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Preface

Classical mechanics is built upon the concept of determinism. Determinism
means that knowledge of the current state of a mechanical system completely
determines its future (as well as its past). During the 19th century, determinism
became a guiding principle for advancing our understanding of natural phenom-
ena, from empirical evidence to first principles and natural laws. In order to
formalise the concept of determinism, the French mathematician Pierre Simon
Laplace postulated an intellect now referred to as Laplace’s demon:

We may regard the present state of the universe as the effect of its past and the cause
of its future. An intellect which at a certain moment would know all forces that set
nature in motion, and all positions of all its items of which nature is composed, if this
intellect were also vast enough to submit these data to analysis, it would embrace in a
single formula the movements of the greatest bodies of the universe and those of the
tiniest atoms; for such an intellect nothing would be uncertain and the future just like
the past would be present before its eyes.1

Laplace’s demon has three properties: (i) exact knowledge of the laws of nature;
(ii) complete knowledge of the state of the universe at a particular point in time
(of course, Laplace was writing in the days before knowledge of quantum me-
chanics and relativity); and (iii) the ability to solve any form of mathematical
equation exactly. Except for extremely rare cases, none of these three condi-
tions are met in practice. First, mathematical models generally provide a much
simplified representation of nature. In the words of the statistician George Box:
“All models are wrong, some are useful”. Second, reality can only be assessed
through measurements which are prone to measurement errors and which can
only provide a very limited representation of the current state of nature. Third,
most mathematical models cannot be solved analytically; we need to approxi-
mate them and then implement their solution on a computer, leading to further
errors. At the end of the day, we might end up with a perfectly deterministic
piece of computer code with relatively little correspondence to the evolution of
the natural phenomena of interest to us.

1 We have found this quote in the Very Short Introduction to Chaos by Smith (2007b),
which has also stimulated a number of philosophical discussions on imperfect model
forecasts, chaos, and data assimilation throughout this book. The original publication is
Essai philosophique dur les probabilités (1814) by Pierre Simon Laplace.
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Despite all these limitations, computational models have proved extremely
useful, in producing ever more skillful weather predictions, for example. This has
been made possible by an iterated process combining forecasting using highly
sophisticated computational models, with analysis of model outputs using ob-
servational data. In other words, we can think of a computational weather predic-
tion code as an extremely complicated and sophisticated device for extrapolating
our (limited) knowledge of the present state of the atmosphere into the future.
This extrapolation procedure is guided by a constant comparison of computer
generated forecasts with actual weather conditions as they arrive, leading to
subsequent adjustments of the model state in the weather forecasting system.
Since both the extrapolation process and the data-driven model adjustments
are prone to errors which can often be treated as random, one is forced to ad-
dress the implied inherent forecast uncertainties. The two main computational
tools developed within the meteorology community in order to deal with these
uncertainties are ensemble prediction and data assimilation.
In ensemble prediction, forecast uncertainties are treated mathematically as

random variables; instead of just producing a single forecast, ensemble prediction
produces large sets of forecasts which are viewed as realisations of these random
variables. This has become a major tool for quantifying uncertainty in forecasts,
and is a major theme in this book. Meanwhile, the term “data assimilation”
was coined in the computational geoscience community to describe methodolo-
gies for improving forecasting skill by combining measured data with computer
generated forecasts. More specifically, data assimilation algorithms meld compu-
tational models with sets of observations in order to, e.g., reduce uncertainties
in the model forecasts or to adjust model parameters. Since all models are ap-
proximate and all data sets are partial snapshots of nature and are limited by
measurement errors, the purpose of data assimilation is to provide estimates that
are better than those obtained by using either computational models or observa-
tional data alone. While meteorology has served as a stimulus for many current
data assimilation algorithms, the subject of uncertainty quantification and data
assimilation has found widespread applications ranging from cognitive science to
engineering.
This book focusses on the Bayesian approach to data assimilation and gives

an overview over the subject by fleshing out key ideas and concepts, as well as
explaining how to implement specific data assimilation algorithms. Instead of
focussing on particular application areas, we adopt a general dynamical systems
approach. More to the point, the book brings together two major strands of
data assimilation: on the one hand, algorithms based on Kalman’s formulas for
Gaussian distributions together with their extension to nonlinear systems; and
sequential Monte Carlo methods (also called particle filters) on the other. The
common feature of all of these algorithms is that they use ensemble prediction
to represent forecast uncertainties. Our discussion of ensemble-based data as-
similation algorithms relies heavily on the McKean approach to filtering and the
concept of coupling of measures, a well-established subject in probability which
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has not yet found widespread applications to Bayesian inference and data as-
similation. Furthermore, while data assimilation can formally be treated as a
special instance of the mathematical subject of filtering and smoothing, applica-
tions from the geosciences have highlighted that data assimilation algorithms are
needed for very high-dimensional and highly nonlinear scientific models where
the classical large sample size limits of statistics cannot be obtained in practice.
Finally, in contrast with the assumptions of the perfect model scenario (which are
central to most of mathematical filtering theory), applications from geoscience
and other application areas require data assimilation algorithms which can cope
with systematic model errors. Hence robustness of data assimilation algorithms
under finite ensemble/sample sizes and systematic model errors becomes of cru-
cial importance. These aspects will also be discussed in this book.
It should have become clear by now that understanding data assimilation algo-

rithms and quantification of uncertainty requires a broad array of mathematical
tools. Therefore, the material in this book has to build upon a multidisciplinary
approach synthesising topics from analysis, statistics, probability, and scientific
computing. To cope with this demand we have divided the book into two parts.
While most of the necessary mathematical background material on uncertainty
quantification and probabilistic forecasting is summarised in Part I, Part II is
entirely devoted to data assimilation algorithms. As well as classical data assimi-
lation algorithms such as the Kalman filter, variational techniques, and sequential
Monte Carlo methods, the book also covers newer developments such as the en-
semble Kalman filter and ensemble transform filters. The McKean approach to
sequential filtering in combination with coupling of measures serves as a unifying
mathematical framework throughout Part II.
The book is written at an introductory level suitable for graduate students in

applied mathematics, computer science, engineering, geoscience and other emerg-
ing application areas of Bayesian data assimilation. Although some familiarity
with random variables and dynamical systems is helpful, necessary mathematical
concepts are introduced when they are required. A large number of numerical ex-
periments are provided to help to illustrate theoretical findings; these are mostly
presented in a semi-rigorous manner. Matlab code for many of these is avail-
able via the book’s wepage. Since we focus on ideas and concepts, we avoid
proofs of technical mathematical aspects such as existence, convergence etc.; in
particular, this is achieved by concentrating on finite-dimensional discrete time
processes where results can be sketched out using finite difference techniques,
avoiding discussion of Itô integrals, for example. Some more technical aspects
are collected in appendices at the end of each chapter, together with descrip-
tions of alternative algorithms that are useful but not key to the main story. At
the end of each chapter we also provide exercises, together with a brief guide to
related literature.
With probabilistic forecasting and data assimilation representing such rich and

diverse fields, it is unavoidable that the authors had to make choices about the
material to include in the book. In particular, it was necessary to omit many in-
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teresting recent developments in uncertainty quantification which are covered by
Smith (2014). A very approachable introduction to data assimilation is provided
by Tarantola (2005). In order to gain a broader mathematical perspective, the
reader is referred to the monograph by Jazwinski (1970), which still provides an
excellent introduction to the mathematical foundation of filtering and smoothing.
A recent, in-depth mathematical account of filtering is given by Bain & Crisan
(2009). The monograph by del Moral (2004) provides a very general mathemat-
ical framework for the filtering problem within the setting of Feynman–Kac for-
mulae and their McKean models. Theoretical and practical aspects of sequential
Monte Carlo methods and particle filters can, for example, be found in Doucet,
de Freitas & Gordon (2001). The popular family of ensemble Kalman filters is
covered by Evensen (2006). The monograph by Majda & Harlim (2012) devel-
ops further extensions of the classic Kalman filter to imperfect models in the
context of turbulent flows. We also mention the excellent monograph on optimal
transportation and coupling of measures by Villani (2003).
We would like to thank: our colleagues Uri Ascher, Gilles Blanchard, Jochen

