

sage: V = J.variety(QQbar)
sage: len(V)
17

As algebraic numbers are stored exactly in Sage, V contains the 17 exact solutions
of S. Each solution point is given by a dictionary whose keys are the generators of
QQbar[’x, y, z’] and its value is the corresponding coordinate of the solution point.
Except for the rational solution, the first coordinate of the other solutions are algebraic
numbers of degree 16. To access the different elements of V we assign the generators of
QQbar[’x, y, z’] to the Python variables xx, yy, zz. Observe that we should not
use the Python variable x, y, z as they are already used for the generators of QQ[’x,
y, z’].

sage: (xx, yy, zz) = QQbar[’x,␣y,␣z’].gens()
sage: [pt[xx].degree() for pt in V]
[1, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,

16]

Now, we have an exact representation of the complex solutions of (11.1), but we still do
not know much about the structure of the solution set. This needs a more thorough study
of the solution set V .

A first observation shows that the modulus (|x|, |y|, |z|) = (3,2,1) for any solutions
(x,y,z) ∈V .

sage: Set(tuple(abs(pt[i]) for i in (xx, yy, zz)) for pt in V)
{(3, 2, 1)}

This is a strong hint that there should exist a substitution

(x,y,z) 7→ (ωax,ωby,ωcz)

with ωk = 1 for some k > 0, which leaves the system (11.1) invariant. Such a substitution
can only exist if (a,b,c) is a root modulo k of the following homogenous linear system
represented by the matrix

sage: M = matrix([[p.degree(v) for v in (x, y, z)] for p in J.gens
()])

sage: M
[2 1 1]
[1 3 1]
[1 1 4]

The entries of the matrix M are the degrees of the generators in (11.1). Next, we calculate
the determinant of M.

sage: M.det()
17

Since the det(M) = 17, the matrix M projected down to F17 has vanishing determinant,
i.e. Mmod17 has a kernel. This kernel element is exactly the tuple (a,b,c) we are
looking for.

11.2 Polynomial Systems and Ideals 193

sage: M.change_ring(GF(17)).det()
0
sage: M.change_ring(GF(17)).right_kernel()
Vector space of degree 3 and dimension 1 over Finite Field of size

17
Basis matrix:
[1 9 6]

In conclusion we have shown that for any ω ∈C with ω17 = 1 the substitution (x,y,z) 7→
(ωx,ω9y,ω6z) leaves the system (11.1) invariant. Since the equation ω17 = 1 has exactly
17 solution and we already know that (3,2,1) is a solution the solution of (11.1) is

{(3ω,2ω
9,ω6) | ω17 = 1}. (11.2)

We confirm this solution by comparing the z-coordinates of the set above and of the
variety V .

sage: w = QQbar.zeta(17); w #17th primitive root of 1
sage: Set(pt[zz] for pt in V) == Set(w^i for i in srange(17))
True

Another way to arrive at this parametrization is the study of the minimal polynomials
of the coordinates of the points of V . Indeed, apart from the rational solution (3,2,1),
the common minimal polynomial of the z-coordinates is the cyclomatic polynomial Φ17.

sage: Set(pt[zz].minpoly() for pt in V[1:])
{x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7

+ x^6 + x^5 + x^4 + x^3 + x^2 + x + 1}

Similar, the minimal polynomials of the first and the second coordinate are given by
316 ·Φ17

(x
3

)
and 216Φ17

(x
2

)
.

Using the parametrization of the solution set (11.2) and the exponential notation of
complex numbers we obtain a short and explicit form of the solutions.

sage: def polar_form(z):
....: rho = z.abs(); rho.simplify()
....: theta = 2 * pi * z.rational_argument()
....: return(SR(rho) * exp(I * theta))
sage: P = [tuple(polar_form(pt[i]) for i in [xx, yy, zz]) for pt

in V]
sage: P[:2]
[(3, 2, 1), (3*e^(-14/17*I*pi), 2*e^(10/17*I*pi), e^(-16/17*I*pi))

]

Another possible approach is to simplify the ideal generated by the (11.1) itself. The
fundamental tools offered by Sage are the triangular decomposition and Gröbner bases.
We discuss triangular decomposition later, but a thorough introduction to Gröbner bases
would be beyond the scope of this lecture. We refer to [7, Chapter 9.3] for a small
description of Gröbner bases. For the moment, we simply show the effects of these
simplifications on our example (11.1).

194 Chapter 11. Polynomial Systems

sage: J.triangular_decomposition()
[Ideal (z^17 - 1, y - 2*z^10, x - 3*z^3) of Multivariate

Polynomial Ring in x, y, z over Rational Field]
sage: J.transformed_basis()
[z^17 - 1, -2*z^10 + y, -3/4*y^2 + x]

In both cases, we obtain the equivalent system
z17 = 1,
y = 2z10,

x = 3z3,

i.e. V = {(3ω3,2ω10,ω) | ω17 = 1} which is equivalent to the set (11.2).

What does solving mean?
In general, polynomial systems have infinite many solutions. As enumerating solutions
is not always possible the best we can do is to describe the set of solutions as “exact”
as possible, i.e. to compute a representation of the solution set which reveals useful
properties. For example, in the case of linear systems, solutions are often represented as
a vector space. But even if the solution set is finite, a parametrization of the solution set
is often more useful than a plain list of the points.

In the end, we often do not want to compute the solutions itself, but to compute with
the solutions to deduce that piece of information we are really interested.

11.2.2 Ideals and Systems
The main tool to solve a polynomial system are ideals of a multivariate polynomial
ring. To be more concrete, if s polynomials p1, . . . , ps ∈ K[x] vanish at a common point
x = (x1, . . . ,xn) with coordinates in K or its algebraic closure, any element of the ideal J
generated by these polynomials also vanishes at x. Therefore, it is natural to associate a
polynomial system p1(x) = p2(x) = . . .= ps(x) = 0 to the ideal J = 〈p1, . . . , ps〉 ⊂ K[x].
If two polynomial systems generate the same ideal, they have the same solution set.

sage: R.<x, y> = QQ[’x,␣y’]
sage: J1 = R.ideal(x^2 - y); J2 = R.ideal(x^2 - y, x + y^2)

R The ideal method is also available for InfinitePolynomialRing. But, the resulting
objects do not have the same properties as in (finite) polynomial rings. The reason is
that ideals in K[(xn)n∈N] are in general not finitely generated. Thus, most of the methods
discussed in the remainder of this section do not apply to InfinitePolynomialRing.

The method dimension returns the dimension of an ideal which is, roughly spoken,
equivalent to the dimension of its solution space, i.e the number of parameters we need to
describe the solution space. The most important case for us is the case of 0-dimensional
ideals, i.e. those polynomial systems with a finite solution space.

sage: J1.dimension(), J2.dimension()
(1, 0)

11.2 Polynomial Systems and Ideals 195

The generators of an ideal J are returned by the method gens(). We can also access the
generators directly with J.i, where i is the index of the generator in the list J.gens()
of the generators of J.

sage: J2.gens()
[x^2 - y, y^2 + x]
sage: J2.1
y^2 + x

If L is a field containing K, the algebraic subvariety of Ln associated to the ideal
J = 〈p1, . . . , ps〉 in K[x1, . . . ,xn] is the set

VL(J) = {x ∈ Ln|∀p ∈ J, p(x) = 0}= {x ∈ Ln|p1(x) = . . .= ps(x) = 0}.

In particular, VL(J) are the solutions of the system {p1(x) = 0, . . . ps(x) = 0} with
coordinates in L. Different ideals can have the same variety, e.g. x = 0 and x2 = 0 both
have the unique solution x = 0 ∈ C but 〈x2〉(〈x〉. Hence, the variety associated to a
polynomial systems contains the solution without multiplicities while the ideal itself
rather captures the notion of solutions with multiplicities. So far, the method variety
can only be applied to zero dimensional ideals. If J ⊂ K[x] is a zero dimensional
ideal, the method variety returns the associated variety in K. If the variety should
be calculated over another field L containing K, we can add this field as an additional
argument. For the most of our applications we use K =Q and L =Q.

sage: V1 = J2.variety(); V2 = J2.variety(QQbar)
sage: V1
[{y: 0, x: 0}, {y: 1, x: -1}]
sage: V2
[{y: 0, x: 0}, {y: 1, x: -1}, {y: -0.50000000000000000? -

0.866025403784439?*I, x: 0.50000000000000000? -
0.866025403784439?*I}, {y: -0.50000000000000000? +
0.866025403784439?*I, x: 0.50000000000000000? +
0.866025403784439?*I}]

Although, Sage only calculates the variety of zero dimensional ideals, it is still possible
to draw the variety of any ideal in 2 variables using the method plot.

sage: P = J1.plot()

10 5 0 5 10

0

2

4

6

8

10

196 Chapter 11. Polynomial Systems

� Example 11.1 We consider the intersection between the unit circle {(x,y) ∈R2 | x2 +
y2 = 1} and the union of two equilateral hyperbolas {(x,y) ∈ R2 |ax2y2 = 1} for a ∈
{2,4,16}. This leads us to the three polynomial systems.

S1 =

{
x2 + y2 = 1
16x2y2 = 1

, S2 =

{
x2 + y2 = 1
4x2y2 = 1

, S3 =

{
x2 + y2 = 1
2x2y2 = 1

.

To obtain a first idea of the solution spaces we plot the corresponding curves.

sage: x, y = var(’x,y’)
sage: s1 = implicit_plot(x^2 + y^2 - 1, (x, -1, 1), (y, -1, 1)) +

implicit_plot(16*x^2*y^2 - 1, (x,-1.3,1.3), (y, -1.3, 1.3))
sage: s2 = implicit_plot(x^2 + y^2 - 1, (x, -1, 1), (y, -1, 1)) +

implicit_plot(4*x^2*y^2 - 1, (x,-1.3,1.3), (y, -1.3, 1.3))
sage: s3 = implicit_plot(x^2 + y^2 - 1, (x, -1, 1), (y, -1, 1)) +

implicit_plot(2*x^2*y^2 - 1, (x,-1.3,1.3), (y, -1.3, 1.3))

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

System S1

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

System S2

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

System S3

We observe that S1 has eight distinct solutions in R, while S2 has only four solutions
in R but each of them has multiplicity two. The system S3 has no real solutions, thus all
of its eight solutions are in C\R. To obtain the concrete coordinates of the solutions
we built the corresponding ideals and calculate the associated varieties over the field of
algebraic numbers to capture all solutions.

sage: R.<x,y> = QQ[’x,␣y’]
sage: J1 = R.ideal(x^2 + y^2 - 1, 16*x^2*y^2 -1); V1 = J1.variety

(QQbar)
sage: J2 = R.ideal(x^2 + y^2 - 1, 4*x^2*y^2 -1); V2 = J2.variety(

QQbar)
sage: J3 = R.ideal(x^2 + y^2 - 1, 2*x^2*y^2 -1); V3 = J3.variety(

QQbar)
sage: len(V1), len(V2), len(V3)
(8, 4, 8)

As expected, the length of the variety V2 associated to S2 is half the length of the other
two varieties V1 and V3 associated to the systems S1 and S3 respectively. Taking a
look onto the varieties itself we see that V1 and V2 only contain real solutions while all
elements of V3 are complex.

11.2 Polynomial Systems and Ideals 197

sage: V1 #eight real solutions
[{y: -0.9659258262890683?, x: -0.2588190451025208?}, {y:

-0.9659258262890683?, x: 0.2588190451025208?}, {y:
-0.2588190451025208?, x: -0.9659258262890683?}, {y:
-0.2588190451025208?, x: 0.9659258262890683?}, {y:
0.2588190451025208?, x: -0.9659258262890683?}, {y:
0.2588190451025208?, x: 0.9659258262890683?}, {y:
0.9659258262890683?, x: -0.2588190451025208?}, {y:
0.9659258262890683?, x: 0.2588190451025208?}]

sage: V2 #four real solutions
[{y: -0.7071067811865475?, x: -0.7071067811865475?}, {y:

-0.7071067811865475?, x: 0.7071067811865475?}, {y:
0.7071067811865475?, x: -0.7071067811865475?}, {y:
0.7071067811865475?, x: 0.7071067811865475?}]

sage: V3 #eight complex solutions
[{y: -0.7768869870150186? - 0.3217971264527913?*I, x:

-0.7768869870150186? + 0.3217971264527913?*I}, {y:
-0.7768869870150186? - 0.3217971264527913?*I, x:
0.7768869870150186? - 0.3217971264527913?*I}, {y:
-0.7768869870150186? + 0.3217971264527913?*I, x:
-0.7768869870150186? - 0.3217971264527913?*I}, {y:
-0.7768869870150186? + 0.3217971264527913?*I, x:
0.7768869870150186? + 0.3217971264527913?*I}, {y:
0.7768869870150186? - 0.3217971264527913?*I, x:
-0.7768869870150186? - 0.3217971264527913?*I}, {y:
0.7768869870150186? - 0.3217971264527913?*I, x:
0.7768869870150186? + 0.3217971264527913?*I}, {y:
0.7768869870150186? + 0.3217971264527913?*I, x:
-0.7768869870150186? + 0.3217971264527913?*I}, {y:
0.7768869870150186? + 0.3217971264527913?*I, x:
0.7768869870150186? - 0.3217971264527913?*I}]

�

11.2.3 Computing Modulo an Ideal
Similar to univariate polynomial rings, we can construct quotients K[x]/J of multivariate
polynomial rings K[x] by ideal J in Sage. We describe the usage of quotient rings using
the ideal J1 = 〈x2 + y2−1,16x2y2−1〉 ⊂Q[x,y] =: K[x] defined in Example 11.1. To
build the quotient Q = K[x]/J1 we apply the method quo to the polynomial ring with
the ideal as an argument. Similar to quotients of univariate polynomial rings, Sage
introduces the new variables xbar, ybar representing the equivalence classes of x and
y in the quotient Q. But these new indeterminates xbar, ybar are not automatically
assigned to the corresponding Python variables. This assignment has to be done
separately, e.g. with xbar, ybar = Q.gens()

sage: R.<x, y > = QQ[’x,␣y’]; J1 = R.ideal(x^2 + y^2 - 1, 16*x^2*y
^2 -1)

198 Chapter 11. Polynomial Systems

sage: Q = R.quo(J1); Q
Quotient of Multivariate Polynomial Ring in x, y over Rational

Field by the ideal (x^2 - y)
sage: Q(y)
ybar
sage: ybar #Python variable ybar is not defined
Traceback (most recent call last):
...
NameError: name ’ybar’ is not defined
sage: xbar, ybar = Q.gens() #assign the generators to the

corresponding Python variables.
sage: xbar, ybar
(xbar, ybar)

