apl. Prof. Dr. Gert Zöller

apl. Professor

Kontakt
Raum:
2.09.1.04
Telefon:
+49 331 977-1175

...
  • Seit 2018: Außerplanmäßiger Professor für Angewandte Mathematik an der Universität Potsdam
  • Seit 2008: Wissenschaftlicher Mitarbeiter und Dozent an der Professur für Angewandte Mathematik, Institut für Mathematik, Universität Potsdam
  • 2006: Lehrbefugnis ("Privatdozent"), Universität Potsdam
  • 2006: Habilitation (Dr. rer. nat. habil.), Universität Potsdam
  • 2005: Gastwissenschaftler an der University of Southern California (USC) und der University of California, Santa Barbara (UCSB)
  • 1999-2008: wissenschaftlicher Mitarbeiter an der Universität Potsdam (Institut für Physik/Institut für Mathematik/Sonderforschungsbereich 555)
  • 1999: Promotion (Dr. rer. nat.), Universität Potsdam
  • 1995: Diplom (Dipl. Phys.), Rheinische Friedrich-Wilhelms-Universität Bonn
  • 2015: Organisator des "9th International Workshop on Statistical Seismology" in Potsdam
  • 2010-2014: "Scientific Officer" für "Earthquake Hazards" in der Division "Natural Hazards" der European Geosciences Union
  • seit 2009: Vertrauensdozent der Heinrich-Böll-Stiftung
  • 2006-2014: Associate Editor von Nonlinear Processes in Geophysics
  • 2006: Gast-Herausgeber von Tectonophysics
  • Seismological Society of America (SSA)
  • American Geophysical Union (AGU)
  • European Geosciences Union (EGU)
  • Deutscher Hochschulverband (DHV)

Mathematik I für Wirtschaftswissenschaftler
Link zum Moodle-Kurs: https://moodle2.uni-potsdam.de/course/view.php?id=21695

(In den Moodle-Kursen finden Sie alle wichtigen Informationen zu den Lehrveranstaltungen, wie Übungsplanung, Literaturhinweise, Informationen zur Prüfung etc.).

  • Shcherbakov, R., Zhuang, J., Zöller, G. and Ogata, Y. (2019). Forecasting the magnitude of the largest expected earthquake, Nature Communications, 10: 4051. https://www.nature.com/articles/s41467-019-11958-4.
  • Zöller, G. (2018). A Statistical Model for Earthquake Recurrence Based on the Assimilation of Paleoseismicity, Historic Seismicity, and Instrumental Seismicity, Journal of Geophysical Research: Solid Earth, 123. https://doi.org/10.1029/2017JB015099
  • Fiedler, B., Hainzl, S., Zöller, G. and Holschneider, M. (2018). Detection of Gutenberg–Richter b-value changes in earthquake time series Bulletin of the Seismological Society of America (2018) 108 (5A): 2778–2787. https://doi.org/10.1785/0120180091.
  • Fiedler, B., Zöller, G., Holschneider, M. and Hainzl, S. (2018). Multiple Change‐Point Detection in Spatiotemporal Seismicity Data, Bulletin of the Seismological Society of America (2018) 108 (3A): 1147-1159. https://doi.org/10.1785/0120170236.

2020

  • Richter, G., Hainzl, S., Dahm, T., and Zöller, G.
    Stress-based, statistical modeling of the induced seismicity at the Groningen Gas Field, The Netherlands,
    Environmental Earth Sciences, in revision (2020).

2019

  • Shcherbakov, R., Zhuang, J., Zöller, G. and Ogata, Y.,  
    Forecasting the magnitude of the largest expected earthquake,
    Nature Communications, 10: 4051, doi 10.1038/s41467-019-11958-4 (2019).
  • Salamat, M., Zöller, G. and Amini, M.,
    Prediction of the Maximum Expected Earthquake Magnitude in Iran: From a Catalog with Varying Magnitude of Completeness and Uncertain Magnitudes,
    Pure and Applied Geophysics 176 (8), 3425–3438, doi 10.1007/s00024-019-02141-3 (2019).

 

2018

  • M. Salamat, G. Zöller, M. Zare, and M. Amini,
    The maximum expected earthquake magnitudes in different future time intervals of six seismotectonic zones of Iran and its surroundings,
    Journal of Seismology, 22, 1485–1498 (2018).

  • B. Fiedler, S. Hainzl, G. Zöller, and M. Holschneider,
    Detection of Gutenberg–Richter b--value changes in earthquake time series, data,
    Bulletin of the Seismological Society of America, doi 10.1785/0120180091 (2018).