Bröcker, Dan Crisan, Georg Gottwald, Greg Pavliotis, Andrew Stuart, and Pe-
ter Jan van Leeuwen for the many stimulating discussions centered around var-
ious subjects covered in this book; our students Yuan Cheng, Nawinda Chut-
sagulprom, Maurilio Gutzeit, Tobias Machewitz, Matthias Theves, James Tull,
Richard Willis and Alexandra Wolff for their careful reading of earlier drafts of
this book; Jason Frank, who provided us with detailed and very valuable feed-
back; Dan and Kate Daniels who provided childcare whilst much of Colin’s work
on the book was taking place; and David Tranah from Cambridge University
Press who provided guidance throughout the whole process of writing this book.
Finally, we would like to thank our families: Winnie, Kasimir, Nepomuk, Re-

becca, Matilda and Evan, for their patience and encouragement.





1 Prologue: how to produce forecasts

This chapter sets out a simplified mathematical framework that allows us to
discuss the concept of forecasting and, more generally, prediction. Two key in-
gredients of prediction are: (i) we have a computational model which we use to
simulate the future evolution of the physical process of interest given its current
state;1 and (ii) we have some measurement procedure providing partially ob-
served data on the current and past states of the system. These two ingredients
include three different types of error which we need to take into account when
making predictions: (i) precision errors in our knowledge of the current state of
the physical system; (ii) differences between the evolution of the computational
model and the physical system, known as model errors ; and (iii) measurement
errors in the data that must occur since all measurement procedures are imper-
fect. Precision and model errors will both lead to a growing divergence between
the predicted state and the system state over time, which we attempt to cor-
rect with data which has been polluted with measurement errors. This leads to
the key question of data assimilation: how can we best combine the data with
the model to minimise the impact of these errors, and obtain predictions (and
quantify errors in our predictions) of the past, present and future state of the
system?

1.1 Physical processes and observations

In this book we shall introduce data assimilation algorithms, and we shall want
to discuss and evaluate their accuracy and performance. We shall illustrate this
by choosing examples where the physical dynamical system can be represented
mathematically. This places us in a somewhat artificial situation where we must
generate data from some mathematical model and then pretend that we have only
observed part of it. However, this will allow us to assess the performance of data
assimilation algorithms by comparing our forecasts with the “true evolution” of
the system. Once we have demonstrated the performance of such algorithms in
this setting, we are ready to apply them to actual data assimilation problems

1 It is often the case, in ocean modelling for example, that only partial observations are
available and it is already challenging to predict the current state of the system
(nowcasting). It is also often useful to reconstruct past events when more data becomes
available (hindcasting).
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where the true system state is unknown. This methodology is standard in the
data assimilation community.
We shall use the term surrogate physical process to describe the model that we

use to generate the true physical dynamical system trajectory for the purpose of
these investigations. Since we are building the surrogate physical process purely
to test out data assimilation algorithms, we are completely free to choose a
model for this. To challenge these algorithms, the surrogate physical process
should exhibit some complex dynamical phenomena. On the other hand, it should
allow for numerically reproducible results so that we can make comparisons and
compute errors. For example, we could consider a surrogate physical process
described in terms of a finite-dimensional state variable z ∈ RNz of dimension
Nz ≥ 1, that has time dependence governed by an ordinary differential equation
(ODE) of the form

dz

dt
= f(z) + g(t), z(0) = z0, (1.1)

with a chosen vector field f : RNz → RNz and a time-dependent function g(t) ∈
RNz for t ≥ 0 such that solutions of (1.1) exist for all t ≥ 0 and are unique. While
such an ODE model can certainly lead to complex dynamic phenomena, such as
chaos, the results are not easily reproducible since closed form analytic solutions
rarely exist. Instead, we choose to replace (1.1) by a numerical approximation
such as the forward Euler scheme

zn+1 = zn + δt (f(zn) + g(tn)) , tn = n δt, (1.2)

with iteration index n ≥ 0, step-size δt > 0, and initial value z0 = z0.2 Usually,
(1.2) is used to approximate (1.1). However, here we will choose (1.2) to be
our actual surrogate physical process with some specified value of δt (chosen
sufficiently small for stability). This is then completely reproducible (assuming
exact arithmetic, or a particular choice of rounding mode) since there is an
explicit formula to obtain the sequence z0, z1, z2, etc.
We shall often want to discuss time-continuous systems, and therefore we

choose to use linear interpolation in between discrete time points tn and tn+1,

z(t) = zn + (t− tn)
zn+1 − zn

δt
, t ∈ [tn, tn+1], (1.3)

to obtain a completely reproducible time-continuous representation of a surro-
gate physical process. In other words, once the vector field f , together with the
step-size δt, the initial condition z0, and the forcing {g(tn)}n≥0, have been spec-
ified in (1.2), a unique function z(t) can be obtained for t ≥ 0, which we will
denote by zref(t) for the rest of this chapter. It should be emphasised at this
point that we need to pretend that zref(t) is not directly accessible to us dur-
ing the data assimilation process. Our goal is to estimate zref(t) from partial

2 Throughout this book we use superscript indices to denote a temporal iteration index,
e.g. zn in (1.2). Such an index should not be confused with the nth power of z. The
interpretation of zn should hopefully be clear from the circumstances of its use.
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measurements of zref(t), using imperfect mathematical models of the dynamical
system. We will return to these issues later in the chapter.
To clarify the setting, we next discuss a specific example for producing surro-

gate physical processes in the form of a reference solution zref(t).

Example 1.1 The Lorenz-63 model (Lorenz 1963) has a three-dimensional
state variable z := (x, y, z)T ∈ RNz , for scalar variables x, y, z, with Nz = 3.
The variable z satisfies an equation that can be written in the form (1.2) with
vector field f given by

f(z) :=




σ(y − x)
x(ρ− z)− y
xy− βz



 , (1.4)

and parameter values σ = 10, ρ = 28, and β = 8/3. We will use this vector field
in the discrete system (1.2) to build a surrogate physical process with step-size
δt = 0.001 and initial conditions

x0 = −0.587, y0 = −0.563, z0 = 16.870. (1.5)

As we develop this example throughout this chapter, we will discuss model errors,
defined as differences between the surrogate physical process and the imperfect
model that we will use to make predictions. For that reason we include a non-
autonomous forcing term g in (1.2), which will have different definitions in the
two models. We shall define the forcing g(tn) = gn = (gn1 , g

n
2 , g

n
3 )

T ∈ R3 for
the surrogate physical process as follows: set a = 1/

√
δt and, for n ≥ 0, define

recursively

gn+1
i =

{
2gni + a/2 if gni ∈ [−a/2, 0),
−2gni + a/2 otherwise,

(1.6)

for i = 1, 2, 3 with initial values

g01 = a(2−1/2 − 1/2), g02 = a(3−1/2 − 1/2), g03 = a(5−1/2 − 1/2).