Now, we can project elements of K[x] to the quotient ring Q by simply converting them
via Q() as usual. Afterwards we can lift it back to an element of K[x] with the lift
method. if we apply lift tp an element p ∈ J, Sage rewrites p as a linear combination
of the generators of J. The output is a list of the corresponding coefficients.

sage: p = y^4
sage: pbar = Q(p); bar
ybar^2 - 1/16
sage: pbar.lift()
y^2 - 1/16
sage: p = J1.random_element(degree = 4); p #random element of the

ideal
97/6*x^2*y^2 + 1/6*y^4 + 28/3*x^3 + 1/2*x^2*y + 28/3*x*y^2 + 1/2*y

^3 - 1/6*y^2 - 28/3*x - 1/2*y - 1
sage: u = p.lift(J1); u
[1/6*y^2 + 28/3*x + 1/2*y, 1]
sage: (u[0]*J1.0 + u[1]*J1.1) == p #test
True

Projecting and lifting an element p ∈ K[x] can also be done in one step using the
equivalent commands p.mod(J) and J.reduce(p). Sage further provides the com-
mand p.reduce(J) whose result might differ from J.reduce(p). Moreover, if J =
〈p1, . . . , pn〉 the commands p.reduce(J) and p.reduce([p1, ..., pn]) might lead
to different results. Nevertheless, their difference is an element of J.

sage: p.mod(J1)
y^2 - 1/16
sage: p.reduce([x^2 + y^2 - 1, 16*x^2*y^2- 1]) #NOT equivalent to

p.mod(J1)
y^4
sage:(p.reduce([x^2 + y^2 - 1, 16*x^2*y^2- 1]) - p.reduce(J1)).mod

(J1) #difference is an element of J1
0

11.2 Polynomial Systems and Ideals 199

The following theoretical issue leads to these different results: In Sage, the computation
domain corresponding K[x]/J has a normal form. For quotient rings of univariate poly-
nomial rings over fields there is a canonical normal form. Since univariate polynomial
rings over a field are principal every ideal J is generated by exactly one polynomial qJ .
Thus, the normal form in K[x]/J is given by the remainder of the Euclidean division
with qJ . Unfortunately, we can not generalize this procedure to multivariate polynomial
rings as they are not principal. Roughly spoken, to define a normal form for quotients of
a multivariate polynomial ring K[x] by an ideal J uses a particular generating system
of J called Gröbner basis. Sage automatically computes a Gröbner basis whenever it
is required. But such a computation is quite expensive. In particular, if the numbers of
variables is large the computation in quotient rings might be difficult. Moreover, one
ideal can have different Gröbner basis, which is the reason for the different results in the
code snippet above.

� Example 11.2 Having an ideal J in a multivariate polynomial ring K[x] we can
decompose any poynomial p into a linear combination of generators of J plus a remainder
as follows.

sage: def decomp(R, J, p):
....: r = p.mod(J)
....: G = J.gens()
....: L = (p-r).lift(J)
....: q = str(r)
....: for i in srange(len(G)):
....: q = ’(’ + str(L[i]) + ’)’ + ’␣*␣’ + ’(’ + str(G[i])

+ ’)’ + ’␣+␣’ + q
....: return q

To avoid the forced transformation into the normal form we transform the linear combi-
nation into a string. Converting this string into an element of the multivariate polynomial
returns our original input polynomial p.

sage: R.<x, y > = QQ[’x,␣y’]; J1 = R.ideal(x^2 + y^2 - 1, 16*x^2*y
^2 -1)

sage: p = R.random_element(degree = 6); p
-x^4*y^2 - 1/2*x^2*y^4 + 3*x^2*y^3 - x^3 + 2*x^2*y
s = decomp(R, J1, p); s
’(1/32*y^2␣+␣3/16*y␣-␣1/16)␣*␣(16*x^2*y^2␣-␣1)␣+␣(-x^2*y^2␣-␣x␣+␣

2*y)␣*␣(x^2␣+␣y^2␣-␣1)␣+␣x*y^2␣-␣2*y^3␣+␣1/32*y^2␣-␣x␣+␣35/16*
y␣-␣1/16’

sage: R(s) == p
True

�

11.2.4 Radical of an Ideal and Solutions
As seen in Section 11.2.1 it takes some time to solve a polynomial special. Therefore, it
would be useful if we could test beforehand whether at least one solution exist or not.

200 Chapter 11. Polynomial Systems

One criterion for the existence of solutions follows from Hilbert’s theorem of zeros,
also known as Nullstellensatz. In the following, let K be an algebraic closure of K.

Theorem 11.2.1 Let p1, . . . , ps ∈ K[x1, . . . ,xn] and let Z ⊂ Kn be the set of common
zeros. A polynomial p ∈ K[x1, . . . ,xn] vanishes identically on Z if and only if there
exists an integer k such that pk ∈ 〈p1, . . . , ps〉.

Since, the constant polynomial 1 ∈ K[x] vanishes identically on Z if any only if Z is
empty, we obtain the following criterion immediately.

Corollary 11.2.2 A polynomial system p1(x) = . . .= ps(x) = 0 has a solution in K
if and only if 1 is not contained in the ideal 〈p1, . . . , ps〉.

This criterion allows us to test quite fast whether a polynomial system has a solution,
i.e. we can verify that the circles of radius 1 centered at (0,0) and (4,0) have at least
one complex intersection.

sage: R.<x, y> = QQ[’x,␣y’]
sage: 1 in ideal(x^2 + y^2 - 1, (x-4)^2 + y^2 - 1)
False

1 1 2 3 4 5

1.0

0.5

0.5

1.0

But if we add the equation x = y, the new resulting system does not have any solution in
QQbar since 1 is now an element of the associated ideal.

sage: 1 in ideal(x^2 + y^2 - 1, (x-4)^2 + y^2 - 1, x -y)
True

In terms of ideals, Hilbert’s theorem on zero states that the set of polynomials van-
ishing on the variety VK(J) associated to the ideal J is the same as the radical

√
J of J,

where
√

J = {p ∈ K[x] | ∃k ∈ N, pk ∈ J}.

To put it in a nutshell, Hilbert’s theorem on zero shows the identity VK(J) =
√

J. Intu-
itively, switching to the radical of an ideal “forgets the multiplicites” of the solutions.
Moreover, an ideal J is called radical if J =

√
J. In particular, an ideal J is radical

if all of its solution have multiplicity equal to one. In Sage, the radical of an ideal
is computed with the method radica. Below we calculate the radicals of the ideal
J1 = 〈x2+y2−1,16x2y2−1〉 and J2 = 〈x2+y2−1,4x2y2−1〉 defined in Example 11.1.
It follows immediately that all zeros of J1 have multiplicity one while at least one zero
of J2 must have higher multiplicity.

sage: J1 = R.ideal(x^2 + y^2 - 1, 16*x^2*y^2 - 1)

11.3 Solving Strategies 201

sage: J1 == J1.radical()
True
sage: J2 = R.ideal(x^2 + y^2 - 1, 4*x^2*y^2 - 1)
sage: J2.radical()
Ideal (2*y^2 - 1, 2*x^2 - 1) of Multivariate Polynomial Ring in x,

y over Rational Field
sage: (2*y^2 - 1) in J2 #J2 ris aeal subset of its radical
False

11.2.5 Operations on Ideals
Instead of calculating with elements of ideals we can also perform computations with
the ideals themselves. For example, we can take the sum of two ideal I and J resulting
in the ideal

I + J = {p+q | p ∈ I,q ∈ J〉= 〈I∪ J〉.

Geometrically, this corresponds to the intersection of the varieties, i.e. V (I + J) =
V (I)∩V (J). For example, let C = 〈x2 + y2−1〉 be the ideal whose variety is the circle
x2 + y2 = 1 and let H = 〈16x2y2−1〉 be the ideal whose variety is the double hyperbole
16x2y2 = 1. Then, the ideal C+H is the same as the ideal J1 = 〈x2+y2−1,16x2y2−1〉
from Example 11.1. In particular, the associated variety of C+H is the intersections of
the varieties of C and H.

sage: R.<x, y> = QQ[’x,␣y’]
sage: C = R.ideal(x^2 + y^2 - 1); H = ideal(16*x^2*y^2 - 1)
sage: (C + H) == R.ideal(x^2 + y^2 - 1, 16*x^2*y^2 - 1)
True

Analogously the intersection, the product and the quotient of two ideals I,J can be find.
Furthermore, we find for each of these operations a simple relation for the associated
varieties.

I∩ J = {p |p ∈ I and p ∈ J},
I · J = {pq | p ∈ I,q ∈ J},
I : J = {p|pJ ⊂ I},

V (I∩ J) = V (I)∪V (J),
V (I · J) = V (I)∪V (J),
V (I : J) = V (I)\V (J)

These operations are computed in Sage with the commands I.intersection(J), I *
J and I.quotient(J) respectively.

11.3 Solving Strategies
After discussing the usage of ideals within Sage we are now in a position to use the
discussed methods as a tool to characterize the solution set of a polynomial system. Here
we discuss two main strategies in detail. First we describe elimination ideals which help
us to characterize the solution of polynomial systems with infinitely many solutions.
Then we take a closer look onto polynomial systems with finitely many solutions. There
we show describe the triangular decomposition of an ideal and how this decomposition
can be used to describe the structure of the solution set.

202 Chapter 11. Polynomial Systems

Ideals

Constructing an Ideal 〈p1, p2〉 ⊂ R R.ideal(p1, p2)
Sum, Product, Power I + J, I * J, I^k

Intersection I∩ J I.intersection(J)
Quotient I : J I.quotient(J)

Radical
√

J J.radical()
Dimension of J J.dimension()

Associated Variety VL(J) J.variety(L)
Quotient Ring R/J R.quo(J)

Lift R/J→ R p.lift()
Reduction modulo J p.mod(J) or J.reduce(p)

Table 11.2.: Ideals

11.3.1 Elimination
Eliminating a variable in a system of equations means that we want to find equations
satisfied by any solutions, but which do not contain the eliminated variable. This
procedure makes it often easier to analyze the solutions itself. For example, we can
easily eliminate the variable x from the linear system.{

2x+ y−2z = 0,
2x+2y+ z = 1.

(11.3)

Substracting the first equation from the second one yields the equation y+ 3z = 1.
Therefore, any solution (x,y,z) of (11.3) has to be of the form (x,1−3z,z). Further, we
observe that each partial solution (1−3z,z) lifts to a (unique) solution (5z−1

2 ,1−3z,z)
of (11.3).

In the context of polynomial systems and ideals, the “consequences” of a system
p1(x) = . . . = ps(x) = 0 are elements of the ideal 〈p1, . . . , ps〉. If J is an ideal in
K[x1, . . . ,xn] the k-th elmination ideal of J is defined as the set Jk = J∩K[xk+1, . . . ,xn].
In particular, Jk is an ideal in K[xk+1, . . . ,xn] and not of K[x1, . . . ,xn]. The corresponding
method elimination_ideal in Sage takes as input the list of variables to eliminate.
But we have to pay attention, because instead of Jk the method elimination_ideal
returns the ideal 〈Jk〉 in K[x1, . . . ,xn] generated by Jk. Applying this method to the linear
system (11.3) we obtain the following elimination ideals.

sage: R.<x, y, z> = QQ[’x,␣y,␣z’]
sage: J = R.ideal(2*x + y - 2*z, 2*x + 2*y + z - 1); J
Ideal (2*x + y - 2*z, 2*x + 2*y + z - 1) of Multivariate

Polynomial Ring in x, y, z over Rational Field
sage: J.elimination_ideal(x)
Ideal (y + 3*z - 1) of Multivariate Polynomial Ring in x, y, z

over Rational Field
sage: J.elimination_ideal([x, y])
Ideal (0) of Multivariate Polynomial Ring in x, y, z over Rational

Field

11.3 Solving Strategies 203

sage: J.elimination_ideal(y)
Ideal (2*x - 5*z + 1) of Multivariate Polynomial Ring in x, y, z

over Rational Field

Now we, as the users, have to interpret these elimination ideals in the context of our
problem. The elimination ideal of x is given by J∩Q[y,z] = 〈y+3z−1〉, i.e. we obtain
the relation y = 1− 3z. If we further eliminate y, we obtain the ideal (0). This ideal
corresponds to the system associated to the trivial equation 0 = 0, i.e. J∩Q[z] =Q[z],
i.e. Q[z]⊂ J. Thus, we conclude that the solution set can be represented as the graph of
a function of f : R→ R2 in z. We already have the relation y = 1−3z. To derive the
corresponding equation for x we compute the elimination ideal of y variable. The result
J ∩Q[x,z] = 〈2x− 5z+ 1〉 gives us the desired relation x = 5z−1

2 . Putting everything
together the solution of the linear system (11.3) is given by{(

5z−1
2

,1−3z,z
)
|z ∈Q

}
.

Although, there are way more efficient methods to solve linear system, compare Section
10.2.2, this example illustrates the mechanics end effects of eliminating variables. Hence,
we switch to the slightly more complicated system

S1 =

{
x2 + y2 = 1,
16x2y2 = 1

which we already know from Example 11.1. Here, eliminating y yields an ideal in
Q[x] which is a principal ring. Therefore, the elimination ideal is generated by a single
polynomial g. Its roots are the abscissas, i.e. the x-coordinates, of the eight solutions of
S1.

sage: R.<x,y> = QQ[’x,␣y’]
sage: J1 = R.ideal(x^2 + y^2 - 1, 16*x^2*y^2 - 1)
sage: G = J1.elimination_ideal(y)
sage: g = G.0; g #generator of G
16*x^4 - 16*x^2 + 1
sage: SR(g).solve(SR(x))
[x == -1/2*sqrt(sqrt(3) + 2), x == 1/2*sqrt(sqrt(3) + 2), x ==

-1/2*sqrt(-sqrt(3) + 2), x == 1/2*sqrt(-sqrt(3) + 2)]

In the last step, we calculated the roots of g in the symbolic ring to obtain explicit
expressions of x in terms of radicals. Now we can easily calculate the corresponding

y-coordinates using the defining equation y =±
√

1
16x2 .

sage: X = [-1/2*sqrt(sqrt(3) + 2), 1/2*sqrt(sqrt(3) + 2), -1/2*
sqrt(-sqrt(3) + 2), 1/2*sqrt(-sqrt(3) + 2)]

sage: L = []
sage: for i in srange(4): #list of solution points
....: L.extend([(X[i], sqrt(1/(16*X[i]^2))), (X[i], -sqrt

(1/(16*X[i]^2)))])

204 Chapter 11. Polynomial Systems

sage: x, y = var(’x,␣y’)
sage: P = circle((0,0), 1) + implicit_plot(16*x^2*y^2 - 1, (x,

-1.3, 1.3), (y, -1.3, 1.3))
sage: P += point(L, size = 50, color = ’red’)

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

In the above example, it appears that eliminating y in a system could be geometrically
interpreted as the projection π of the solutions variety onto a hyperplane y = const.. We
elaborate on this point of view by study the elimination ideals of y of the single ideals
C = 〈x2 + y2−1〉 and H = 〈16x2y2−1〉 separately.

sage: R.<x,y> = QQ[’x,␣y’]
sage: C = R.ideal(x^2 + y^2 - 1); H = R.ideal(16*x^2*y^2 - 1)
sage: C.elimination_ideal(y)
Ideal (0) of Multivariate Polynomial Ring in x, y over Rational

Field
sage: H.elimination_ideal(y)
Ideal (0) of Multivariate Polynomial Ring in x, y over Rational

Field

In both cases, the elimination of y yields the complete ideal Q[x].Since the coordinates
solutions of an ideal in Q[x,y] have to elements of the algebraic closure Q, the elimination
of y in C corresponds to the projection on the first coordinate of the solutions in Q. As
for the circle, the equation x2+y2 = 1 has a complex solution y∗ for any fixed value of x.
Thus, eliminating y in the ideal C returns us the complete space C explaining the output
of C.elimination_ideal(y). In the case of the hyperbola, the equation 16x2y2 = 1
only has for ever x 6= 0 a complex solutions. In particular, there is no solution if x = 0.
Nevertheless, we obtain the whole space since

VC(H ∩Q[x]) = C 6= π(VC(H)) = C\{0}.