  • G. Zöller,
    A statistical model for earthquake recurrence based on the assimilation of paleo-, historic, and instrumental seismicity,
    Journal of Geophysical Research, 123, doi 10.1029/2017JB015099. (2018).

  • B. Fiedler, G. Zöller, M. Holschneider, and S. Hainzl,
    Multiple change-point detection in spatio-temporal seismicity data,
    Bulletin of the Seismological Society of America, 108(3A), 1147-1159, doi 10.1785/0120170236 (2018).

2017

  • G. Zöller and M. Holschneider,
    Reply to "Comment on 'The Maximum Possible and the Maximum Expected Earthquake Magnitude for Production-Induced Earthquakes at the Gas Field in Groningen, The Netherlands' by Mathias Raschke",
    Bulletin of the Seismological Society of America, 108(2), 1929-1930, doi 10.1785/0120170131. (2017).

  • G. Zöller,
    Comment to ``Estimation of Earthquake Hazard Parameters from Incomplete Data Files. Part III. Incorporation of Uncertainty of Earthquake-Occurrence Model'' by Andrzej Kijko, Ansie Smit, and Markvard A. Sellevoll,
    Bulletin of the Seismological Society of America, 107(4), 1975-1978, doi 10.1785/0120160193. (2017).

  • M. Salamat, M. Zare, G. Zöller, and M. Holschneider,
    Calculation of confidence intervals for the maximum magnitude of earthquakes in different seismotectonic zones of Iran,
    Pure and Applied Geophysics, 174(3), 763-777, doi 10.1007/s00024-016-1418-5 (2017).

2016

  • G. Zöller and M. Holschneider,
    The maximum possible and the maximum expected earthquake magnitude for production-induced earthquakes at the gas field in Groningen, The Netherlands,
    Bulletin of the Seismological Society of America, 106(6), doi 10.1785/0120160220, in press (2016).

  • G. Zöller and M. Holschneider,
    The earthquake history in a fault zone tells us almost nothing about mmax,
    Seismological Research Letters, 87(1), 132-137, doi 10.1785/0220150176 (2016).

2015

  • G. Zöller, S. Ullah, D. Bindi, S. Parolai, and N. Mikhailova,
    The largest expected earthquake magnitudes in Central Asia: Statistical inference from an earthquake catalog with uncertain magnitudes,
    The Geological Society of London, Special Publication "Seismicity, Fault Rupture and Earthquake Hazards in Slowly Deforming Regions", in press (2015).

  • S. Maghsoudi, S. Cesca, S. Hainzl, T. Dahm, G. Zöller, and D. Kaiser,
    Maximum magnitude of completeness in a salt mine,
    Bulletin of the Seismological Society of America, 105(3), 1491-1501, doi 10.1785/0120140039 (2015).

  • L. Wang, G. Zöller, and S. Hainzl,
    Joint determination of slip and stress drop in a Bayesian inversion approach: A case study for the 2010 M8.8 Maule earthquake,
    Pure and Applied Geophysics, 172, 375-388, doi 10.1007/s00024-014-0868-x (2015).

2014

  • G. Zöller and M. Holschneider,
    Induced seismicity: What is the size of the largest expected earthquake?,
    Bulletin of the Seismological Society of America, 104(6), 3153-3158, doi 10.1785/0120140195 (2014).

  • L. Wang, S. Hainzl, and G. Zöller,
    Assessment of stress coupling among the inter-, co- and post- seismic phases related to the 2004 M6 Parkfield earthquake,
    Geophysical Journal International, 197, 1858-1868, doi 10.1093/gji/ggu102 (2014).

  • G. Zöller and Y. Ben-Zion,
    Large earthquake hazard of the San Jacinto fault zone, CA, from long record of simulated seismicity assimilating the available instrumental and paleoseismic data,
    Pure and Applied Geophysics, 171(11), 2955-2965, doi 10.1007/s00024-014-0783-1 (2014).

  • M. Holschneider, G. Zöller, R. Clements, and D. Schorlemmer
    Can we test for the maximum possible earthquake magnitude?,
    Journal of Geophysical Research, 119(3), 2019-2028, doi 10.1002/2013JB010319 (2014).

  • G. Zöller, M. Holschneider, S. Hainzl, and J. Zhuang
    The largest expected earthquake magnitudes in Japan: The statistical perspective,
    Bulletin of the Seismological Society of America, 104(2), 769-779, doi 10.1785/0120130103 (2014).