It should be noted that gni ∈ [−a/2, a/2] for all n ≥ 0. In order to avoid an
undesired accumulation of round-off errors in floating point arithmetic, we need
to slightly modify the iteration defined by (1.6). A precise description of the
necessary modification can be found in the appendix at the end of this chapter.
A reader familiar with examples from the dynamical systems literature might
have noticed that the iteration (1.6) reduces to the tent map iteration with
a = 1 and the interval [−1/2, 1/2] shifted to [0, 1]. The factor a > 0 controls the
amplitude of the forcing and the interval has been shifted such that the forcing is
centred about zero. We choose this for the surrogate physical process since it is
completely reproducible in exact arithmetic, but has very complicated dynamics
that can appear random.
The numerical solutions obtained from an application of (1.2) for n = 0, . . . , N−
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Figure 1.1 Trajectory of the modified Lorenz-63 model as described in Example 1.1.
This trajectory provides us with the desired surrogate physical process. The cloud of
solution points is part of what is called the model attractor.

1 with N = 2 × 105 lead to a time continuous reference solution zref(t) accord-
ing to the interpolation formula (1.3) for time t ∈ [0, 200], which is used for all
experiments conducted in this chapter. See Figure 1.1 for a phase portrait of the
time series. Solutions asymptotically fill a subset of phase space R3 called the
model attractor.

Next, we turn our attention to the second ingredient in the prediction problem,
namely the measurement procedure. In this setting, neither zref(t) nor (1.2) will
be explicitly available to us. Instead, we will receive “observations” or “measure-
ments” of zref(t) at various times, in the form of measured data containing partial
information about the underlying physical process, combined with measurement
errors. Hence we need to introduce a mathematical framework for describing
such partial observations of physical processes through measurements.
We first consider the case of an error-free measurement at a time t, which we

describe by a forward map (or operator) h : RNz → RNy

yobs(t) = h(zref(t)), (1.7)

where we typically have Ny < Nz (corresponding to a partial observation of the
system state zref). For simplicity, we shall only consider Ny = 1 in this chapter.
Since h is non-invertible, we cannot deduce zref(t) from simple inversion, even if
the measurements are free from errors.
More realistically, a measurement device will lead to measurement errors,

which may arise as the linear superposition of many individual errors ηi ∈ R,
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!
t0 t1 t2 · · · t1 = tNout t2 = t2Nout t3 t4

Figure 1.2 Diagram illustrating model timesteps t0, t1, etc. and observation times
t1 = tNout , t2, etc. Here, Nout = 5.

i = 1, . . . , I. Based on this assumption, we arrive at a mathematical model of
type

yobs(t) = h(zref(t)) +
I∑

i=1

ηi(t). (1.8)

The quality of a measurement is now determined by the magnitude of the in-
dividual error terms ηi and the number I of contributing error sources. Mea-
surements will only be taken at discrete points in time, separated by intervals of
length ∆tout > 0. To distinguish the discrete model time tn = n δt from instances
at which measurements are taken, we use Gothic script to denote measurement
points, i.e.,

tk = k∆tout, k ≥ 1,

and ∆tout = δtNout for given integer Nout ≥ 1. This is illustrated in Figure 1.2
We again consider a specific example to illustrate our “measurement proce-

dure” (1.8).

Example 1.2 We consider the time series generated in Example 1.1 and assume
that we can observe the x-component of

zref(t) = (xref(t), yref(t), zref(t))
T ∈ R3.

This leads to a linear forward operator of the form

h(zref(t)) = xref(t).

In this example, we shall use a modified tent map of type (1.6) to model
measurement errors. More specifically, we use the iteration

ξk+1 =

{
2ξk + a/2 if ξk ∈ [−a/2, 0),
−2ξk + a/2 otherwise,

(1.9)

with a = 4 and starting value ξ0 = a(2−1/2 − 1/2) for k ≥ 0. From this sequence
we store every tenth iterate in an array {Ξi}i≥1, i.e.,

Ξi = ξk=10i, i = 1, 2, . . . (1.10)

An observation xobs at time t1 = ∆tout = 0.05 is now obtained as follows:

xobs(t1) := xref(t1) +
1

20

20∑

i=1

Ξi.
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Figure 1.3 Observed values for the x-component and their measurement errors over
the time interval [0, 10] with observations taken every ∆tout = 0.05 time units.

This procedure fits into the framework of (1.8) with I = 20 and ηi(t1) = Ξi/20,
i = 1, . . . , 20.
For the next observation at t2 = 2∆tout = 0.1 we use

xobs(t2) = xref(t2) +
1

20

40∑

i=21

Ξi,

and this process is repeated for all available data points from the reference tra-
jectory generated in Example 1.1. Numerical results are displayed for the first
200 data points in Figure 1.3. Our procedure of defining the measurement errors
might appear unduly complicated, but we will find later in Chapter 2 that it
mimics important aspects of typical measurement errors. In particular, the mea-
surement errors can be treated as random even though a perfectly deterministic
procedure has defined them.

1.2 Data driven forecasting

We now assume that Nobs scalar observations yobs(tk) ∈ R at tk = k∆tout,
k = 1, 2, . . . , Nobs, have been made at time intervals of ∆tout. To define what we
understand by a forecast or a prediction, we select a point in time tk∗ that we
denote the present. Relative to tk∗ , we can define the past t < tk∗ and the future
t > tk∗ . A possible forecasting (or prediction) problem would be to produce an
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estimate for

yref(t) := h(zref(t))

with t > tk∗ and only observations from the past and present available. Such
statements can be verified as soon as a future moment becomes the present and
a new measurement becomes available. More generally, we would, of course, like
to make predictions about the complete surrogate process zref(t) for t > tk∗ and
not only about the quantity we can actually observe. We will come back to this
more challenging task later in this chapter.
Returning to the problem of predicting future observations, we first utilise the

concept of polynomial interpolation. Recall that there is a unique polynomial

q(t) = b0 + b1t+ b2t
2 + · · ·+ bpt

p (1.11)

of order p with coefficients bl through any p + 1 data points. We would like
to find a polynomial that interpolates observations at p + 1 present and past
observation times {tk∗, tk∗−1, · · · , tk∗−p} with the aim of using it to predict future
observations. This leads to the interpolation conditions

q(tk) = yobs(tk), tk ∈ {tk∗ , tk∗−1, · · · tk∗−p},

which determine the p+1 coefficients bl in (1.11) uniquely. A predicted observa-
tion at t > tk∗ is then simply provided by q(t). Since t is outside the interval of
the observed data points, the prediction is an extrapolation from the data. For
the linear case p = 1 we obtain:

q(t) = yobs(tk∗) + (t− tk∗)
yobs(tk∗)− yobs(tk∗−1)

tk∗ − tk∗−1

= yobs(tk∗) + (t− tk∗)
yobs(tk∗)− yobs(tk∗ −∆tout)

∆tout
.