To be more concrete, elimination does not exactly corresponds to the projection over an
algebraically closed field but more to the closure of the projection.

11.3 Solving Strategies 205

� Example 11.3 We use elimination to determine the solution set of{
xyz+ xz+3y =−3,
x2yz2 + x2z2− y = 1.

First, we take a look on the dimension of the associated ideal.

sage: R.< x, y, z> = QQ[’␣x,␣y,␣z’]
sage: J = R.ideal(x*y*z + x*z + 3*y + 3, x^2*y*z^2 + x^2*z^2 - y -

1)
sage: J.dimension()
2

Thus, the solution set is “two dimensional”, meaning, we need two parametrization
variables to describe it. To obtain more information of the solution space, we calculate
the elimination ideal of every variable separately.

sage: J.elimination_ideal(x) # obtain here constraint: y = -1
Ideal (y + 1) of Multivariate Polynomial Ring in x, y, z over

Rational Field
sage: J.elimination_ideal(y) #without y, everything is included
Ideal (0) of Multivariate Polynomial Ring in x, y, z over Rational

Field
sage: J.elimination_ideal(z) # obtain here constraint: y = -1
Ideal (y + 1) of Multivariate Polynomial Ring in x, y, z over

Rational Field

Eliminating the variables x and z lead both to the constraint y = −1. Moreover, the
elimination of y shows that J ⊂Q[x,z]. Hence, the solution set over Q is given by

{(x,−1,z)|(x,z) ∈Q2}.

�

Applications in Plane Geometry
One application of elimination ideals is to derive a implicit equations for a parametrized
subset X ⊂ Ck, i.e. X = {(f1(t), . . . , fk(t))}, where f1, . . . fk ∈ Q[t1, . . . , tn]. We first
construct the ideal 〈x1− f1(t), . . . ,xk− fk(t)〉 in the multivariate polynomial ring Q[x, t]
and then eliminate the variables (t1, . . . , tn). The generators of this elimination ideals are
the implicit equations for the parametrized surface X . As an example this technique to
the following parametrization of the circle

x =
1− t2

1+ t2 , y =
2t

1+ t2 ,

given by the stereographic projection. We translate these polynomial relations into an
ideal in Q[x,y, t] and then eliminate the parametrization variable t.

sage: R.<x, y, t> = QQ[’x,␣y,␣t’]
sage: Param = R.ideal((1 - t^2) - (1 + t^2) * x, 2*t - (1 + t^2) *

y)

206 Chapter 11. Polynomial Systems

sage: Param.elimination_ideal(t)
Ideal (x^2 + y^2 - 1) of Multivariate Polynomial Ring in x, y, t

over Rational Field

As expected, we obtain the well-known implicit equation for the circle.
A further application of elimination ideals is the determination of the implicit equation

of an envelope of the family of circle (Ct)t given by the equation

Ct = {(x,y) ∈ R2|x2 +(y− t)2 =
t2 +1

2
}.

sage: R.<x, y, t> = QQ[’x,␣y,␣t’]
sage: eq = x^2 + (y-t)^2 - 1/2 *(t^2 + 1)
sage: P = add((eq(t = k/5)*QQ[x,y]).plot() for k in srange(-20,

20))

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
3

2

1

0

1

2

3

To be more precise, if f is a differentiable function such that

Ct = {(x,y) ∈ R2| f (x,y, t) = 0}

for all t, the envelope of the family (Ct)t si given by the set

{(x,y) ∈ R2|∃t s.th. f (x,y, t) = 0 and ∂t f (x,y, t) = 0}.

This is equivalent to eliminate the variable t from the ideal 〈 f ,∂t f 〉 ⊂Q[t].

11.3 Solving Strategies 207

sage: env = R.ideal(eq, eq.derivative(t))
sage: env.elimination_ideal(t)
Ideal (2*x^2 - 2*y^2 - 1) of Multivariate Polynomial Ring in x, y,

t over Rational Field

Thus, 2x2−2y2 = 1 is the implicit equation describing the envelope of (Ct)t .

sage: x,y = var(’x,␣y’)
sage: E = implicit_plot(2*x^2 - 2*y^2 - 1, (x, -3, 3), (y, -3, 3),

color = ’red’, linewidth = 5)
sage: P += E

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
3

2

1

0

1

2

3

In the following example we use elimination ideals to prove the well-known Euclidean
geometric statement that a triangle with two equal angles has to be isosceles, i.e. having
to sides of equal length. We consider the triangle with vertices A = (0,0), B = (1,0)
and C = (x,y). Next, we assume that the angles α = ^BAC and β = ^CBA are equal.
We want to show that this setup implies that the sides AC and BC have the same length.
A small observation shows that the triangle ABC has to satisfy the relation tan(α) = y

x
and tan(β) = y

1−x . Thus, introducing the variable t = tan(α) the constraint α = β is
equivalent to the solution set of the polynomial system{

y = tx,
y = t(1− x).

In this setting, the statement that a triangle with two equal angle has to be isosceles
is equivalent to show that the solutions set of the above systems imply the equation

208 Chapter 11. Polynomial Systems

x2 + y2 = (1− x)2 + y2, which is simply the equality of the lengths of the sides AC and
BC. In the language of ideals, this is the case if and only if

x2 + y2− (1− x)2− y2 ∈ 〈y− tx,y− t(1− x)〉

Hence, it only remains to build this ideal in Sage and check whether the above statement
is true or not.

sage: R.<x, y, t> = QQ[’x,␣y,␣t’]
sage: J = R.ideal(y- t*x, y - t*(1-x)); p = x^2 + y^2 - (1-x)^2 -

y^2
sage: p in J
False

What went wrong? The problem here is that we have not excluded the case of flat
triangles, i.e. the case t = 0 which is equivalent to α = β = 0. In that case, the equality
of the base angles does not imply that the triangle is isosceles. Thus, we have to exclude
the case t = 0. Here, the trick is to introduce an auxiliary variable u and add the constraint
tu = 1. Then t = 0 is not a possible solution anymore. Now, Sage returns us the desired
result.

sage: R.<x, y, t, u> = QQ[’x,␣y,␣t,␣u’]
sage: J = R.ideal(y- t*x, y - t*(1-x), t*u -1); p = x^2 + y^2 -

(1-x)^2 - y^2
sage: p in J
tTue

11.3.2 Zero-Dimensional Systems
Apart the computation of elimination ideals, Sage does not provide many other relevant
tools to solve general polynomial systems. However, if we know that the ideal associated
to our polynomial system is zero-dimensional, i.e. that the solution set is finite, Sage
provides more operations and possibilities to study the solution set.

To be more precise, an ideal K ⊂ K[x] is zero-dimensional if the quotient K[x]/J has
the structure of a finite dimensional K-vector space. For algebraically closed fields K
this is equivalent to V (J) being finite. For example, the ideal J1 associated to the system
S1 discussed in Example 11.1 has dimension 0 while the ideal 〈(x2 + y2)(x2 + y2 +1)〉
in Q[x,y] has dimension 1.

sage: R.<x,y> = QQ[’x,␣y’]
sage: J1 = R.ideal(x^2 + y^2 - 1, 16*x^2*y^2 - 1)
sage: J1.dimension()
0
sage: J = R.ideal((x^2 + y^2) * (x^2 + y^2 + 1))
sage: J.dimension()
1

If a polynomial system only has finitely many solutions we can calculate them exactly
or approximately. In Section 11.2.2 we introduced the command J.variety(L) which

11.3 Solving Strategies 209

computes the variety VL(J) of a zero-dimensional ideal J over the field L. In place of L
we can insert any field containing K. The most important case for our applications is
K =Q and L =Q. In this setting, it is always possible to compute exactly the complete
complex variety VC(J) =VQ(J) of a zero-dimensional ideal J ⊂Q[x].

sage: J1.variety(QQbar)
[{y: -0.9659258262890683?, x: -0.2588190451025208?},
{y: -0.9659258262890683?, x: 0.2588190451025208?},
{y: -0.2588190451025208?, x: -0.9659258262890683?},
{y: -0.2588190451025208?, x: 0.9659258262890683?},
{y: 0.2588190451025208?, x: -0.9659258262890683?},
{y: 0.2588190451025208?, x: 0.9659258262890683?},
{y: 0.9659258262890683?, x: -0.2588190451025208?},
{y: 0.9659258262890683?, x: 0.2588190451025208?}]

Internally, J.variety(L) goes through a triangular decomposition. This decomposi-
tion gives us another description of the variety VL(J) which might be better for further
computations or easier to grasp, see for example the polynomial system discussed in
Section 11.2.1. A polynomial system is called triangular if it is of the following form:

p1(x1) := xd1
1 +a1,d1−1xd1−1

1 + · · ·+a1,0 = 0
p2(x1,x2) := xd2

2 +a2,d2−1(x1)x
d2−1
2 + · · ·+a2,0(x1) = 0

...
pn(x1, . . . ,xn) := xdn

n +an,dn−1(x1, . . . ,xn−1)xdn−1
n + · · · = 0

In a triangular polynomial system each polynomial pi is a monic univariate polynomial
in xi with coefficients in K[x1, . . . ,xi−1]. To solve a triangular polynomial system we
first calculate the roots x∗1 of p1. Then we insert these roots into p2. Since p2(x∗1)
is a monic univariate polynomial in x2 we can calculate its roots x∗2. Next, we insert
x∗1,x

∗
2 into p3 and repeat this procedure, until we have calculated the roots x∗n of the

polynomial pn(x∗1, . . . ,x
∗
n−1). Sage provides the method triangular_decomposition

for zero-dimensional ideals.

sage: R.<x,y,z> = QQ[’x,␣y,␣z’] #example from the beginning
sage: J = R.ideal(x^2*y*z - 18, x*y^3*z - 24, x*y*z^4 - 6)
sage: V = J.variety(QQbar) #solutions in the field of algebraic

numbers
sage: V[:2], len(V)
([{z: 1, y: 2, x: 3},
{z: -0.9829730996839017? - 0.1837495178165704?*I, y:

-0.5473259801441657? + 1.923651286345639?*I, x:
-2.550651407188843? - 1.579296488632068?*I},

{z: -0.9829730996839017? + 0.1837495178165704?*I, y:
-0.5473259801441657? - 1.923651286345639?*I, x:
-2.550651407188843? + 1.579296488632068?*I}], 17)

sage: J.triangular_decomposition()
[Ideal (z^17 - 1, y - 2*z^10, x - 3*z^3) of Multivariate

Polynomial Ring in x, y, z over Rational Field]

210 Chapter 11. Polynomial Systems

Both methods J.variety(QQbar) and J.triangular_decomposition() lead to
same set of exact solutions. But while V is only a plain list of points the triangular
decomposition shows us that the solution set can be parametrized as

V = {(3z3,2z10,z)|z17 = 1}.

This representation reveals more properties of the solution set than the list stored in V.
However, not every zero-dimensional ideal has a triangular decomposition. As an

example we consider the ideal J =C+D in Q[x,y] which corresponds to the intersection
of the circle C = 〈x2 +y2−1〉 and the union of two lines D = 〈(x+y−1)(x+y+1)〉.

sage: R.<x, y> = QQ[’x,␣y’]
sage: C = R.ideal(x^2 + y^2 - 1)
sage: D = R.ideal((x + y - 1) * (x + y + 1))
sage: J = C + D
sage: P = C.plot()+ D.plot()

1.0 0.5 0.5 1.0

1.0

0.5

0.5

1.0

Here V (J) contains two points with x = 0 but only one point with x =−1, and similarly
only one point y = −1 but two points with y = 0. Thus, J can not be described by a
triangular system.

Nevertheless, every zero-dimensional ideal can be written as a finite intersection of ide-
als equivalent to a triangular system. If this is the case, the method triangular_decomposition
returns the list of the involved triangular systems.

sage: J.triangular_decomposition()
[Ideal (y, x^2 - 1) of Multivariate Polynomial Ring in x, y over

Rational Field,
Ideal (y^2 - 1, x) of Multivariate Polynomial Ring in x, y over

Rational Field]

The output shows that J is the intersection of the two triangular ideal T1 = 〈y,x2−1〉
and T2 = 〈y2− 1,x〉. Hence, we obtain the solutions (1,0) and (−1,0) from the first
triangular ideal T1 and the solutions (0,1),(0,1) from the second triangular ideal T2.