2013

  • G. Zöller
    Convergence of the frequency-magnitude distribution of global earthquakes: Maybe in 200 years,
    Geophysical Research Letters, 40(15), 3873-3877, doi 10.1002/grl.50779 (2013).

  • S. Hainzl, G. Zöller, G. Brietzke, and K.-G. Hintzen
    Comparison of deterministic and stochastic earthquake simulators for fault interactions in the Lower Rhine Embayment, Germany,
    Geophysical Journal International, 195(1), 684-694, doi 10.1093/gji/ggt271 (2013).

  • G. Zöller, M. Holschneider, and S. Hainzl
    The maximum earthquake magnitude in a time horizon: Theory and case studies,
    Bulletin of the Seismological Society of America, 103(2a), 860-875, doi 10.1785/0120120013 (2013).

2012

  • L. Wang, S. Hainzl, G. Zöller, and M. Holschneider
    Stress- and aftershock- constrained joint inversions for co- and post- seismic slip applied to the 2004 M6.0 Parkfield earthquake,
    Journal of Geophysical Research,117(B7), doi:10.1029/2011JB009017 (2012).

2011

  • M. Holschneider, G. Zöller, and S. Hainzl
    Estimation of the maximum possible magnitude in the framework of the doubly-truncated Gutenberg-Richter model,
    Bulletin of the Seismological Society of America, 101(4), 1649-1659, doi 10.1785/0120100289 (2011).

2010

  • G. Zöller, S. Hainzl, M. Holschneider, and G. Brietzke
    Steady-state solutions of rupture propagation in an earthquake simulator governed by rate and state dependent friction,

    The European Physical Journal Special Topics, 191, 105-115, doi 10.1140/epjst/e2010-01344-6 (2010).

  • S. Hainzl, G. Brietzke, and G. Zöller
    Quantitative earthquake forecasts resulting from static stress-triggering,
    Journal of Geophysical Research, 115(B11), B 11311, doi 10.1029/2010JB007473 (2010).

  • S. Shin, G. Zöller, M. Holschneider, and S. Reich
    A multigrid solver for modeling complex interseismic stress fields,
    Computers & Geosciences, 37(8), 1075-1082, doi 10.1016/j.cageo.2010.11.011 (2010).

  • G. Zöller, S. Hainzl, and M. Holschneider
    Recurrence of large earthquakes: Bayesian inference from catalogs in the presence of magnitude uncertainties,

    Pure and Applied Geophysics, 167(6-7), 845-853, doi 10.1007/s00024-010-0078-0 (2010).

  • S. Hainzl, G. Zöller, and R. Wang
    Impact of the receiver fault distribution on aftershock activity,
    Journal of Geophysical Research, 115,   B 05315, doi 10.1029/2008JB006224 (2010).

2009

  • G. Zöller, S. Hainzl, Y. Ben-Zion, and M. Holschneider - Review article
    Critical states of seismicity: From models to practical seismic hazard estimates,
    Encyclopedia of Complexity and System Science  (Section: Complexity in earthquakes, tsunamis, and volcanoes, and forecasting and early warning of their hazards; ed. by W.H.K. Lee), Springer, ISBN: 978-0-387-75888-6 (2009).

2008

  • G. Zöller, S. Hainzl, and M. Holschneider
    Recurrent large earthquakes in a fault region: What can be inferred from small and intermediate events?
    Bulletin of the Seismological Society of America, 98(6), 2641-2651, doi 10.1785/0120080146 (2008).

2007

  • G. Zöller and S. Hainzl
    Recurrence time distributions of large earthquakes in a stochastic model for coupled fault systems: the role of fault interaction,
    Bulletin of the Seismological Society of America 97(5), 1679-1697, doi 10.1785/0120060262 (2007).

  • G. Zöller, Y. Ben-Zion, M. Holschneider, and S. Hainzl
    Estimating recurrence times and seismic hazard of large earthquakes on an individual fault,
    Geophysical Journal International, 170, 1300-1310, doi 10.1111/j.1365-246X.2007.03480.x (2007).

2006

  • S. Hainzl, G. Zöller, and I. Main
    Introduction to special issue: Dynamics of seismicity patterns and earthquake triggering,
    Tectonophysics, 424, 135-138,  doi 10.1016/j.tecto.2006.03.034 (2006).

  • G. Zöller, S. Hainzl, Y. Ben-Zion, and M. Holschneider
    Earthquake activity related to seismic cycles in a model for a heterogeneous strike-slip fault,
    Tectonophysics, 423, 137-145, doi 10.1016/j.tecto.2006.03.007 (2006).