Upon setting t = tk∗+1 we obtain the extrapolation formula

ypredict(tk∗+1) := q(tk∗+1) = 2yobs(tk∗)− yobs(tk∗−1). (1.12)

As soon as yobs(tk∗+1) becomes available, we can compare this prediction with
the observed value. Furthermore, we can use this new observation point (and
discard the oldest one from tk∗−1) and a correspondingly updated linear extrap-
olation formula to obtain ypredict(tk∗+2). This can be iterated over several time
intervals, repeatedly using data to predict the new observation. To assess the
accuracy of this procedure we introduce the following measure.

Definition 1.3 (Root mean square error) For a set of predictions and obser-
vations at times {t1, t2, · · · , tN} the root mean square error (RMSE) is given
by

time averaged RMSE =

√√√√ 1

N

N∑

k=1

|yobs(tk)− ypredict(tk)|2. (1.13)
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In the case of linear interpolation, if there are Nobs observations then N =
Nobs− 2 since we cannot make predictions using linear interpolation for the first
two observations.
We illustrate the linear interpolation prediction strategy by our next example.

Example 1.4 We utilise the observations generated in Example 1.2 for the first
solution component of the Lorenz-63 system, i.e., yobs(tk) = xobs(tk). Recall that
the observation interval is ∆tout = 0.05. We set the first tk∗ equal to tk∗ = 100,
and make a total of 2000 verifiable predictions until we reach t = 200. The linear
extrapolation formula (1.12) is used for making predictions of observations, and
the quality of these predictions is assessed using the time averaged RMSE (1.13)
with N = 2000. A snapshot of the computational results over a short time-
window can be found in Figure 1.4. The time averaged RMSE over the whole
interval is approximately 1.2951.
It is usually desirable to “extend the prediction window” by making predictions

further into the future. In view of this, we modify the procedure so that at each
time tk∗ , we attempt to predict the observation at time tk∗+2 instead of tk∗+1.
The associated linear extrapolation formula becomes

ypredict(tk∗+2) := q(tk∗+2) = 3yobs(tk∗)− 2yobs(tk∗−1).

The results can also be found in Figure 1.4; the quality of the predictions is
clearly worse over this larger window. This is confirmed by the time averaged
RMSE which increases to approximately 3.3654.

The results of Example 1.4 show that linear interpolation does not provide
good predictions over longer times. This suggests to improve the accuracy of
forecasts by extending the extrapolation formula (1.12) to use a linear combi-
nation of the present data point plus several previous data points of the form

ypredict(tk∗+1) =
p∑

l=0

al yobs(tk∗−l). (1.14)

We have already seen that linear extrapolation fits into this framework with
p = 1 and coefficients a0 = 2, a1 = −1. We recall that the linear extrapolation
formula (1.12) was based on first deriving the linear interpolation formula. Hence,
as a first attempt at deriving coefficients al for (1.14) with p > 1, we shall use
higher-order interpolation formulas. Interpolation formulas of order p can be
conveniently based on the Lagrange polynomials (Süli & Mayers 2006) of order p

lj(t) =

∏
i$=j(t− ti)∏
i$=j(tj − ti)

,

where the indices i and j run over the integers

{k∗, k∗ − 1, . . . , k∗ − p}.
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Figure 1.4 Observed values for the x-component and its predicted values using linear
extrapolation. The figure at the top shows the results from linear extrapolation over a
single observation interval ∆tout = 0.05, while the figure beneath shows results when
doubling the prediction interval to 0.1 time units.

These polynomials have the useful property that

lj(ti) =

{
1 if j = i,
0 otherwise,

which leads to the interpolation formula

q(t) = lk∗(t) yobs(tk∗) + lk∗−1(t) yobs(tk∗−1) + · · ·+ lk∗−p(t) yobs(tk∗−p). (1.15)
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Figure 1.5 Lagrange polynomials lj(t) of order four corresponding to observations at
ti = 0,−0.05,−0.1,−0.15,−.20. The coefficients al in (1.14) are equal to the values of
the Lagrangian polynomials at t = 0.05. Crosses mark the points where each
polynomial takes the value one. Note that the other polynomials are zero at those
interpolation points, and note the steep increase in magnitude outside the
interpolation interval t ∈ [−0.2, 0].

The coefficients al in (1.14) are obtained by setting t = tk∗+1 in (1.15), i.e.

al = lk∗−l(tk∗+1), l = 0, 1, . . . , p.

Example 1.5 We consider extrapolation based on polynomial interpolation of
order p = 4. The associated extrapolation coefficients in (1.14) are

a0 = 5, a1 = −10, a2 = 10, a3 = −5, a4 = 1,

and the associated Lagrange polynomials are shown in Figure 1.5, taking tk∗ = 0
for simplicity. The values of the extrapolation coefficients can be obtained by
inspecting the intersection of the Lagrange polynomials with the vertical line at
t = 0.05.
The results of applying the fourth-order extrapolation formula to the data

set from Example 1.2 are shown in Figure 1.6; the time averaged RMSE was
4.2707. This error is much larger than that observed for linear extrapolation
(compare Example 1.4). The reason for this discrepancy can be found in the
strong separation of the Lagrange polynomials outside the interpolation interval
(compare Figure 1.5), which results in relatively large coefficients al in (1.14).
Hence even relatively small measurement errors can get severely amplified and do
not necessarily cancel out. This effect becomes even more pronounced when the
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prediction interval is doubled to 2∆tout. The associated extrapolation coefficients
are now given by

a0 = 15, a1 = −40, a2 = 45, a3 = −24, a4 = 5.

See Figure 1.6 for numerical results.

We now discuss an entirely different approach for determining the coefficients
al in (1.14). Instead of using polynomial interpolation, we shall seek the coeffi-
cients that optimise the prediction errors for a chosen subset of the observations,
which we call the training set. These extrapolation coefficients are then fixed,
and can be used to predict future observations. We shall assess the performance
of our extrapolation coefficients on the remaining observations points, which we
shall call the test set. For simplicity, let us assume that the training set con-
sists of the first NT < Nobs observations {yobs(t1), . . . , yobs(tNT)}, and use the
remaining data points as the test set.
Given a chosen set of coefficients al ∈ R, l = 0, . . . , p, we can obtain a predic-

tion of yobs(tj+p+1) for 0 < j ≤ NT − p − 1 by using (1.14). The quality of the
predictions is measured by the residuals

rj = yobs(tj+p+1)− ypredict(tj+p+1)

= yobs(tj+p+1)−
p∑

l=0

alyobs(tj+p−l) (1.16)

for j = 1, 2, . . . , J with J = NT− p− 1. We now seek the coefficients al in (1.14)
such that the resulting time averaged RMSE is minimised over the training set.
This is equivalent to minimising the functional

L({al}) =
1

2

J∑

j=1

r2j ;

we have recovered the method of least squares. The minimum of L({al}) is
attained when the partial derivatives of L with respect to the coefficients al
vanish, i.e.,

∂L

∂al
= −

J∑

j=1

yobs(tj+p−l) rj = 0 (1.17)

for l = 0, . . . , p. These conditions lead to p + 1 linear equations which may be
solved for the p+ 1 unknown coefficients al.
Once an optimal set of coefficients al has been found, these coefficients can be

used in (1.14) to make predictions over the test set. The underlying assumption
is that the training and test sets display a similar behaviour. Mathematically
speaking, this relies on the assumption of stationarity of the time series of ob-
servations. See Chorin & Hald (2009) for more details.
We mention in passing that (1.14) with coefficients al determined by the
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Figure 1.6 Observed values for the x-component and its predicted values using
fourth-order extrapolation. The figure at the top shows the results from extrapolation
over a single observation interval ∆tout = 0.05 while the figure beneath shows results
for doubling the prediction interval to 0.1 time units. Compare these results to the
ones displayed in Figure 1.4 for linear extrapolation.

method of least squares may be considered as a particular instance of an au-
toregressive model of order p+1. The class of autoregressive models provides an
example of purely data driven models.