11.3 Solving Strategies 211

Instead of using the triangular decomposition, we can also obtain the solutions with
elimination ideals introduced in Section 11.3.1. Starting with a zero dimensional system
it is always possible to find a univariate polynomial whose roots are exactly the first
coordinates of the solutions by computing some elimination ideals. Then substituting
these roots decreases the number of variables and then we can determine a univariate
polynomial whose roots are the second coordinates and so on. Hence, iterating this
process, we also find the solutions after finitely many steps. However this substitution
might cause problems. To illustrate this problematic we slightly modify the above
example by tilting the two lines.

sage: D = R.ideal((x + 2*y - 1) * (x + 2*y + 1)); J = C + D
sage: P = C.plot()+ D.plot()

1.0 0.5 0.5 1.0

1.0

0.5

0.5

1.0

sage: J.variety()
[{y: 0, x: 1}, {y: 0, x: -1}, {y: 4/5, x: -3/5}, {y: -4/5, x:

3/5}]
sage: J.triangular_decomposition()
[Ideal (y, x^2 - 1) of Multivariate Polynomial Ring in x, y over

Rational Field,
Ideal (25*y^2 - 16, 4*x + 3*y) of Multivariate Polynomial Ring in

x, y over Rational Field]

Again, the triangular decomposition returns us ideals of which we can easily read off the
solutions. Now, we try to solve this system using elimination ideals. First we eliminate
x.

sage: Jy = J.elimination_ideal(x); Jy.gens()
[25*y^3 - 16*y]

Next, we substitute the roots of this polynomial into the polynomial defining the ideal J,
e.g. x2 + y2−1.

212 Chapter 11. Polynomial Systems

sage: ys = QQ[’y’](Jy.0).roots(); ys
[(4/5, 1), (0, 1), (-4/5, 1)]
sage: QQ[’x’](J.1(y = ys[0][0])).roots()
[(-3/5, 1), (-13/5, 1)]

Here, we obtain the same solution as with the triangular decomposition but also the
additional solution

(
−13

5 ,
4
5

)
which is wrong. It follows that in the elimination process,

it might not be sufficient to insert the obtained roots only in one generator of the ideal.
Instead, we have to test every generator to eliminate the wrong solutions.

This problematic might get worse, if we want to solve equations numerically. Al-
though calculating with algebraic numbers is computationally expensive, switching to
numerical calculations means that we can not check for “true equality anymore” as all
objects are only approximated. For example, using the complex double field CDF, i.e.
complex floating point numbers with 64-bits precision, we obtain the following solutions
of the above system J.

sage: ys = CDF[’y’](Jy.0).roots(); ys
[(-0.8000000000000002, 1), (0.0, 1), (0.8, 1)]
sage: [CDF[’x’](p(y = ys[0][0])).roots() for p in J.gens()]
[[(-0.5999999999999998, 1), (0.5999999999999999, 1)],
[(0.6000000000000001, 1), (2.6, 1)]]

Here, the substitution of y' 0.8 yields three values of x near 0.6. But, how can we check,
whether these approximated values also approximate an exact solution or not, without
knowing the exact solutions beforehand? This phenomena gets trickier as the number
of variables and equations grows. When dealing with numerical approximations it is
recommended to work with triangular systems. One reason is that in each substitution
step only one monic polynomial equation has to be considered. Hence, solving these
equations numerically does not change the number of solutions. Nevertheless, the values
still might be not near the exact solutions. This phenomena can be observed when we
try to compute the variety of J = 〈x7− (100x− 1)2,y− x7 + 1〉 over the real floating
point numbers with 50-bits precision. The command J.variety(RealField(50))
first computes an exact triangular decomposition of J and then finds the real solutions
numerically .

sage: R.<x, y> = QQ[’x,␣y’]; J = R.ideal([x^7 - (100*x-1)^2, y - x
^7 + 1])

sage: J.variety(RealField(50))
[{y: -1.0000000249450, x: -3563.5557925117},
{y: -0.99999997505503, x: 3563.5757038914},
{y: 396340.89016654, x: 160.71370521084}]

However, if we perform the calculations exactly until the end, we see that the numerical
approximations are far off the exact solutions.

sage: J.variety(AA)
[{y: -0.999999999999990?, x: 0.00999999900000035?},
{y: -0.999999999999990?, x: 0.01000000100000035?},
{y: 396340.8901665450?, x: 6.305568998641385?}]

11.3 Solving Strategies 213

As mentioned in the beginning of this section, if J ⊂ K[x] is a zero-dimensional ideal,
the quotient K[x]/J has the structure of a K-vector space. The vector space dimension
dimK K[x]/J does not only provide an upper bound for the cardinality of the variety V (J)
but can be interpreted as the number of solutions “with multiplicities”. This dimension
is calculated in Sage with the method vector_space_dimension. Moreover, Sage
provides the method normal_basis which returns a list of monomials whose projection
to K[x]/J constitute a basis. As an example, we consider the polynomial system

S2 =

{
x2 + y2 = 1,
4x2y2 = 1

from Example 11.1. As already discussed, this system has four solutions, each of them
with multiplicity two. Hence, the length of the variety VC(J2) is four while the vector
space dimension of J2 is eight.

sage: R.<x,y> = QQ[’x,␣y’]
sage: J2 = R.ideal(x^2 + y^2 - 1, 4*x^2*y^2 - 1)
sage: len(J2.variety(QQbar)), J2.vector_space_dimension()
(4, 8)
sage: J2.normal_basis()
[x*y^3, y^3, x*y^2, y^2, x*y, y, x, 1]

Two explicit examples
We close this chapter by illustrating the explicit solution strategy for two polynomial
systems. First, we consider the polynomial system

x2−1 = 0,
y2−1 = 0,
(x−1)(y−1) = 0.

To solve this system we first check the dimension of the associated ideal.

sage: R.<x,y> = QQ[’x,␣y’]
sage: J = R.ideal(x^2 - 1, y^2 - 1, (x-1)*(y-1))
sage: J.dimension()
0

Hence, there are only finitely many solutions. Thus, we calculate its variety to determine
the solutions and then its vector space dimension to detect any multiplicites.

sage: J.variety()
[{y: 1, x: 1}, {y: 1, x: -1}, {y: -1, x: 1}]
sage: len(J.variety()), J.vector_space_dimension()
(3, 3)

Since V (J) contains three explicit solutions and the vector space dimension of J is also
equal to three it follows immediately that the solution set is {(1,1),(−1,1),(1,−1)}. In
particular, the multiplicity of each solution is equal to one.

214 Chapter 11. Polynomial Systems

Next, we solve this following more complex system.
vy−6u−2xy+5v+2x = 0,
ux−3u−3xy+3v+2x = 0,
u− x2 = 0,
v− y2 = 0

Again, we first calculate the dimension of the associated ideal to determine the further
strategy.

sage: R.<u, v, x, y> = QQ[’u,␣v,␣x,␣y’]
sage: J = R.ideal(v*y - 6*u - 2*x*y + 5*v + 2*x, u - x^2, v - y^2,

u*x - 3*u - 3*x*y + 3*v + 2*x)
sage: J.dimension()
0

Since J is zero-dimensional we calculate the variety over the field of algebraic numbers
and compare its length with the vector space dimension of J.

sage: J.variety(QQbar)
[{y: 0, x: 0, v: 0, u: 0},
{y: 2, x: 2, v: 4, u: 4},
{y: 1, x: 1, v: 1, u: 1},
{y: 1, x: -1, v: 1, u: 1},
{y: -2, x: -1, v: 4, u: 1},
{y: 0.5071118397992805?, x: -0.4105844881290678?, v:

0.2571624180646111?, u: 0.1685796218922086?},
{y: -8.75355591989964? - 1.501107075408794?*I, x:

4.205292244064534? - 6.385042887008311?*I, v:
74.37141879096769? + 26.28004945269577?*I, u:
-23.08428981094611? - 53.70194266151094?*I},

{y: -8.75355591989964? + 1.501107075408794?*I, x:
4.205292244064534? + 6.385042887008311?*I, v:
74.37141879096769? - 26.28004945269577?*I, u:
-23.08428981094611? + 53.70194266151094?*I}]

sage: len(J.variety(QQbar)), J.vector_space_dimension()
(8, 9)

We observe that there are 5 rational and 3 irrational solutions Moreover, since the vector
space dimension of J is one larger than the length of the variety V (J) there has to be one
solution with multiplicity two. Although we already have a complete list of the exact
solutions, we do not know much about the structure. In particular, we want to answer
the following questions: What is the origin of the irrational solutions and which solution
has higher multiplicity? A good starting point is the triangular decomposition of J.

sage: J.triangular_decomposition()
[Ideal (y - 1, x^2 - 1, v - 1, u - 1) of Multivariate Polynomial

Ring in u, v, x, y over Rational Field,

11.3 Solving Strategies 215

Ideal (y^7 + 17*y^6 + 66*y^5 - 108*y^4 - 280*y^3 + 160*y^2, 3840*
x - 19*y^6 - 345*y^5 - 1608*y^4 + 660*y^3 + 6256*y^2, v - y
^2, 3840*u + y^6 + 3*y^5 - 72*y^4 - 732*y^3 - 2128*y^2) of
Multivariate Polynomial Ring in u, v, x, y over Rational
Field]

Sage tells us that Jis the intersection of the triangular ideals

T1 = 〈y−1,x2−1,v−1,u−1〉,
T2 = 〈y7 +17∗ y6 +66∗ y5−108∗ y4−280∗ y3 +160∗ y2,

3840∗ x−19∗ y6−345∗ y5−1608∗ y4 +660∗ y3 +6256∗ y2,v− y2,

3840∗u+ y6 +3∗ y5−72∗ y4−732∗ y3−2128∗ y2〉.

T1 yields the two solutions (1,1,1,1) and (−1,1,1,1). Hence, the complex solutions
are contributed by T2. Since there are also 3 other rational solutions missing we first
factorize the first generator, i.e. the univariate polynomial y7 +17y6 +66y5−108y4−
280y3 +160y2.

sage: p = y^7 + 17*y^6 + 66*y^5 - 108*y^4 - 280*y^3 + 160*y^2
sage: QQ[’y’](p).factor()
(y - 2) * (y + 2) * y^2 * (y^3 + 17*y^2 + 70*y - 40)

This factorization shows us various things. First, that the remaining three rational
solutions arise by inserting the roots p = y3 =−2,y4 = 2 and y5 = 0 into the equations

x =
1

3840

(
+19∗ y6 +345∗ y5 +1608∗ y4−660∗ y3−6256∗ y2

)
u = x2,

v = y2.

Next, we observe that the y-coordinates of the irrational solutions are the roots of the
polynomial y3 + 17 ∗ y2 + 70 ∗ y− 40. Solving these polynomial over the symbolic
ring leads to three exact expressions of the solutions. However, they are not really
enlightening. Thus, we stop at this point with the study of the irrational solutions.
Last but not least the factor y2 in the factorization of p shows us that the solution
corresponding to y = 0 has to be the solution with multiplicity two. This can be made
visible by taking a look on the plot corresponding to the J. To draw the corresponding
plot in two dimensions we use the substitutions u = x2,v = y2 and draw the implicit plot
of the remaining two equations. The plot shows us that (0,0,0,0) is indeed the solution
of higher multiplicity.

sage: p = v*y - 6*u - 2*x*y + 5*v + 2*x
sage: p = p.subs(u= x^2, v = y^2)
sage: q = u*x - 3*u - 3*x*y + 3*v + 2*x
sage: q = q.subs(u = x^2, v = y^2)
sage: P = implicit_plot(SR(p), (x, -2.1, 2.1), (y, -2.1, 2.1),

color = ’red’)
sage: Q = implicit_plot(SR(q), (x, -2.1,2.1), (y, -2.1, 2.1))
sage: S = P + Q

216 Chapter 11. Polynomial Systems

1.0 0.5 0.5 1.0

1.0

0.5

0.5

1.0

12. Differential Equations

In this chapter, we explain how to solve differential equations symbolically and numeri-
cally with Sage. We need to keep in mind that, in the mathematical sense, a solutions of
a differential equation is a differentiable function defined over a certain interval. But
Sage views differential equations just as symbolic expressions which can be manipulated
without defining a definition domain. Thus, we need to figure out the definition domain
ourselves. Henceforth we use the following notation and declaration.

An ordinary differential equation (ODE) is an equation involving an unknown func-
tion of a single variable, as well as one or more derivatives of the unknown function For
example, in the equation

y′(x)+ x · y(x) = sin(x)

the unknown function y is called the dependent variable and the variable x (relative to
which y varies) is called the independent variable.

A partial differential equation (PDE) involves several independent variables as well
as the partial derivatives of the dependent variable with respect to these independent
variables.

12.1 First Order Ordinary Differential Equations
Before we can solve a first order ODE F(x,y(x),y′(x)) = 0 in Sage, we have to define
the independent variable x and the function y depending on it.

sage: x = var(’x’)
sage: y = function(’y’)(x); y
y(x)

These definitions are needed to use the basic differential solving command in Sage:

218 Chapter 12. Differential Equations

desolve(equation, variable, ics = ..., ivar = ..., show_method = ...,
contrib_ode = ...),

where

• equation is the differential equation. As usual, an equality is designated by ==.
For instance, the equation y′ = 2y+ x is written as diff(y, x) == 2*y + x;

• variable is the dependent variable, e.g. y in y′ = 2y+ x;

• ics is optional and stands for initial conditions. For a first order equation this is
a known value y(x0) = y0, written as [x0, y0] and for a second order equation
this would be either two known values y(x0) = y0,y(x1) = y1, written as [x0,
y0, x1, y1], or a known value together with a known derivative at one point
y(x0) = y0,y′(x0) = y′0, written as [x0, y0, y0];

• ivar is optional and stands for independent variable, e.g. x in y′ = 2y+ x. The
independent variable must be specified if the differential equation involves param-
eters as in y′ = ay+bx;

• show_method is an optional boolean whose set to False by default. If set True
Sage returns a pair [solution, method], where the method is a string describ-
ing the used method. Some of the available methods are linear, separable,
exact, homogeneous, bernoulli, laplace, clairaut, ricatti. contrib_ode
is an optional boolean set to False by default. Setting it True, we can also solve
Clairaut, Lagrange, Ricatti, and some other equations. As the solving of these
kind of differential equations might have a large computation time, this options is
turned off by default.

If no initial condition is specified, Sage introduces a new variable _C which represents
an arbitrary constant C ∈ R.

sage: S = desolve(diff(y, x) == 2*y + x, y); S
-1/4*((2*x + 1)*e^(-2*x) - 4*_C)*e^(2*x)

Hence, the function

y(x) =−1
4
(
(2x+1)e−2x−4C

)
,

where C ∈ R is arbitrary, solves the differential equation y′ = 2y+ x. The constant C is
fixed if we add an initial condition, e.g. y(0) = 0.

sage: desolve(diff(y, x) == 2*y + x, y, ics = [0, 0])
-1/2*x + 1/4*e^(2*x) - 1/4

Thus, the solution of the initial value problem y′ = 2y+ x,y(0) = 0, is given by

y(x) =−1
2

x+
1
4

e2x− 1
4
. (12.1)

At this point, we want to remark, that the introduced variable _C is only a displayed
variable of Sage which has not been assigned to any Python variable yet.

12.1 First Order Ordinary Differential Equations 219

sage: _C
Traceback (most recent call last):
...
NameError: name ’_C’ is not defined.