  • G. Zöller
    Critical states of seismicity - modeling and data analysis, Habilitation thesis, University of Potsdam (2006).
    PDF (18.8 MB)

2005

  • G. Zöller, M. Holschneider, and Y. Ben-Zion
    The role of heterogeneities as a tuning parameter of earthquake dynamics,
    Pure and Applied Geophysics, 162, 1027-1049, doi 10.1007/s00024-004-2660-9 (2005).

  • G. Zöller, S. Hainzl, M. Holschneider, and Y. Ben-Zion
    Aftershocks resulting from creeping sections in a heterogeneous fault,
    Geophysical Reserach Letters, 32, L03308, doi 10.1029/2004GL021871 (2005).
    Selected as AGU Journal Highlight
      

2004

  • G. Zöller, M. Holschneider, and Y. Ben-Zion
    Quasi-static and quasi-dynamic modeling of earthquake failure at intermediate scales,
    Pure and Applied Geophysics, 161, 2103-2118, doi 10.1007/s00024-004-2551-0   (2004).

2003

  • C. Narteau, P. Shebalin, S. Hainzl, G. Zöller, and M. Holschneider
    Emergence of a band-limited power law in the aftershock decay rate of a slider-block model,
    Geophysical Research Letters, 30, doi 10.1029/2003GL017110 (2003).

  • S. Hainzl, G. Zöller, and F. Scherbaum
    Earthquake clusters resulting from delayed rupture propagation in finite fault segments,
    Journal of Geophysical Research 108, doi 10.1029/2001JB000610 (2003).

2002

  • I. Zaliapin, Z. Liu, G. Zöller, V. Keilis-Borok, and D. Turcotte
    On increase of earthquake correlation length prior to large earthquakes in California,
    Computational Seismology 33, 141-161 (2002).

  • G. Zöller and S. Hainzl
    A systematic spatiotemporal test of the critical point hypothesis for large earthquakes,
    Geophysical Research Letters 29, doi 10.1029/2002GL014856 (2002).

  • G. Zöller, S. Hainzl, J. Kurths, and J. Zschau
    A systematic test on precursory seismic quiescence in Armenia,
    Natural Hazards 26, 245-263 (2002).

2001

  • G. Zöller and S. Hainzl
    Detecting premonitory seismicity patterns based on critical point dynamics,
    Natural Hazards and Earth System Sciences 1, 93-98 (2001).

  • S. Hainzl and G. Zöller
    The role of disorder and stress concentration in nonconservative fault systems,
    Physica A 294, 67-84 (2001).

  • G. Zöller, S. Hainzl, and J. Kurths
    Observation of growing correlation length as an indicator for critical point behavior prior to large earthquakes,
    Journal of Geophysical Research 106, 2167-2176 (2001).

2000

  • S. Hainzl, G. Zöller, and J. Kurths
    Self-organization of spatio-temporal earthquake clusters,
    Nonlinear Processes in Geophysics 7, 21-29 (2000).

  • S. Hainzl, G. Zöller, J. Kurths, and J. Zschau
    Seismic quiescence as an indicator for large earthquakes in a system of self-organized criticality,
    Geophysical Research Letters 27, 597-600 (2000).

1999

  • G. Zöller
    Analyse raumzeitlicher Muster in Erdbebendaten,
    PhD thesis (in German), University of Potsdam (1999).
    PDF (8.2 MB)

  • S. Hainzl, G. Zöller, and J. Kurths
    Similar power laws for fore- and aftershock sequences in a spring-block model for earthquakes,
    Journal of Geophysical Research 104, 7243-7253 (1999).

  • S. Hainzl, G. Zöller, and J. Kurths
    Self-organized criticality model for earthquakes: quiescence, foreshocks, and aftershocks,
    International  Journal of Bifurcations and Chaos 9, 2249-2255 (1999).

  • Statistische Seismologie
  • Statistische und physikalische Modelle für Erdbeben und andere Naturkatastrophen
  • Seismische Gefährdung
  • Extremwertstatistik

 

Campus Golm: Haus 9, Zi. 1.04 (Assistenz Frau Franz, Zi. 1.09)

Campus Griebnitzsee: Haus 1, Zi. 1.19

Telefon: +49 331 977 1175

Fax: +49 331 977 1500

Email: zoeller(at)uni-potsdam.de

Sprechstunde: nach Lehrveranstaltungen und nach Vereinbarung

Sprechstunde (Prüfungsausschuss Mathematik): mittwochs, 10-11 Uhr (abweichende Termine in der vorlesungsfreien Zeit)