Example 1.6 We return again to the setting from Example 1.4. We replace the
linear extrapolation procedure by predictions using (1.14) with the coefficients al
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determined by the method of least squares. We find that setting p = 4 in (1.14)
and a training set with NT = Nobs/2 = 2000 leads to a time averaged RMSE of
0.9718 with coefficients

a0 = 2.0503, a1 = −1.2248, a2 = −0.2165, a3 = 0.4952, a4 = −0.1397.

Note that these values fluctuate much less about the observed values than those
obtained from fourth-order interpolation (compare Example 1.5) and that the
values for a0 and a1 are relatively close to those obtained from linear extrapo-
lation (compare (1.12)). Hence we may argue that the method of least squares
leads to a modified linear extrapolation procedure with a slight reduction in the
time averaged RMSE.

We also apply the same methodology to predict y at tk∗+2 (prediction over
2∆tout = 0.01) and find that the averaged RMSE increases to 2.3039. See Figure
1.7 for some numerical results.

The mathematical structure of the least squares approach becomes more trans-
parent when put into matrix notation. We first collect the unknown coefficients
al into a vector

x =





a0
a1
...
ap




∈ Rp+1

and the residuals rj into a vector

r =





r1
r2
...
rJ




∈ RJ .

Next we write (1.14) as

r = b−Ax,

where b ∈ RJ is defined by

b =





yobs(tp+2)
yobs(tp+3)

...
yobs(tp+J+1)




∈ RJ
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Figure 1.7 Observed values of the x-component and corresponding predicted values
using the method of least squares with p = 4 in (1.14). The figure on the top shows
the results from predictions over a single observation interval ∆tout = 0.05, and the
figure beneath shows results when doubling the prediction interval to 0.1 time units.
The results should be compared to those in Figures 1.4 and 1.6 obtained from
extrapolation.

and the matrix A ∈ RJ×(p+1) by

A =





yobs(tp+1) yobs(tp) · · · yobs(t1)
yobs(tp+2) yobs(tp+1) · · · yobs(t2)

...
...

...
yobs(tp+J ) yobs(tp+J−1) · · · yobs(tJ)




.
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For square matrices A (i.e., J = p+ 1) with det(A) (= 0 we recall that x can be
determined such that r = 0 and

x = A−1b.

However, in practice we are usually dealing with the case of overdetermined
systems of equations for which J ) p+ 1 and for which there is in general no x
such that r = 0. The method of least squares determines x∗ ∈ Rp+1 such that
the norm of the vector r is minimised, i.e.,

x∗ = argmin ‖r‖2 = argmin ‖Ax− b‖2.

We find that the gradient of the functional L(x) = ‖Ax− b‖2 with respect to x
is given by

∇xL(x) = 2AT(Ax− b) ∈ Rp+1.

Here AT ∈ R(p+1)×J denotes the transpose of A. Furthermore, the Hessian (ma-
trix of second derivatives) of L(x) is

H = 2ATA ∈ R(p+1)×(p+1),

which is positive definite when A has maximum column rank p+1. If this is the
case, then setting ∇L(x∗) = 0 leads to the following equation for x∗,

ATAx∗ = ATb.

We can confirm that we have a minimiser of L(x) since

L(x∗ + δx) = L(x∗) +∇xL(x∗)
Tδx+ δxTATAδx,

= L(x∗) + δxTATAδx,

> L(x∗),

for all vectors δx (= 0.

1.3 Model driven forecasting and data assimilation

So far in this chapter, we have used observations and elementary mathematical
tools to design linear models for predicting future outcomes in the observable
variable y = h(z). More precisely, we have considered mathematical tools that
rely on the observed quantities alone, without any reference to our surrogate
physical process from which they were generated. The predictions were con-
strained by the assumption of a polynomial form in time, or by optimising the
coefficients over a training set. These models are often described as empirical
or bottom-up. We now introduce our third ingredient, the use of mechanistic or
top-down models of the physical process that are derived from first principles, a
process well established in the context of classical mechanics (Arnold 1989), for
example. In practice such first principles might be provided by conservation of
mass and/or energy or by Newton’s laws of motion, or other analogues in e.g.
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biology, sociology or economics. Given an estimate of the system state z(t0) at
time t0, a model allows us to obtain estimates of the system state z(t) for t > t0.
In almost all cases the model is imperfect, and model errors lead to increased
errors in the state estimate over time, unless it is corrected by introducing more
data at later times.
In the somewhat artificial setting of this chapter, we imagine that understand-

ing of the surrogate physical process has allowed us to derive a model from first
principles, in the form of the difference equation

zn+1 = zn + δtf(zn), tn+1 = tn + δt. (1.18)

In this case, we have chosen a scenario where the difference between the surrogate
physical process, as provided by (1.2), and our mechanistic model, as given by
(1.18), is simply in the inclusion or omission of the time-dependent driving term
g(t). This allows us to easily quantify the impact of the error. In practice, when
data is obtained from an observed physical process, quantifying this error is a
much more difficult problem. In our case, provided that we have exact knowledge
of the state znref of our surrogate physical process at time tn and provided we use
this information in order to set znmodel = znref in our mechanistic model, the one
step ahead prediction error en+1 = zn+1

model − zn+1
ref is given by

en+1 = −δt g(tn), tn = n δt. (1.19)

We will also call en the model error since en reflects the difference between
(1.2), our surrogate physical process, and (1.18), our mechanistic model for this
process. One specific type of model errors are discretisation errors that arise
when mechanistic models are approximated numerically. We will return to the
issue of discretisation errors in Chapter 4.
At this point two major challenges arise. First, we wish to predict over time

intervals much larger than δt. Second, we can only partially observe the present
states of the underlying physical process in intervals of ∆tout; we do not have
access to the full state vector zref(t) at any moment in time. The first difficulty
requires us to assess the propagation and accumulation of model errors over
several timesteps, under the hypothetical assumption that both the physical
process and the mechanistic model start from the same initial state z0 at t0 = 0.
We explore this in the next example.

Example 1.7 We return to Example 1.1 and simulate (1.18) with the vector
field f(z) given by (1.4). We then compare the surrogate physical process as
simulated in Example 1.1.
The numerical solution obtained from an application of (1.18) is stored over a

time-interval t0 = 0 to tend = 200 in intervals of∆tout = 0.05. These 3×4001 data
points provide us with the model output zmodel(tk) at tk = k∆tout, which can
be compared to the reference trajectory zref(tk) from Example 1.1. We plot the
phase portrait of the time series from our mechanistic model in Figure 1.8. The
result looks rather similar to the phase portrait displayed in Figure 1.1, which
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Figure 1.8 Long trajectory from our mechanistic model which traces the Lorenz
attractor of our model. The shape of the attractor is nearly identical to what is
displayed in Figure 1.1.

indicates that our mechanistic model is able to capture qualitative aspects of the
surrogate physical process.
We next check whether this property carries over to specific predictions. In

order to assess this aspect of our mechanistic model, both the mechanistic model
and physical process are started from the same initial condition (1.5) at time t0 =
0. We display the results in all three state variables over a time interval [0, 10] in
Figure 1.9. A difference in the solutions becomes noticeable at about t = 2; this is
much longer than the prediction intervals obtained for linear interpolation and/or
an autoregressive model obtained from the method of least squares. However, this
comparison is unrealistic as we require the precise knowledge of the initial state
in order to make predictions based on our mechanistic model. Indeed, the exact
initial or present state is unavailable in most practical applications.