To assign _C to a Python variable, we first apply the method variables to the solution to
obtain a list of all used variables. Afterwards, we can assign them to Python variables.

sage: S.variables()
(_C, x)
sage: _C = S.variables()[0] #assigne _C to the corresponding

Python variable

Now, we can substitute the constant _C by some explicit value of our choice, using the
method substitute as usual, see e.g. Section 3.1.2. For example, we can insert C = 1

4
which gives us the same solution as above.

sage: S.substitute(_C = 1/4)
-1/4*((2*x + 1)*e^(-2*x) - 1)*e^(2*x)

Although the solution is equivalent to (12.1) its representation differs. The reason is that
Sage solves differential equations over the symbolic ring which is a domain without
a designated normal form, see Section 8.4 for more details. We can obtain the same
expression by transforming it manually with the methods discussed in Section 3.1.3 and
in Section ??. For example, to obtain the same representation as above, we can apply
the expand method.

sage: S.substitute(_C == 1/4).expand()
-1/2*x + 1/4*e^(2*x) - 1/4

12.1.1 Types of First Order ODEs
First order ODEs are classified into different types. These types determines the solution
method used internally in Sage to solve them. Below we shortly describe the various
types and discuss along explicit examples how to solve them with Sage.

Linear Equations
A first order ODE is called linear if the equation is linear in the dependent variable y
and its derivatives. Hence, a linear first order ODE is of the form

y′+P(x)y = Q(x)

for continuous functions P and Q on a given interval. These differential equations are
quite easy to solve. Using Sage, the solution is almost always given explicitly. For
example, we can solve the linear equation y′+3y = ex.

sage: x = var(’x’); y = function(’y’)(x)
sage: desolve(diff(y, x) + 3*y == exp(x), y, show_method = True)
[1/4*(4*_C + e^(4*x))*e^(-3*x), ’linear’]

Nevertheless, since we are working in the symbolic ring, the solution function is not
always displayed in its simplest form. Thus, we might have to do further transformations

220 Chapter 12. Differential Equations

manually before we obtain a convenient form of the solution function. This is, for
example, the case when we want to solve

y′+2y = x2−2x+3.

sage: S = desolve(diff(y, x) + 2*y == x^2 - 2*x + 3, y)
sage: S
1/4*((2*x^2 - 2*x + 1)*e^(2*x) - 2*(2*x - 1)*e^(2*x) + 4*_C + 6*e

^(2*x))*e^(-2*x)

This solution takes a much shorter and more readable form after applying the expand
method.

sage: S.expand()
1/2*x^2 + _C*e^(-2*x) - 3/2*x + 9/4

It is also possible to obtain the expanded solution directly with desolve(...).expand().

sage: desolve(diff(y, x) + 2*y == x^2 - 2*x + 3, y).expand()
1/2*x^2 + _C*e^(-2*x) - 3/2*x + 9/4

Bernoulli Equations
Bernoulli equations are first order ODEs of the form

y′+P(x)y = Q(x)yα ,

where P and Q are continuous functions over a given interval and α 6∈ {0,1}, e.g.
y′− y = xy4.

sage: x = var(’x’); y = function(’y’)(x)
sage: desolve(diff(y, x) - y == x*y^4, y)
e^x/(-1/3*(3*x - 1)*e^(3*x) + _C)^(1/3)

For the excluded values α ∈ {0,1} the resulting differential equation is a linear equation
which we have discussed above.

Separable Equations
A first order ODE is separable if we can separate the dependent and the independent
variable, i.e. if the differential equation is of the form

y′Q(y) = P(x)

for continuous functions P and Q defined over a given interval. One of the simplest
separable equation is given by y′y = x. We try to solve this differential equation with
Sage as usual.

sage: x = var(’x’); y = function(’y’)(x)
sage: desolve(y*diff(y, x) == x, y, show_method = True)
[1/2*y(x)^2 == 1/2*x^2 + _C, ’separable’]

12.1 First Order Ordinary Differential Equations 221

In contrast to the examples before, the solution function y is not given explicitly anymore,
but as the solution of the equation

1
2

y(x)2 =
1
2

x2 +C.

In this case it is not hard to see that the solution is given by

y(x) =
√

x2 +2C

as long as long as x2 + 2C > 0. Since the function y(x) is treated as a symbolic
expression and not as a function with a specified domain, we need to take care of the
right domains ourselves.

R Sometimes, it happens that Sage solves separable equations as exact, see Section 12.1.1,
e.g. y′ = ex+y

sage: desolve(diff(y, x) == exp(x + y), y, show_method = True)
[-(e^(x + y(x)) + 1)*e^(-y(x)) == _C, ’exact’]

The example above showed that the solution function y might not be given explicitly
but implicitly as the solution of an equation. In that case, we have to modify the solution
further by ourselves to obtain an explicit expression for the solution function y. To
illustrate this procedure we try to solve the following differential equation with Sage:

y′ log(y) = ysin(x). (12.2)

This is a separable equation since we can divide by y, if we assume y 6= 0. First, we take
a look on the result of the desolve command.

sage: desolve(diff(y, x)*log(y) == y*sin(x), y, show_method = True
)

[1/2*log(y(x))^2 == _C - cos(x), ’separable’]

Again, we do not obtain y directly but only the relation.

1
2

log(y)2− cos(x) =C.

As we have to work further with this equation we store it in a Python variable.

sage: ed = desolve(diff(y, x)*log(y) == y*sin(x), y)

Since we are interested in the solution y of this equation we use the solve command,
i.e. we treat this equation like a symbolic equation where y is “just” avariable.

sage: solve(ed, y)
[
y(x) == e^(-sqrt(2*_C - 2*cos(x))),
y(x) == e^(sqrt(2*_C - 2*cos(x)))
]

222 Chapter 12. Differential Equations

Now we have two possible solutions. Moreover, we have to choose C such that√
2C−2cos(x) is nonnegative, i.e. C ≥ 1.
To draw the graph of various solution of the differential equation (12.2), we have

to evaluate the solution function y for different values of C. First, we need to assign
the introduced variable _C to a Python variable. Moreover, to avoid unnecessary
computations, we assign the two solutions to separable Python variables.

sage: C = ed.variables()[0]
sage: S1 = solve(ed, y)[0].rhs(); S2 = solve(ed, y)[1].rhs()

Using a for loop we plot a family of solution curves for the first solution S1.

sage: P = Graphics()
sage: for k in range(1, 20, 2):
....: P += plot(S1.substitute(C == 1 + k/ 4), x, -3, 3)

3 2 1 0 1 2 3

0.1

0.2

0.3

0.4

0.5

The same can be done for the second solution S2.

sage: Q = Graphics()
sage: for k in range(1, 20, 2):
....: Q += plot(S2.substitute(C == 1 + k/ 4), x, -3, 3)

3 2 1 0 1 2 3

5

10

15

20

25

30

35

40

Due to the different scale it is not recommended to display these two different set of
solutions in one single plot.

12.1 First Order Ordinary Differential Equations 223

3 2 1 1 2 3

5

10

15

20

25

30

35

40

Both Families of Solutions for (12.2)

Since the solving of differential equation heavily depends on the particular case, we
want to discuss another example in detail. We want to solve the separable equation

y′y√
1+ y2

= sin(x). (12.3)

Again, we first take a look on the result of desolve

sage: x = var(’x’); y = function(’y’)(x)
sage: ed = desolve(diff(y, x) * y / sqrt(1 + y^2) == sin(x), y);

ed
sqrt(y(x)^2 + 1) == _C - cos(x)

We immediately observe that we have to assume that C− cos(x)> 0.

sage: _C = ed.variables()[0]
sage: assume(_C - cos(x) > 0)
sage: sol = solve(ed, y); sol
[
y(x) == -sqrt(_C^2 - 2*_C*cos(x) + cos(x)^2 - 1),
y(x) == sqrt(_C^2 - 2*_C*cos(x) + cos(x)^2 - 1)
]

Thus, the solutions of (12.3) is given by

y(x) =±
√

C2−2C cos(x)+ cos(x)2−1

for all C > 2. Moreover, we see that these solutions are also well-defined for C <−2.
Next, we plot a family of solutions curves for different values of C.

sage: P = Graphics()
sage: for j in [0, 1]:
....: for k in srange(0, 20, 2):
....: P += plot(sol[j].substitute(_C == 2 + 0.25*k).rhs(),

x, -4, 4)
....: P += plot(sol[j].substitute(_C == -2 - 0.25*k).rhs(),

x, -4, 4, color = ’green’)

224 Chapter 12. Differential Equations

4 3 2 1 1 2 3 4

6

4

2

2

4

6

Family of Solutions for (12.3)

Homogeneous Equations
A first order ODE is called a homogeneous equation if it is given as the quotient of two
homogeneous functions of the samge degree, i.e.

y′ =
P(x,y)
Q(x,y)

.

Definition 12.1.1 A function f (x1, . . . ,xn) is called homogeneous of degree k if for
all λ ∈ R

f (λx1, . . . ,λxn) = λ
k f (x1, . . . ,xn).

An example of a homogeneous equation is the ODE

x2y′ = x2 + xy+ y2, (12.4)

becauseQ(x) = x2 and P(x,y) = x2 + xy+ y2 are both homogeneous functions of degree
2. As usual, we first use the desolve command.

sage: x = var(’x’); y = function(’y’)(x)
sage: desolve(x^2*diff(y, x) == x^2 + x*y + y^2, y, show_method =

True)
[_C*x == e^(arctan(y(x)/x)), ’homogeneous’]

Again, the solution is not given explicitly. Hence, we use the solve command.

sage: ed = desolve(x^2*diff(y, x) == x^2 + x*y + y^2, y)
sage: solve(ed, y)
[

]

Sage is not able to solve this equation with respect to y. However, by the theorem of
Picard-Lindelöf we know that there has to exist a solution. Thus, we have to modify the
equation

Cx = earctan(y
x).

12.1 First Order Ordinary Differential Equations 225

further. We immediately see that this equation is only well-defined over R if and only if
Cx is positive. Thus, we add this condition using the assume command and apply the
logarithm on both sides.

sage: C = ed.variables()[0]
sage: assume(C*x > 0)
sage: eq = log(C*x) == arctan(y/x)
sage: solve(eq, y)
[
y(x) == x*tan(log(_C*x))
]

Hence, the solution of (12.4) is given byy(x) = x tan
(

log(Cx)
)

whenever Cx > 0.
We might need various steps of transforming the output of the desolve command

to arrive at an expressions for the solution function if we are trying to solve more
complicated differential equations like,

y′ =
y+
√

y2 + x2

x
. (12.5)

sage: x = var(’x’); y = function(’y’)(x)
sage: ed = desolve(diff(y, x) == (y + sqrt(y^2 + x^2))/x, y)
sage: ed
x == (x*y(x)/sqrt(x^4) + sqrt(y(x)^2/x^2 + 1))^(x/sqrt(x^2))*_C

Again, we only obtain the solution implicitly. But here, the derived equation

x =C

(
xy√
x4

+

√
y2

x2 +1

) x√
x2

is too complicated for the solve command.

sage: solve(ed, y)
[]

Thus, we first have to simplify the equation. The assumption x > 0 already implies the
simplifications

x√
x4

=
1
x3 ,

x√
(x2)

=
1
x
.

Hence, we concentrate us on the case x > 0.

sage: assume(x > 0)
sage: ed.simplify()
sage: sol = solve(ed, y)[0]; sol
y(x) == (x^2 - sqrt(x^2 + y(x)^2)*_C)/_C

226 Chapter 12. Differential Equations

However, we still only obtain an implicit equation

y =
x2−

√
x2 + y2C
C

.

But, we can simplify this equation further by considering the squares of both sides.
Hence, we assign _C to a Python variable and isolate the equation as the output of
solve is a one-element list and not the equation itself.

sage: _C = ed.variables()[0]
sage: sol = sol^2; sol
y(x)^2 == (x^2 - sqrt(x^2 + y(x)^2)*_C)^2/_C^2
sage: solve(sol, y)
Traceback (most recent call last):
...
TypeError: Computation failed since Maxima requested additional

constraints; using the ’assume’ command before evaluation *may
* help (example of legal syntax is ’assume(_C>0)’, see ‘assume
?‘ for more details)

Is _C positive or negative?

The error message tells us, that we should assume _C. Hence, we do so and try to solve
again.

sage: assume(_C > 0)
sage: Sp = solve(sol, y)[0]; Sp
y(x) == 1/2*(_C^2 - x^2)/_C

Thus, we have finally shown that for x > 0 solutions of (12.5) is given by

y(x) =
C2− x2

2C
for any C ∈ R. Moreover, it is not hard to show that this equation also solves (12.5) for
x < 0. Again, we plot the solutions for different values of C to visualize them.

sage: P = Graphics()
sage: for k in srange(-19, 19, 2):
....: P += plot(Sp.rhs().substitute(_C == 1/k), x, 0, 3)

0.5 1.0 1.5 2.0 2.5 3.0

60

40

20

20

40

60

80

12.1 First Order Ordinary Differential Equations 227

Exact Equations
A first order ODE is called exact if there exists a differentiable function f (x,y) such that
the differential equation in consideration can be written as

∂ f
∂x

+
∂ f
∂y

= 0.

For example the differential equation

y′ =
cos(y)−2x
y+ xsin(y)

is an exact equation, if we choose f (x,y) = x2− xcos(y)+ y2

2 since

∂ f
∂x

+
∂ f
∂y

= (2x− cos(y))+
(
xsin(y)y′+ yy′

)
= (2x− cos(y))+ y′ (xsin(y)+ y) .

These kind of equations are solved with the usual desolve command.

sage: x = var(’x’); y = function(’y’)(x)
sage: desolve(diff(y, x) == (cos(y)- 2*x)/(y + x*sin(y)), y,

show_method = True)
[x^2 - x*cos(y(x)) + 1/2*y(x)^2 == _C, ’exact’]

As the solution is only given implicitly, we apply the solve command to obtain an
explicit solution.

sage: ed = desolve(diff(y, x) == (cos(y)- 2*x)/(y + x*sin(y)), y)
sage: solve(ed, y)
[
y(x) == -sqrt(-2*x^2 + 2*x*cos(y(x)) + 2*_C),
y(x) == sqrt(-2*x^2 + 2*x*cos(y(x)) + 2*_C)
]

Ricatti Equation
Ricatti equations have the structure of a quadratic equation, i.e. they are of the form

y′ = P(x)y2 +Q(x)y+R(x),

where P, Q and R are continuous functions over a given interval. This kind of first
order differential equations are too complicated for the standard algorithms of desolve.
Therefore, we need to set contrib_ode = True to force Sage to use more complex
methods. For example, the solution of the Ricatti equation

y′ = xy2 +
1
x

y− 1
x2

is obtained as follows.