The previous example has demonstrated that the use of mechanistic models
can lead to skillful predictions over relatively long time intervals, provided the
model state from which we start our prediction is sufficiently close to the state
of the physical process under consideration at the initial time. It should also be
obvious that the quality of model-based predictions will depend on the relative
magnitude of the modeling errors en and the subsequent systematic contributions
from δtf(zn) in (1.18).
From these findings we conclude that (i) we need methods for estimating

appropriate initial conditions for our mechanistic model from the available ob-
servations; and that (ii) we should strive to improve our mechanistic models by
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Figure 1.9 We compare the behaviour of our mechanistic model to the reference
trajectory under the assumption that both start from the same initial condition at
time t = 0. The differences between the model and nature are caused by the
non-autonomous driving terms gn = g(tn) in (1.2) and their accumulative effect.
These differences become significant at about t = 2 as can be seen from the bottom
panel, which displays the differences in all three solution components as a function of
time.

making the unaccounted contributions from g(t) as small as possible. Both tasks
can be addressed by clever combinations of mechanistic models with observa-
tional data. Associated computational techniques are often referred to as data
assimilation in the geosciences and filtering/smoothing in the engineering com-
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munity. Throughout this book we will primarily use the term data assimilation,
which, broadly speaking, covers the task of combining mechanistic models with
partial observations in order to produce skillful forecasts.
To give a flavour of what is to come in Part II of this book, we present an

application of the method of least squares to the state estimation of a mechanistic
model (1.18). Let us assume that observations yobs(tk) are available at time
instances

tk = k∆tout, k = 1, . . . , NA,

where ∆tout = Noutδt for given integer Nout ≥ 1. Starting from the initial
condition z0 at t = 0, kNout applications of (1.18) produces a model solution
zmodel(tk) and a simulated observation ymodel(tk) = h(zmodel(tk)), which can be
compared to the observed value yobs(tk). The differences between simulated and
true observations is measured in a residual

rk = ymodel(tk)− yobs(tk) = h(zmodel(tk))− yobs(tk), k = 1, . . . , NA.

The residual implicitly depends on the model initial condition z0, since this
changes the entire model trajectory and therefore the simulated observations
ymodel(tk). To simplify the discussion, we will assume that the forward operator
h is linear and is represented by a row vector H ∈ R1×Nz , i.e.,

h(z) = Hz.

Adopting the method of least squares, we seek the initial condition z0 that
minimises the residual sum

L(z0) =
1

2

NA∑

k=1

r2k. (1.20)

We denote a minimiser by z0∗ , and recall from elementary calculus that z0∗ has
to be a critical point of L to be a candidate for a minimum, i.e., the gradient
∇z0L(z0) ∈ RNz has to vanish at z0 = z0∗ . In contrast with the linear least square
method considered previously, we now must solve systems of nonlinear equations
to find critical points of L. These critical points may correspond to local minima
or even maxima. The main complication arises from the nonlinear dependence
of zmodel(tk) on z0. In order to make this dependence explicit, we introduce the
map ψ as a shorthand for the Nout-fold application of (1.18), i.e. if we define

zmodel(tk+1) = ψ(zmodel(tk)), k ≥ 0,

then

zmodel(tk) = ψk(z0) := ψ(ψ(· · ·ψ(z0)))︸ ︷︷ ︸
k-fold application of ψ

. (1.21)

Computing the gradient of L(z0) requires the Jacobian matrix of first derivatives
of zmodel(tk) ∈ RNz with respect to the initial condition z0 ∈ RNz , given by

Dzmodel(tk) := Dψk(z0) ∈ RNz×Nz .
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The Jacobian can be computed from (1.21) directly or using the following recur-
sive approach. First we note that a single application of (1.18) leads to

Dz1 := D(z0 + δtf(z0)) = I + δtDf(z0),

since Dz0 = I and Df(z) ∈ RNz×Nz denotes the Jacobian matrix of partial
derivatives of f(z). The calculation of Dz2 can now be decomposed into

Dz2 := D(z1 + δtf(z1)) = (I + δtDf(z1))Dz1,

using the chain rule of differentiation. More generally, one finds the recursion

Dzn+1 = (I + δtDf(zn))Dzn (1.22)

for n ≥ 0 with Dz0 equal to the identity matrix. Upon setting n = kNout, we
obtain the desired expression for the Jacobian Dψk(z0) and the gradient of L is
given by

∇z0L(z0) =
NA∑

k=1

(Dψk(z0))THTrk. (1.23)

The minimiser z0∗ must satisfy

∇z0L(z0∗) = 0.

Later in this book we will show that an explicit calculation of the Jacobian
Dzmodel(tk) via the recursion (1.22) is not necessary for determining (1.23). We
emphasise again that, in contrast with the linear method of least squares, the
existence and uniqueness of a critical point of L is often not guaranteed a priori.
In addition, critical points may correspond to local maxima or saddle points
instead of minima.
A (local) minimum of L can be searched for by the gradient or steepest decent

method, which is an iteration of the form

z(l+1) = z(l) − α∇z0L(z(l)) (1.24)

for l ≥ 0 and an appropriate initial guess z(0). The coefficient α > 0 needs to be
chosen sufficiently small in order to guarantee

L(z(l+1)) ≤ L(z(l))

throughout the iteration process. More refined gradient methods would choose
the coefficient α adaptively (see Nocedal & Wright (2006), for example).
Let us assume that we have obtained a reasonable estimate for the initial

state z0 of our mechanistic model and that a series of NA observations within
the assimilation window become available at t1, . . . , tNA . Then we can iterate
(1.24) with starting value z(0) = z0 until

‖∇z0L(z(l∗))‖ ≤ ε, (1.25)

where ε > 0 is a desired tolerance. The resulting z0∗ = z(l∗) is often called the
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analysis at t = 0 and we have completed what is often called a variational data
assimilation cycle.

Once the analysis z0∗ has been obtained, we can use the mechanistic model
(1.18) with adjusted initial condition z0 = z0∗ to obtain forecasts zmodel(t) for t >
tNA . In due course, a new sequence of observations yobs(tNA+k), k = 1, . . . , NA,
becomes available. At this point a new data assimilation cycle can be initiated.
More specifically, we can repeat the above nonlinear least square method by
minimising the cost functional L(z0) with residuals rk, k = 1, . . . , NA, now given
by

rk = Hψk(z0)− yobs(tNA+k)

and starting value z(0) = zmodel(tNA) in (1.24).3 The information from the pre-
vious sequence of observations feeds in via the choice of initial condition for the
steepest descent calculation, which may select a particular local minimum; this
may also speed up the calculation by starting closer to the minimum. It is often
also desirable to make better use of this information by including a penalty term
in the functional that becomes large if z0 gets too far from this initial guess, en-
coding our belief that the previous data assimilation cycle gave us a good guess
for the current system state. This presents a difficulty: we must then decide how
much weight in the functional to give the previous forecast relative to the new
observational data. We leave this problem for now, but it is a central topic for
the rest of the book.

In contrast with the forecasted values zmodel(t), t > tNA , which do not make
use of the observations yobs(tNA+k), k ≥ 1, the minimiser z0∗ of L provides now
an improved approximation zmodel(t), called the analysis, using the mechanistic
model (1.18) with adjusted initial condition zmodel(tNA) = z0∗ . In order to distin-
guish the forecast from the analysis we introduce the notation zfmodel(tk) for the
forecast at time tk, k = NA + 1, . . . , 2NA, and zamodel(tk) for the analysis arsing
from the adjusted initial condition at tNA .

Once time t is increased beyond t = t2NA the analysis zamodel(t) becomes
a forecast and, as soon as all necessary observations have become available,
zamodel(t2NA) is taken as the starting value z(0) for the next assimilation cycle
covering the interval [t2NA , t3NA ]. The process of producing forecasts with the
mechanistic model and correcting them by assimilating available observations
over finite-time intervals can now be repeated as often as desired, as illustrated
in Figure 1.10.

Each data assimilation cycle effectively leads to a nudging of the model output
towards observations. In other words, the sequence of data assimilation cycles
should ideally synchronise the model (1.18) with the physical process via partial
observations and corresponding adjustments in model forecasts zfmodel(tmNA),

3 The simplification of always minimising with respect to z0 and to only change the
observations in the definition of the residuals rk is possible since our mechanistic model
(1.18) is assumed to be time-independent.
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!
t0 t1 t2 · · · tNA t2NA t3NA t4NA

assimilation interval 1 assimilation interval 2 assimilation interval 3 assimilation interval 4

Figure 1.10 Diagram illustrating model timesteps, observation times, and assimilation
intervals. At the end of each assimilation window, a new trajectory is computed that
uses the observations made during that window.

m ≥ 1. The most recently adjusted model state is then used as an initial condition
for model-based forecasts further into the future.
We now demonstrate this synchronising effect with our “mechanistic” Lorenz-

63 model from Example 1.7.

Example 1.8 We implement the nonlinear least square method for the Lorenz-
63 model already investigated in Example 1.7. Recall that the model output
deviates from the surrogate physical process after a relatively short time-interval
even if both the mechanistic model (1.18) and the reference model (1.2) are
started from identical initial conditions at t0 = 0. We now consider sequences of
NA = 5 observations with observation interval ∆tout = 0.05 in order to adjust
the model’s initial states over each data assimilation window [tmNA , t(m+1)NA

]
with m = 0, 2, . . . , 39. See Figure 1.11 for a comparison between the reference
trajectory zref(t) and the analysis zamodel(t) over all 40 assimilation cycles, and
Figure 1.12 for a zoomed region displaying the difference between model forecasts
zfmodel(t) and their analysis zamodel(t). The nonlinear method of least squares
is implemented with step-length α = 0.05 in the gradient method (1.24) and
ε = 0.01 in (1.25). This small value of α is necessary in order to avoid a divergence
of (1.24). More efficient minimisation methods could be implemented but are
outside the scope of this book.

In practical applications, such as weather forecasting, it is desirable to obtain a
priori estimates of the likelihood of an analysis being within a certain range of the
(generally not explicitly available) true system state. This gives an indication of
how seriously to take the forecast; this is crucial when using forecasts in decision-
making and planning. We display a histogram of the resulting differences between
the reference solution zref(t) and the analysis zamodel(t) in Figure 1.13. Note, for
example, that the errors in the z-component have a much broader distribution
than those in the x-component. More abstractly, we will view histograms, such as
the ones displayed in Figure 1.13, as resulting from finite samples of underlying
random variables with generally unknown distribution. It is a task of uncertainty
quantification to provide as much information about these random variables as
possible.
We have already mentioned that the analysis can be used to generate forecasts

over time intervals where observations have not yet been obtained. In order to
illustrate this aspect of data assimilation we use the analysis zamodel(t) at time
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Figure 1.11 We display the results from 40 data assimilation cycles each over a
window of length 5∆tout = 0.25. Only the x-variable is observed in intervals of
∆tout = 0.05. The synchronising effect of the nonlinear least square approach can be
clearly seen both in the x variable and the unobserved z variable, while the model
output without adjustments from the data assimilation cycles loses track of the
underlying physical process at about t = 2. Compare Figure 1.9.

t = 10 as the initial condition for our model (1.18) at t = 10. We then run this
model over the time interval [10,15] in order to produce a forecast which can
be compared to the reference solution zref(t) of our surrogate physical process
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Figure 1.12 We display the forecast (which does not take the observations into
account) and the analysis (which has assimilated the observations) for three data
assimilation cycles. The forecast is in blue and marked with crosses, and the analysis
is in red and marked with circles. At the beginning of each assimilation window, the
previous forecast terminates, the most recent analysis turns into a forecast and
eventually provides the starting value for the next assimilation cycle. This can be best
seen at t = 1.75, where the upper cross marks the last step of the forecast starting at
t = 1.5. The circles between t = 1.5 and t = 1.75 represent the subsequent analysis
using the data available from that interval. The next forecast (crosses) starts from the
last analysis (circle) at t = 1.75. This forecast window ranges from t = 1.75 to t = 2.0.
The process then repeats, and this new forecast is modified by the data available from
the interval [1.75, 2.0]. This data assimilation step provides the second, lower circle at
t = 2.0 as well as the starting value of a new forecast over the interval [2.0, 2.25].

over the same time interval. The result is displayed in Figure 1.14, where it
can be seen that the forecast stays close to the reference solution up to time
t ≈ 12. It is a task of uncertainty quantification to quantify the actual forecast
uncertainties without explicit knowledge of the reference solution. In addition
to analysis errors, forecast errors will be also treated as random variables. We
will learn about computational methods for estimating their distributions later
in this book.
We conclude this example by emphasising that the nonlinear least square

method is sensitive to the length of the assimilation window. If the window is
chosen too large, then the data assimilation procedure leads to a divergence of the
gradient method (1.24) due to the increasingly nonlinear behaviour of the func-
tional L. We also found that a shorter window of 2∆tout (i.e. two observations
per assimilation cycle) leads to results similar to those displayed in Figure 1.11
for 5 observations per assimilation cycle. This is surprising, since with NA = 2 we
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Figure 1.13 Relative frequencies of binned differences between the reference solution
and the analysis, in both x and z. It is tempting to view these relative frequencies as
arising from finite samples of an underlying random variable with unknown
specifications. We could then discuss the probability of an analysis falling within a
certain range of the (generally unavailable explicitly) true system state. It is a task of
uncertainty quantification to characterise such probabilities.

cannot expect that L has a unique (local) minimum. In particular, the computed
minimiser z0∗ will depend on the initial guess for the steepest decent method. As
we will see in later chapters, such a dependence is not necessarily a disadvantage.