228 Chapter 12. Differential Equations

sage: x = var(’x’); y = function(’y’)(x)
sage: desolve(diff(y, x) == x*y^2 + y/x - 1/x^2, y, contrib_ode =

True, show_method = True)
[[y(x) == -1/2*((_C*(bessel_Y(4, 2*sqrt(-x)) - bessel_Y(2, 2*sqrt

(-x))) + bessel_J(4, 2*sqrt(-x)) - bessel_J(2, 2*sqrt(-x)))*x
+ 3*(_C*bessel_Y(3, 2*sqrt(-x)) + bessel_J(3, 2*sqrt(-x)))*
sqrt(-x))/((_C*bessel_Y(3, 2*sqrt(-x)) + bessel_J(3, 2*sqrt(-x
)))*sqrt(-x)*x^2)],

’riccati’]

Here, the solution is given explicitly. We observe that the solution is a linear combination
of Bessel functions of the first kind, bessel_J and of the second kind, bessel_Y.

Lagrange and Clairault Equations
A Lagrange equation is a first order ODE of the form

y = xP(y′)+Q(y′),

where P and Q are C1-functions over a given interval. The special case P = Id, i.e.

y = xy′+Q(y′)

is called a Clairault equation. Similar to Ricatti equations, we have to set contrib_ode
= True to solve this equation with Sage. As an example, we solve the Clairault equation

y = xy′− (y′)2.

sage: x = var(’x’); y = function(’y’)(x)
sage: desolve(y == x*diff(y, x) - diff(y, x)^2, y, contrib_ode =

True, show_method = True)
[[y(x) == -_C^2 + _C*x, y(x) == 1/4*x^2], ’clairault’]

12.1.2 A Parametric Equation
In the previous sections we have only considered ODEs with x and y(x) being the only
involved variables. However, it is also possible to solve ODEs with parameters. For
example we can study the general solutions of the ODE

y′ = ay−by2, (12.6)

with a,b being positive real numbers. As usual, we start with the desolve command, but
this time we have to use the option ivar to identify x as the only independent variable.

sage: x, a, b = var(’x,␣a,␣b’); y = function(’y’)(x)
sage: sol = desolve(diff(y, x) == a*y - b*y^2, y, ivar = x); sol
-(log(b*y(x) - y) - log(y(x)))/a == _C + x

Since we do not obtain y explicitly we try to isolate it with solve.

12.1 First Order Ordinary Differential Equations 229

Differential Equation

Variable Declaration x = var(’x’)
Function Declaration y = function(’y’)(x)
Solving an Equation desolve(equation, y, <options>)

First Order ics y(x0) = y0 ics = [x0, y0]
Second Order ics y(x0) = y0y(x1) = y1 ics = [x0, y0, x1, y1]

or y(x0) = y0,y′(x0) = y′0 ics = [x0, y0, y0’]
Independent Variable ivar = x

Display Resolution Method show_method = True
Call for Special Methods contrib_ode = True

Table 12.1.: Differential Equations

sage: solve(sol, y)
[
log(y(x)) == -C*a + a*x + log(b*y(x) - a)
]

Unfortunately, we still do not have an explicit equation for y. Hence, we group together
the terms on the left-hand side and use simplify_log to combine the log-terms. Then
we try again the solve command to obtain an explicit expression for y.

sage: Sol = solve(sol, y)[0]
sage: Sol = Sol.lhs() - Sol.rhs(); Sol
-_C*a - a*x - log(b*y(x) - a) + log(y(x))
sage: Sol = Sol.simplify_log(); Sol
-_C*a - a*x + log(y(x)/(b*y(x) - a))
sage: solve(Sol, y)[0].simplify()
y(x) == a*e^(_C*a + a*x)/(b*e^(_C*a + a*x) - 1)

Thus, we have shown that for every a,b≥ 0 the solution of (12.6) is given by

y(x) =
aeCa+ax

beCa+ax−1

for any C ∈ R.

12.1.3 Numerical Solving
Instead of explicitly solving a differential equation with desolve we can also solve them
numerically with desolve_rk4, where rk4 indicates that a Runge-Kutta method of 4th
order is used. The syntax for desolve_rk4 is essentially the same as for desolve. But
since we are solving numerically, the option ics is not optional but essential. Moreover,
we have to specify the interval over which the differential equation is solved using
the option end_points, where end_points = [a,b] means that desolve_rk4 solves
the equation between min(ics[0], a) and max(ics[0], b). In addition, we can
determine the length of the steps used in the Runge-Kutta method with the option steps,
whose default value is 0.1.

230 Chapter 12. Differential Equations

Instead of an expression for the solution function y, desolve_rk4 only returns a
list of function values, i.e. [(x0, y(x0), ..., (xn, y(xn))]. Applying the line
command to this list returns plot of the approximated solution curve. Although we do
not have an explicit solution function given, the plot of the approximated solution can
still be useful to read off various properties. Moreover, numerical calculations are in
general much fast. Nevertheless, as numerical methods only approximate the exact
solution, the results of desolve_rk4 and desolve might differ slightly.

To illustrate this difference we draw a family of integral curves of the ODE

xy′ = 3y+ x3 (12.7)

once exactly and once numerically. First, we draw the plot for the exact solutions ob-
tained with desolve. To optimize computation time, we first solve (12.7) and substitute
the different initial values afterwards. For a better visualization we also added the
corresponding vector field.

sage: x = var(’x’); y = function(’y’)(x)
sage: sol = desolve(x*diff(y, x) == 2*y + x^3, y) #exact solution
sage: C = sol.variables()[0]
sage: S = Graphics()
sage: for i in srange(-2, 2, 0.2):
....: S += plot(sol.substitute(C == i - 1), (x, -2, 2))
....: S += plot(sol.substitute(C == i + 1), (x, -2, 2))
sage: y = var(’y’)
sage: S += plot_vector_field((x, 2*y + x^3), (x, -2, 2), (y, -1,

1))

Before, we take a look at the plot, we draw the equivalent plot for the numerical solutions.
Since we can not obtain an exact solution in which we can substitute the initial value, we
have to solve (12.7) and draw the corresponding approximated solution for each initial
value separately.

sage: x = var(’x’); y = function(’y’)(x)
sage: DE = x*diff(y, x) == 2*y + x^3
sage: N = Graphics()
sage: for i in srange(-2, 2, 0.2): #drawing the numerical

solutions
....: N += line(desolve_rk4(DE, y, ics = [1, i], ivar = x, step

= 0.05, end_points = [0,2]))
....: N += line(desolve_rk4(DE, y, ics = [-1, i], ivar = x,

step = 0.05, end_points = [-2 ,0]))
sage: y = var(’y’)
sage: N += plot_vector_field((x, 2*y + x^3), (x, -2, 2), (y, -1,

1))

12.2 Second Order Equations 231

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

Symbolic Solutions

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

Numerical Solutions

12.2 Second Order Equations
The desolve command is also able to solve some second order ODEs, e.g.

y′′+3y = x2−7x+31.

sage: x = var(’x’); y = function(’y’)(x)
sage: DE = diff(y, x, 2) + 3*y == x^2 - 7*x + 31
sage: sol = desolve(DE, y).expand()
sage: sol
1/3*x^2 + _K2*cos(sqrt(3)*x) + _K1*sin(sqrt(3)*x) - 7/3*x + 91/9

Since a second order ODE needs two initial conditions to be uniquely determined, Sage
introduces two variables K1, K2 representing real numbers. To assign them to Python
variable we apply the method variables to the solution.

sage: K1, K2 = sol.variables()[0], sol.variables()[1]

For a second order ODE there are two types of initial conditions we can add: Either the
values of y and its derivative y′ at a specific point x0, e.g. y(0) = 1,y′(0) = 2,

sage: desolve(DE, y, ics = [0, 1, 2]).expand()
1/3*x^2 + 13/9*sqrt(3)*sin(sqrt(3)*x) - 7/3*x - 82/9*cos(sqrt(3)*x

) + 91/9

or the value of y at two distinct points, e.g. y(0) = 1,y(−1) = 0

sage: desolve(DE, y, ics = [0, 1, -1, 0]).expand()
1/3*x^2 - 7/3*x - 82/9*cos(sqrt(3))*sin(sqrt(3)*x)/sin(sqrt(3)) +

115/9*sin(sqrt(3)*x)/sin(sqrt(3)) - 82/9*cos(sqrt(3)*x) + 91/9

It is also possible to solve some non-linear second order ODEs like

y′′+ y(y′)3 = 0.

232 Chapter 12. Differential Equations

sage: desolve(diff(y,x,2)+y*(diff(y,x,1))^3==0,y).expand()
1/6*y(x)^3 + _K1*y(x) == _K2 + x

12.2.1 How to solve a PDE: The Heat Equation
Many well-known PDEs are of second order involving the Laplacian. In this section we
describe how we can use Sage to solve the one-dimensional heat equation

∂ 2u
∂x2 (x, t) =

∂u
∂ t

(x, t) (12.8)

with the initial conditions

u(0, t) = 0, u(1, t) = 0, ∀t > 0. (12.9)

The common ansatz for the heat equation is the method of separation of variables, i.e.
we are looking for a nonzero solution of the form

u(x, t) = f (x)g(t).

sage: x, t = var(’x,␣t’); f = function(’f’)(x); g = function(’g’)(
t)

sage: u = f*g
sage: eq(x,t) = diff(u,x,2) == diff(u, t)
sage: eq(x, t)
g(t)*diff(f(x), x, x) == f(x)*diff(g(t), t)

This ansatz leads us to the equation

g(t) f ′′(x) = f (x)g′(t).

Assuming u(x, t) = f (x)g(t) to be nonzero we can divide by u on both sides.

sage: eqn = eq/u
sage: eqn(x,t)
diff(f(x), x, x)/f(x) == diff(g(t), t)/g(t)

This leads us to an equation where each side only depends on one variable,

f ′′(x)
f (x)

=
g′(t)
g(t)

.

It follows that each side has to be constant. Hence, we can separate these equations by
introducing a constant k and then solve them separately.

sage: k = var(’k’)
sage: eq1(x,t) = eqn(x,t).lhs() == k; eq2(x,t) = eqn(x,t).rhs() ==

k
sage: g(t) = desolve(eq2(x,t), g, ivar = t); g(t)
_C*e^(k*t)

12.3 The Laplace Transform 233

Thus, g(t) =Cekt for any C,k ∈ R. Now we want to find an explicit expression for f .

sage: f(x) = desolve(eq1(x,t), f, ivar = x)
Traceback (most recent call last):
...
TypeError: Computation failed since Maxima requested additional

constraints; using the ’assume’ command before evaluation *may
* help (example of legal syntax is ’assume(k>0)’, see ‘assume
?‘ for more details)

Is k positive, negative or zero?

Simply applying the desolve command raises an error. The corresponding error mes-
sage tells us that Sage needs to know whether k is positive, negative or 0. Hence, we
use assume to first deal the case k > 0.

sage: assume(k > 0)
sage: desolve(eq1, f, ivar = x)
_K1*e^(sqrt(k)*x) + _K2*e^(-sqrt(k)*x)

Thus, f (x) = K1e
√

kx+K2e−
√

kx if k is positive. However, inserting the initial conditions

0 = u(0, t) = f (0)g(t) = (K1 +K2)Cekt ,

0 = u(1, t) = f (1)g(t) = (K1e
√

k +K2e−
√

k)Cekt ,

implies K1 = K2 = 0, i.e. f ≡ 0. Thus, k > 0 is not the correct assumption. Since k = 0
would only lead to a trivial solution, we try k < 0.

sage: desolve(diff(f, x, 2) == -k*f, f, ivar = x)
_K2*cos(sqrt(k)*x) + _K1*sin(sqrt(k)*x)

Applying our initial conditions u(0, t) = u(1, t) = 0 to this solution shows that K2 = 0
and k =−π2n2 for n ∈ N. Putting everything together, we have shown that the solution
to the one dimensional heat equation with the initial conditions (12.9) is given by

u(x, t) =
∞

∑
n=1

an sin(πnx)e−π2n2t ,

where the an are specified by adding an initial condition

u(x,0) = f (x) =
∞

∑
n=1

an sin(πnx).

12.3 The Laplace Transform
Instead of the desolve command it is also possible to solve differential equations using
the Laplace transform in Sage. The Laplace transform allows us to rewrite a differential
equation with initial conditions into an algebraic equation. After solving this algebraic
equation the inverse Laplace transform returns us the solution of the differential equation.

234 Chapter 12. Differential Equations

The Laplace transform of a continuous function f : [0,∞)→ R is given by

L (f (x)) = F(s) =
∫

∞

0
e−sx f (x)dx,

where s can be any complex number. It is immediate that the Laplace transform is
linear, i.e. L (a f (x) + bg(x)) = aL (f (x)) + bL (g(x)) for a,b ∈ R+ and functions
f ,g : [0,∞)→ R. The inverse Laplace transform of a complex function F : C→ R is
given by

L −1(F(s)) =
1

2πi

∫
γ+i∞

γ−i∞
estF(s)ds,

where γ ∈ R is the largest real part of a singularity of F .

� Example 12.1

L (e−ax) =
1

s+a
,

L (xn) =
n!

sn+1 ,

L (sin(ax)) =
a

s2 +a2 ,

L (cos(ax)) =
s

s2 +a2 .

�

In Sage the Laplace transform of a function is calculated with the method laplace
and the inverse Laplace transform is returned by the method inverse_laplace.

sage: x, s = var(’x,␣s’); f(x) = sin(x)
sage: f.laplace(x, s)
x |--> 1/(s^2 + 1)
sage: (1 / (s^2 + 1)).inverse_laplace(s, x)
sin(x)

Using partial integration, we see that if f is continuously differentiable, then

L (f ′) = sL (f)− f (0). (12.10)

Similarly, if f is C2, then

L (f ′′) = s2L (f)− s f (0) f ′(0). (12.11)

These identities allow us to reformulate a differential equation as an algebraic equation.
We show this procedure along the example

y′′−3y′−4y = sin(x)

with initial conditions y(0) = 1, y′(0) =−1.
First we use the Laplace transform on both sides,

L (y′′−3y′−4y) = L (sin(x)).

12.3 The Laplace Transform 235

Laplace Transform

Laplace Transform of f (x) 7→L (f)(s) = X(s) f.laplace(s))
Inverse Laplace Transform X(s) 7→ f (x) X(s).inverse_laplace(s,x)

Solving an ODE with the Laplace Transform desolve_laplace(equation, function)

Table 12.2.: Laplace Transform

Using the linearity of the Laplace transform and the identities (12.10), (12.11), we obtain
the equation

(s2−3s−4)L (y)− sy(0)− y′(0)+3y(0) = L (sin(x)).

We already have seen above that the Laplace transform of sin(x) is given by 1
s2+1 , i.e.

(s2−3s−4)L (y)− sy(0)− y′(0)+3y(0) =
1

s2 +1
.

Inserting the given initial conditions, we conclude that the Laplace transform of y is
given by

L (y) =
1

(s2−3s−4)(s2 +1)
+

s−4
s2−3s−4

.

Thus, we the solution y is given by the inverse Laplace transformation of the above
expression which we can obtain with the method inverse_lapace.

sage: X(s) = 1/((s^2 - 3*s - 4)*(s^2 + 1)) + (s-4)/(s^2 - 3*s - 4)
sage: X(s).inverse_laplace(s, x)
3/34*cos(x) + 1/85*e^(4*x) + 9/10*e^(-x) - 5/34*sin(x)

Hence, the solution of y′′− 3y′− 4y = sin(x) is given by y(x) = 3
34 cos(x)+ 1

85e4x +
9

10e−x− 5
34 sin(x).

This whole solving strategy is carried out at once by calling the command desolve_laplace.

sage: x = var(’x’); y = function(’y’)(x)
sage: DE = diff(y, x, x) - 3*diff(y, x) - 4*y - sin(x) == 0
sage: desolve_laplace(DE, y) #general solution
1/85*(17*y(0) + 17*D[0](y)(0) + 1)*e^(4*x) + 1/10*(8*y(0) - 2*D

[0](y)(0) - 1)*e^(-x) + 3/34*cos(x) - 5/34*sin(x)
sage: desolve_laplace(DE, y, ics = [0, 1, -1])
3/34*cos(x) + 1/85*e^(4*x) + 9/10*e^(-x) - 5/34*sin(x)

As we can see in the above code snippet, it is possible to obtain a general solution by
declaring no initial conditions. In that case, Sage shows, where the values of y(0) and
y′(0) appear explicitly. Although this general expressions is not as readable as those
with declared initial conditions, it shows how the initial conditions modify the solution
function.

236 Chapter 12. Differential Equations

12.4 Systems of Linear Differential Equations
It is also possible to solve systems of linear differential equations in Sage. The used com-
mands here are desolve_system for the symbolic solution and desolve_system_rk4
for the numerical solution. The syntax remains essentially the same. There are only a few
exceptions: First, the system of differential equations as well as the dependent variables
are handed over as a list, e.g. [y1, y2, y3]. The corresponding syntax for the initial
conditions is ics = [x0, y1(x0), y2(x0), y3(x0)] when dealing with a system
of first order linear ODEs. In fact, desolve_system and desolve_system_rk4 only
accept systems of first order ODEs. But we will see that this is not a restriction, as any
system of linear differential equations can be reduced to a first order system.

12.4.1 Systems of First Order Differential Equations
A system of linear first order differential equations can be written as

y′(x) = A · y(x)

with y : I→ Rn, where I ⊂ R is an interval and A is an n×n matrix. Accordingly the
initial condition is given by a vector c ∈ Rn.

If we want to solve such an initial value problem{
y′(x) = A · y(x),
y(0) = c,

(12.12)

with

A =

 2 −2 0
−2 0 2
0 2 2

 , y(x) =

y1(x)
y2(x)
y3(x)

 , c =

 2
1
−2

 ,

in Sage, we need to hand over the system of differential equations as well as the
dependent variables as a list.

sage: x = var(’x’)
sage: y1 = function(’y1’)(x); y2 = function(’y2’)(x); y3 =

function(’y3’)(x)
sage: y = vector([y1, y2, y3]) #function vector
sage: A = matrix([[2, -2, 0], [-2, 0, 2], [0, 2, 2]])
sage: system = [diff(y[i], x) - (A * y)[i] for i in srange(3)];

system
[-2*y1(x) + 2*y2(x) + diff(y1(x), x),
2*y1(x) - 2*y3(x) + diff(y2(x), x),
-2*y2(x) - 2*y3(x) + diff(y3(x), x)]

sage: desolve_system(system, [y1, y2, y3], ics = [0, 2, 1, -2])
[y1(x) == e^(4*x) + e^(-2*x),
y2(x) == -e^(4*x) + 2*e^(-2*x),
y3(x) == -e^(4*x) - e^(-2*x)]

12.4 Systems of Linear Differential Equations 237

Systems of Differential Equations

Solving a System desolve_system([eq1, ...], [y1,...]
System Initial Conditions y1(x0) = c1, . . . ics = [x0, c1, ...]

Table 12.3.: Systems of Differential Equations

Hence,

y(x) =

 e4x− e−2x

−e4x +2e−2x

−e4x− e−2x

is the solution of the initial value problem (12.12). At this point, we want to remark that
the factors in the exponents correspond to real eigenvalues of the matrix A.

sage: A.eigenvalues()
[4, 2, -2]

What happens, if the matrix A has complex eigenvalues? For example, in the initial
value problem{

y′(x) = A · y(x)
y(0) = c

with

A =

(
3 −4
1 3

)
, c =

(
2
0

)
the matrix A has the complex eigenvalues 3±2i, as can be verified with Sage.

sage: A = matrix([[3, -4], [1, 3]])
sage: A.change_ring(QQbar).eigenvalues()
[3 + 2*I, 3 - 2*I]

This structure of the eigenvalues has an impact on the structure of the solution.

sage: x = var(’x’); y1 = function(’y1’)(x); y2 = function(’y2’)(x)
sage: y = vector([y1, y2])
sage: system = [diff(y[i], x) - (A*y)[i] for i in srange(2)]
sage: desolve_system(system, [y1, y2], ics = [0,2,0])
[y1(x) == 2*cos(2*x)*e^(3*x), y2(x) == e^(3*x)*sin(2*x)]

We see that the complex part of the eigenvalues appears as factors in the trigonometric
functions cos(2x),sin(2x), while the real part of the eigenvalues again appears as a factor
in the exponent.

12.4.2 Systems of Higher Order
Since desolve_system and desolve_system_rk4 only accept first order systems, we
have to reduce higher order systems of linear differential equations to first order systems.

238 Chapter 12. Differential Equations

We explain this reduction only for second order systems in detail since it contains all
major ideas and generalizes easily to higher order systems.

If we deal with a system of linear second order equations, we introduce for any second
derivative y′′i that is involved a new dependent variable u and extend the system by the
linear first order equation u = y′. Thus, we can replace y′′i with u′, transforming it to a
first order differential equation. To illustrate this procedure we apply it to the second
order system{

y′′1(x)− y1(x)+6y2(x)− y′(x)−3y′2(y) = 0,
y′′2(x)+2y1(x)−6y2(x)− y′1(x)+ y′2(x) = 0.

(12.13)

To reduce this to a first order system we define

u =

u1
u2
u3
u4

=

y1
y2
y′1
y′2

 .

Thus, (12.13) is equivalent to the first order system
u′1 = u3,

u′2 = u4,

u′3 = 2u1−6u2 +u3 +3u4,

u′4 =−2u1 +6u2 +u3−u4.

This, in turn, can be rewritten as u′(x) = A ·u(x) with

A =

0 0 1 0
0 0 0 1
2 −2 1 3
−2 6 1 −1

 .

Now, we can use the same procedure as explained in Section 12.4.1 to solve this system
of linear first order equations.

sage: x = var(’x’)
sage: u1 = function(’u1’)(x); u2 = function(’u2’)(x); u3 =

function(’u3’)(x); u4 = function(’u4’)(x)
sage: u = vector([u1, u2, u3, u4])
sage: A = matrix([[0, 0, 1, 0], [0, 0, 0, 1], [2, -6, 1, 3], [-2,

6, 1, -1]])
sage: system = [diff(u[i], x) - (A*u)[i] for i in srange(4)]
sage: sol = desolve_system(system, [u1, u2, u3, u4])

Since we want to determine y(x) =
(

y1(x)
y2(x)

)
, we are only interested in the first coordi-

nates u1 = y1 and u2 = y2 of the solution.

12.4 Systems of Linear Differential Equations 239

sage: sol[0] #y1
u1(x) == 1/12*(2*u1(0) - 6*u2(0) + 5*u3(0) + 3*u4(0))*e^(2*x) +

1/24*(2*u1(0) - 6*u2(0) - u3(0) + 3*u4(0))*e^(-4*x) + 3/4*u1
(0) + 3/4*u2(0) - 3/8*u3(0) - 3/8*u4(0)

sage: sol[1] #y2
u2(x) == -1/12*(2*u1(0) - 6*u2(0) - u3(0) - 3*u4(0))*e^(2*x) -

1/24*(2*u1(0) - 6*u2(0) - u3(0) + 3*u4(0))*e^(-4*x) + 1/4*u1
(0) + 1/4*u2(0) - 1/8*u3(0) - 1/8*u4(0)

This solution can be summarized in a more readable way as{
y1(x) = k1e2x + k2e−4x +3k3,

y2(x) = k4e2x− k2e−4x + k3,

with

k1 =
1

12
(2u1(0)−6u2(0)+5u3(0)+3u4(0)),

k2 =
1

24
(2u1(0)−6u2(0)−u3(0)+3u4(0)),

k3 =
1
8
(2u1(0)+2u2(0)−u3(0)−u4(0)),

k4 =−
1

12
(2u1(0)−6u2(0)−u3(0)−3u4(0)).

Iterating this process we can solve linear differential equations of arbitrary order. For
example, the initial value problem

y′′′(x)−2y′′(x)+4y′(x)+7y(x) = 0,
y(0) =−1,
y′(0) = 4,
y′′(0) =−11,

(12.14)

can be reduced to a first order system by introducing the vector

u =

u1
u2
u3

=

 y
y′

y′′

 .

Thus, the initial value problem (12.14) reduces to the following first order system
u′1 = u2

u′2 = u3

u′3 =−7u1−4u2 +2u3,

u(0) = (−1,4,−11)t ,

which is equivalent to u′ = A ·u with

A =

 0 1 0
0 0 1
−7 −4 2

 .

Now we can solve this system with desolve_system.

240 Chapter 12. Differential Equations

sage: x = var(’x’); u1 = function(’u1’)(x); u2 = function(’u2’)(x)
; u3 = function(’u3’)(x)

sage: u = vector([u1, u2, u3]); A = matrix([[0, 1, 0], [0, 0, 1],
[-7, -4, 2]])

sage: system = [diff(u[i], x) - (A*u)[i] for i in srange(3)]
sage: sol = desolve_system(system, [u1, u2, u3], ics = [0, -1, 4,

-11])
sage: sol[0]
u1(x) == -1/209*(29*sqrt(19)*sin(1/2*sqrt(19)*x) - 361*cos(1/2*

sqrt(19)*x))*e^(3/2*x) - 30/11*e^(-x)

Hence, the solution of (12.14) is given by

y(x) =−
19
√

19sin
(1

2

√
19x
)

209
−361cos

(
1
2

√
19x
)

e
3
2 x− 30

11
e−x.

12.4.3 Numerical Solving
To solve first order systems numerically we use desolve_system_rk4. Again, the out-
put consists of a list of points [(t0, u1(t0), ..., uk(t0)), ..., (tn, u1(tn),
..., uk(tn))] representing the function values of the approximated solution curves
u1(t), . . . ,uk(t). The approximated curves ui can be visualized by applying the line com-
mand to an accordingly extracted sublist [(t0, ui(t0)), ..., tn,ui(tn))]. We
show the usage of desolve_system_rk4 in the example of the Lotka-Voltera-predator-
prey-model. This system of first order differential equations models the variation of a
set of prey and predators,{

u′(t) = au(t)−bu(t)v(t),
v′(t) = cv(t)+dbu(t)v(t),

where u is the number of preys (for example rabbits) and v is the number of predators (for
example foxes). The parameters a,b,c,d describe the different evolution of popoluation:

• a is the natural growth of the rabbits without foxes to eat them,

• b is he decrease of rabbits, when foxes kill them,

• c is the decrease of foxes without any rabbits to eat,

• d indicates how many rabbits are needed for a new fox to appear.

Of course we can try to solve this system in full generality with desolve_system.

sage: a, b, c, d, t = var(’a,␣b,␣c,␣d,␣t’); u = function(’u’)(t);
v = function(’v’)(t)

system = [diff(u, t) - a*u + b*u*v, diff(v, t) + c*v - d*b*u*v]
sage: desolve_system(system, [u, v], ivar = t)
[u(t) == ilt((b*laplace(u(t)*v(t), t, g1655) - u(0))/(a - g1655),

g1655, t),
v(t) == ilt((b*d*laplace(u(t)*v(t), t, g1655) + v(0))/(c + g1655)

, g1655, t)]

12.4 Systems of Linear Differential Equations 241

The symbolic solution does not give us many information. The output ilt stand for
inverse Laplace transform and appears if Sage can not find an explicit inverse Laplace
transform on its own. Thus, it is convenient to ask for a numerical approximation. There,
we first have to fix values for the parameters:

a = 1, b = 0.1, c = 1.5, d = 075

and the initial values

u(0) = 10, v(0) = 5.

sage: u, v, t = var(’u,␣v,␣t’)
sage: a, b, c, d = 1., 0.1, 1.5, 0.75
sage: S = desolve_system_rk4([a*u - b*u*v, -c*v + d*b*u*v], [u, v

], ics = [0, 10, 5], ivar = t, end_points = [0, 15])

S is a list of points [(t0, u(t0), v(t0)), ((t1), u(t1), v(t1)), ..., (tn,
u(tn), v(tn))]. Therefore, we first have to extract the pairs (ti,u(ti))i and (ti,v(ti))
to draw the corresponding curves u and v.

sage: Qr = [[i, j] for i,j,k in S] #the rabbits
sage: Qf = [[i, k] for i,j,k, in S] #the foxes
sage: P = Graphics()
sage: P += line(Qr, color = ’blue’)
sage: P += line(Qf, color = ’red’)
sage: P.axes_labels([’time’, ’population’])
None
sage: P += text(’Rabbits’, (12, 37), fontsize = 10, color = ’blue’

)
sage: P += text(’Foxes’, (12 , 7), fontsize = 10, color = ’red’)

0 2 4 6 8 10 12 14

5

10

15

20

25

30

35

40

Rabbits

Foxes

We could also draw the curves (u(t),v(t)) which are the integral curves of the vector
field defined by (??) for different starting values (u(0),v(0)).

242 Chapter 12. Differential Equations

sage: n = 10; R = srange(6, 18, 12/n); F = srange(3, 9, 6/n) #set
of starting values

sage: V = plot_vector_field([a*u - b*u*v, -c*v + d*b*u*v], (u, 0,
60), (v, 0, 36)) #start with vectorfield

sage: for j in srange(n): #solve for all starting pairs
....: S = desolve_system_rk4([a*u - b*u*v, -c*v + d*b*u*v], [u,

v], ics = [0, R[j], F[j]], ivar = t, end_points = [0, 15])
....: Q = [[j, k] for i, j, k in S] #extracting the pairs (u(t)

, v(t))
....: V += line(Q, color = hue(0.8 - j/(2*n))) #adding line

with small color change
sage: V.axes_labels([’Rabbits’, ’Foxes’])
None

0 10 20 30 40 50 60
Rabbits

0

5

10

15

20

25

30

35

Fo
xe

s

We finish this section by discussing a further example where we are interested in the
integral curves (x(t),y(t)) of the vector field{

x′(t) = y(t),
y′(t) = 0.5y(t)− x(t)− y(t)3.

As above, we would like to have the vector field and the integral curves in one picture.
However, the vector field values are so small at the origin that we can not recognize the
direction anymore.

sage: x, y, t = var(’x,␣y,␣t’)
sage: DE = [y, 0.5*y- x - y^3] #the system
sage: V = plot_vector_field(DE, (x, -3, 3), (y, -2.5, 2.5))

12.4 Systems of Linear Differential Equations 243

3 2 1 0 1 2 3

2

1

0

1

2

Therefore, we first write a small procedure normalizing the vectors, i.e. we sacrifice the
information of the length of the vector field arrows to emphasize their direction.

sage: def p(x,y):
....: v = vector(DE)
....: return v/v.norm()
sage: V = plot_vector_field(p(x, y), (x, -3, 3), (y, -2.5, 2.5))

Next, we add a family of integral curves to this plot. Remember, that the solution
of the system gives of list of points (ti,x(ti),y(ti))i where we have to extract the pairs
(x(ti),y(ti)) before we can draw the curves with line.

sage: for j in srange(-2, 2, 0.1): #solve for all starting pairs
....: S1 = desolve_system_rk4(DE, [x, y], ics = [0, j, 2.5],

ivar = t, end_points = [0, 40])
....: Q1 = [[j, k] for i, j, k in S1] #extracting the pairs (x(

t), y(t))
....: V += line(Q1, color = hue((j+2)/4)) #adding line with

small color change
....: S2 = desolve_system_rk4(DE, [x, y], ics = [0, j, -2.5],

ivar = t, end_points = [0, 40])
....: Q2 = [[j, k] for i, j, k in S2] #extracting the pairs (x(

t), y(t))
....: V += line(Q2, color = hue((j+2)/4))

3 2 1 0 1 2 3

2

1

0

1

2

V

A Git It . 247
A.1 Getting Started
A.2 How to Use Git

Bibliography . 253
Online
Books

Index . 255

Appendix

A. Git It

A.1 Getting Started
Git is a version-control system that simplifies working on a collaborative level. It has
the great advantage that all changes which are made during the development process
never get lost. In particular, one can always switch back to previous versions, compare
them with others and easily undo mistakes. Due to its powerful algorithms, it is
possible to work simultaneously, because git is able to merge changes done by different
collaborators.

A.1.1 Installing Git
The installation on Debian-based systems is easy. Run the command

$ sudo apt install git

and you are done. However, the installation of git on macOS or Windows requieres
more several steps:

1. Visit https://git-scm.com/download/win and download the setup file.

2. Execute it and follow the instructions.

3. Start git with the application git bash.

R Alternatively, you can use graphical user interfaces for git such as “git fork” (freely
downloadable from https://git-fork. com /). But there are many other free clients
available on the market.

In the following, we explain the usage of git within the command line. If you use
a graphical git client, you can find the corresponding buttons in the interface: the
commands still remain the same here.

https://git-scm.com/download/win
https://git-fork.com/

248 Chapter A. Git It

A.2 How to Use Git
To use git collaboratively, you need to be registered on a remote server. The most
common platforms are GitHub and GitLab. Students and employees of the University
of Potsdam have free access to the University GitLab server.

A.2.1 Clone and Pull
We have already organized a repository for this course. There, you can find recent
exercise sheets, lecture notes and material regarding the lecture. If you want to clone
this repository to your local machine, first switch to a directory of your choice:

$ cd directory/of/your/choice

Afterwards, clone our repository with the following command:

$ git clone https://gitup.uni-potsdam.de/micjung/sagecourse.git

The content is now available in the directory directory/of/your/choice.
To keep up the pace with our weekly updates, you have to pull the repository from

the remote server on a regular basis. To do so, switch to the directory above on your
local machine. First, you have to make sure that you are in the correct branch:

$ git checkout master

Now, you pull the recent version of our repository by typing

$ git pull

A.2.2 Create your own Repository
If you want to share a git repository with others, you have to use a remote server. The
University of Potsdam offers a GitLab server for git projects. To create a remote git
project, you need to sign in first:

1. Visit https://gitup.uni-potsdam.de/ and choose “University of Potsdam” in
the list.

2. Log in with your personal central university account and accept the terms of use.

3. You are now free to create your own projects or add this one to your list.

If you have followed these instructions, you can see the button “New Project” in the
upper right corner. Click on it to create your own awesome project and fill in all
necessary information. To clone this project to your local machine, type

$ git clone https://gitup.uni-potsdam.de/youraccount/yourproject.git

Furthermore, it is possible to create a git repository locally. This can be achieved as
follows:

https://gitup.uni-potsdam.de/

A.2 How to Use Git 249

$ git init

This command creates a new local git repository in the local directory. To link this
repository with a preexisting remote repository, you can type

$ git remote add origin https://gitup.uni-potsdam.de/youraccount/
yourproject.git

A.2.3 Stage Area, Commits and Push
Now that you have your own git repository, you probably want to work on it. Just make
changes in the directory’s git repository in your file browser as usual. If you want to
save your changes, you have to communicate it to git. Go back to the bash and type in

$ git add --all

Now, all changes are moved to the so-called stage area.1 Roughly speaking, your
changes are now saved in an intermediate state. To make these changes official, you
have to commit your changes:

$ git commit -m 'a short message about your changes'

When you want to update your remote git project with these changes, type

$ git push

Your remote repository should be up-to-date now.

A.2.4 Branches
Imagine you work together with a fellow student on a common git project, and both of
you push their changes at the same time. Evidently, this causes conflicts. For this reason,
git provides branches. The main branch, where all changes converge, is the master
branch. To switch to master, type

$ git checkout master

as we did before for our pull request. If you want to create a new branch from master,
simply write

$ git checkout -b your_new_branch

Now, all commits are done in this branch without affecting the master branch. To share
this branch and all its changes on the remote server, type

$ git push -u origin your_new_branch

1Notice that you can also move single files to the stage area. Just type the file name instead of --all.

250 Chapter A. Git It

When you have finished your work, you should merge it into the branch master again.
Make sure to inform your coworkers about this.2 Fortunately, git provides powerful
algorithms to do the merging automatically. Change to the master branch again and
use´

$ git merge your_new_branch

If the algorithm fails, the corresponding conflicts will be reported. If that happens, fix
them manually and finally commit the changes. Usually, your new branch is not needed
anymore. You can delete it with

$ git branch -D your_new_branch

A.2.5 Workflow Example
A typical workflow with git can look as follows:

1. Open the git-repository (using the terminal or a git-client).

2. Download the current master branch from the remote server:

$ git pull

3. Create a new branch for your changes:

$ git git checkout -b mychanges master

4. Work on the project.

5. Stage the changed files:

$ git add --all

6. Commit the changes.

$ git commit -m 'nothing done'

7. Change back to the master branch:

$ git checkout master

8. Pull the newest code from the remote server:

$ git pull

2For this reason, the GitLab platform provides so-called merge requests. This is a convenient way to
double-ckeck changes with your coworkers.

A.2 How to Use Git 251

9. Merge the new branch with the master branch:

$ git merge mychanges

10. Delete the branch mychanges:

$ git branch -D mychanges

11. Inform your coworkers about the changes and push the newest version to the
remote server:

$ git push

Bibliography

Online
[1] Dataquest. Jupyter Notebook for Beginners: A Tutorial. URL: https ://www .

dataquest.io/blog/jupyter-notebook-tutorial/. Accessed: 2020-04-12
(cited on page 15).

[2] Project Jupyter. Homepage. URL: https://jupyter.org/. Accessed: 2020-04-11
(cited on page 15).

[3] Project SageMath. Sage Reference Manual. URL: https://doc.sagemath.org/
html/en/reference/. Accessed: 2020-05-12 (cited on pages 94, 112).

[5] The Daring Fireball. Markdown: Syntax. URL: https://daringfireball.net/
projects/markdown/syntax/. Accessed: 2020-04-12 (cited on page 16).

[6] Vel. The Legrand Orange Book. URL: https://www.latextemplates.com/
template/the-legrand-orange-book. Accessed: 2020-04-11 (cited on page 2).

Books
[4] Victor Shoup. A computational introduction to number theory and algebra. Second.

Cambridge University Press, Cambridge, 2009, pages xviii+580. ISBN: 978-0-521-
51644-0 (cited on page 136).

[7] Paul Zimmermann et al. Computational Mathematics with SageMath. Freely down-
loadable from: http://sagebook.gforge.inria.fr/english.html. Dec.
2018. Accessed: 2020-04-11 (cited on pages 2, 193).

https://www.dataquest.io/blog/jupyter-notebook-tutorial/
https://www.dataquest.io/blog/jupyter-notebook-tutorial/
https://jupyter.org/
https://doc.sagemath.org/html/en/reference/
https://doc.sagemath.org/html/en/reference/
https://daringfireball.net/projects/markdown/syntax/
https://daringfireball.net/projects/markdown/syntax/
https://www.latextemplates.com/template/the-legrand-orange-book
https://www.latextemplates.com/template/the-legrand-orange-book
http://sagebook.gforge.inria.fr/english.html

Index

A
algebraic number field 127
assumptions 24

B
Bézout relation 144
binomial cofficient 17
boolean . 124

C
character Strings 68
characteristic polynomial 173
characteristic polynomials 174
code cell . 15
color maps 109
colormaps 92
compount domains 125
comprehension form 61
computational domain 121
conditional 51
contour plot 93

D
data structures 59
density plot 92
derivative . 36
dictionary . 71
differential equations 217

duplicated data structure 72

E
eigenspace 173, 179
eigenvalues 173, 179
eigenvectors 179
elementary domain 122
elimination ideal 202
enumerative loop 52
equation . 28
Euclidean algorithm 144

F
factorial . 17
factorization of a polynomial . . 148
finite field 132
floating-point numbers 123

real floating-point numbers . 123
for loop see enumerative loop
formal power series 152

truncated power series 153
fraction . 27
fraction field 126, 150
free module 159

G
Gaussian elimination 165
git . 247

256 INDEX

graphics primitive 95

H
homogeneous function 224

I
ideal

variety 195
ideals . 145
immutable data structure 72
integer modulo ring 124
integers . 122
integral

definite integral 37
indefinite integral 38

irreducible polynomial 148

J
Jupyter . 15
Jupyter Notebook see Jupyter

K
Krylov sequence 174

L
lambda construction 50
laplace transform 234
lazy power series 156
limit . 34
linear system 170
list . 59

M
Markdown cell 16
matrices . 125
matrix group 160
matrix normal form

Frobenius normal form 177
Hermite normal form 168
Jacobi normal form 181
Smith normal form 168
reduced echelon form 167

minimal polynomial 174
multivariate polynomial ring . . . 125
mutable data structure 72

N
normal form 122
numerical approximation 17

P
Padé approximation 154

parent . 121
pivot . 166
plot . 18, 77
plot3d 18, 107
polynomial 27, 125
polynomial ring 125, 140
polynomial system 185
primality tests 136

pseudo-primality tests 136
true primality tests 136

print . 57
Project Jupyter see Jupyter
Python function 49
Python variable 21

Q
quotient ring 146, 197

R
radical of an ideal 200
rank profile 170
Rational Field 123
rational function 27, 150
rational reconstruction 133
roots . 31
roots of a polynomial 149

S
sequence . 34
series . 34

power series 35
Taylor series 35

Sets . 68
shared data structure 72
simplification 25
square-free decomposition 149
substitute . 23
sum . 32
symbolic expression 23, 128
symbolic function 32
symbolic ring 128
symbolic variable 22

T
triangular decomposition 209
trigonometric functions 18
tuples . 73

V
variable see Python variable,

symbolic variable

INDEX 257

vector . 40
vector spaces 159

W
while loop . 54

Z
zero-dimensional ideals 208

	Part I — The Basics
	1 Why Sage?
	2 Getting Started
	2.1 Installing Sage
	2.2 The Jupyter Notebook
	2.3 First Calculations
	2.4 Useful Features

	3 Elementary Algebra and Calculus
	3.1 Variables and Symbolic Expressions
	3.2 Elementary Algebra
	3.3 Calculus

	Part II — Programming and Data Structure
	4 Algorithmics
	4.1 Procedures and Functions
	4.2 Conditionals
	4.3 Loops
	4.4 Output

	5 Lists and Other Data Structures
	5.1 Lists
	5.2 Character Strings
	5.3 Finite Sets
	5.4 Dictionaries
	5.5 More on Data Structures

	Part III — Graphics
	6 2D Graphics
	6.1 Drawing Curves
	6.2 Vector Fields
	6.3 Complex Functions
	6.4 Density and Contour Plots
	6.5 Data Plot
	6.6 More Graphic Primitives

	7 3D Graphics
	7.1 Plotting Functions
	7.2 Vector Fields
	7.3 More Graphic Primitives

	Part IV — Algebra and Symbolic Computation
	8 Computational Domains
	8.1 Sage is Object-Oriented
	8.2 Elements and Parents
	8.3 Domains with a Normal Form
	8.4 Expressions vs. Computational Domains
	8.5 Primality Test

	9 Polynomial Rings
	9.1 Euclidean Arithmetic
	9.2 Factorization and Roots
	9.3 Rational Functions
	9.4 Formal Power Series

	10 Matrices
	10.1 Constructions and Elementary Manipulations
	10.2 Matrix Computations
	10.3 Spectral Decomposition

	11 Polynomial Systems
	11.1 Polynomials in Several Variables
	11.2 Polynomial Systems and Ideals
	11.3 Solving Strategies

	12 Differential Equations
	12.1 First Order Ordinary Differential Equations
	12.2 Second Order Equations
	12.3 The Laplace Transform
	12.4 Systems of Linear Differential Equations

	Part V — Appendix
	A Git It
	A.1 Getting Started
	A.2 How to Use Git

	Bibliography
	Online
	Books

	Index