The previous example has demonstrated the effectiveness of using observa-
tions to estimate the state of a mechanistic model, then using the model with
adjusted initial conditions to generate forecasts. The nonlinear method of least
squares provides us with the first example of a data assimilation algorithm, which
also goes under the name of variational data assimilation or maximum likelihood
estimation. While the results are encouraging, we will learn about even more so-
phisticated data assimilation methods later in this book. These methods rely on a
probabilistic interpretation of model forecasts as well as measurement errors. The
necessary mathematical tools will be provided in subsequent chapters. In partic-
ular, we will need to introduce the concept of a random variable, together with
methods for performing computer experiments with random variables (Monte
Carlo methods). We will then apply these tools to mechanistic models of type
(1.18) to describe stochastic processes and forecast uncertainties. We also need
to introduce Bayesian inference as a probabilistic framework for inferring in-
formation on random variables from (partial) observations and available prior
knowledge about the random variable under consideration. Once these mathe-
matical foundations have been established, the second part of this book on data
assimilation algorithms can be entered.
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Figure 1.14 Forecast started from the analysis at time t = 10 and reference solution
from the surrogate physical process. It can be seen that the forecast stays close to the
reference solution for about 2 time units after which its starts diverging due to errors
in the analysis and model errors.

We end this introductory chapter with some general comments on the pro-
cess of building mathematical models for making predictions and the role of
data assimilation within this process. We can use well-established theories, such
as Newton’s laws of motion, to build mathematical models in the form of evo-
lution equations/dynamical systems as encountered in this chapter in Equation
(1.18). These models can be discretised and programmed on a computer, allowing
mathematical experiments to be performed. The analysis of such computational
models falls, broadly speaking, into the world of applied computational mathe-
matics. When making predictions, this is one side of the coin; the other side is
the world of measured data and their mathematical structure. This area is tra-
ditionally investigated from a mathematical perspective by statisticians. While
the two sides of the same coin have largely been developed independently over
the years, there is an increasing awareness that they belong together and that
maximal benefit can be gained by combining them within the framework of data
assimilation. Data assimilation can be used for state estimation, for adapting
models through parameter estimation, and for intercomparison of models. The
Bayesian formalism has emerged as a particularly fruitful approach to data as-
similation and is primarily the approach that we will follow in this book. See
Figure 1.15 for a graphical illustration of this discussion.
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Figure 1.15 A schematic presentation of the complex process of building and using
mathematical models. An essential building block is data assimilation which is a
mathematical technique for combining mechanistic models with statistical models
based on data. Here a statistical model refers to a set of probability distributions
describing observed data, while a mechanistic model consists of evolution equations
which give rise to deterministic and/or stochastic processes. Mechanistic models
depend on parameters (including the state of the model), which we treat as random
variables. Finally, a computational model is typically an algorithm that allows us to
produce process realisations of the mechanistic model. Among the possible outcomes
of data assimilation are improved predictions through parameter and state estimation
as well as model selection.

Problems

1.1 Implement the numerical model from Example 1.1 and store the resulting
reference trajectory in time intervals of ∆tout = 0.05 in a file for later use in
other examples. Do not store the system state from every single timestep as this
becomes very inefficient, even for low dimensional problems; it is much better to
overwrite the state vector on each timestep, and take a copy of the vector when
you need to store it. The resulting data set should be stored in a matrix of size
3× 4001. Do not forget to replace (1.6) by (1.27) and check that your numerical
results reproduce the model attractor from Figure 1.1.

1.2 Implement the numerical observation process as defined in Example 1.2
using the reference trajectory generated in Problem 1.1. Store the numerically
generated observation values yobs(tk) for k = 1, . . . , Nobs = 4000, in a file for
later use. Investigate the difference between using the two recursions (1.28) and
(1.9) for generating measurement errors. Hint: You might obtain a trajectory
different from the one displayed in Figure 1.3. Differences can arise even for
mathematically identical implementations due to round-off errors.

1.3 Follow Example 1.4 and use linear extrapolation in order to produce fore-
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casts from the observations produced in Problem 1.2. Compute the time averaged
RMSE and compare to the values produced in Problem 1.4.

1.4 Implement the method of least squares in the setting laid out in Example
1.6. Compare your coefficients al, l = 1, . . . , 4, to the one stated in Example 1.6.
Also, compare the resulting time averaged RMSEs.

1.5 Implement the mechanistic model for our surrogate physical process as de-
scribed in Example 1.7. Use (1.5) as initial conditions at t0 = 0. Your results
should reproduce the phase portrait displayed in Figure 1.8. Now compare the
model trajectory to the reference trajectory zref(t) computed in Exercise 1.1.
Next, vary the initial conditions (x0, y0, z0) for the mechanistic model by adding
arbitrary perturbations (δx, δy, δy) ∈ [−1, 1]3 and study the impact of these per-
turbations on the forecast quality with respect to the reference trajectory zref(t).

1.4 Guide to Literature

A mind-provoking introduction to many of the topics raised in this chapter can
be found in Smith (2007b). Another book from the same series by Hand (2008)
discusses some of the data related issues in more detail. The Lorenz-63 model was
introduced by Lorenz (1963) and provides a widely studied chaotic dynamical
system. Polynomial interpolation and the method of least squares are covered in
Süli & Mayers (2006). A broad overview of minimisation techniques including
the nonlinear method of least squares is given in Nocedal & Wright (2006). The
importance of uncertainty quantification and data assimilation for numerical
weather forecasting is demonstrated in Kalnay (2002). In fact, numerical weather
forecasting provides an ideal motivation as well as an application area for most
of the material covered in this book.

1.5 Appendix: Numerical implementation of tent map iteration

In this appendix, we discuss the implementation on a computer of the tent map
iteration

gn+1 =

{
2gn if gn ∈ [0, 1/2),
2(gn − 1) otherwise,

(1.26)

for given initial g0 ∈ [0, 1] and n ≥ 0. We consider the case where this iteration is
approximated by a binary floating point representation of the non-negative real
numbers gn in the form of

gn = m× 2l,

where

m = 0.m1m2m3 · · · ,
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is called the mantissa and mi ∈ {0, 1} are the mantissa bits. The integer l is
called the exponent of the representation. For efficient storage, the exponent l is
chosen such that m1 = 1 unless m = 0. If the mantissa has only finitely many
non-zero bits, then i∗ denotes the largest i such that mi = 1. We call i∗ the
mantissa length. As an example, consider

gn = 0.1101× 22,

with mantissa length i∗ = 4, which corresponds to

gn = 1× 21 + 1× 20 + 0× 2−1 + 1× 2−2 = 3.25,

in our standard decimal representation. We also find that gn = 1 corresponds to
0.1×21 in our binary representation. Furthermore, gn ∈ [0, 1/2) implies that the
associated exponent l satisfies l ≤ −1. Similarly, we find that gn ∈ [0, 1] implies
l ≤ 1.
Now consider the tent map iteration written in this representation. Straight-

forwardly, 2gn leaves the mantissa of gn unaltered while its exponent is increased
by one. Understanding the impact of 2 − 2gn on gn ∈ [1/2, 1) is more delicate.
We obtain

0.1× 22 − 0.1m2m3 · · ·× 21 = (0.1− 0.01m2m3 · · · )× 22

= 0.00m2m3 · · ·× 22

= 0.m2m3 · · ·× 20,

where mi = mi + 1 modulo 2 for all i = 1, . . . , i∗ − 1. If i∗ is finite, then we
obtain mi∗ = mi∗ = 1. In this case, the mantissa length of gn+1 gets reduced
by at least one (it is exactly one in the case in which m2 = 1). Consequently, if
the initial g0 is chosen such that its mantissa m has finite length, then the tent
map will ultimately lead to gn = 0 after sufficiently many iterations of the tent
map. Of course, a number with infinite mantissa length will lead to zero for any
number of tent map iterations.
Since digital computers rely on a binary representation of real numbers with

a mantissa of necessarily finite length, any computer implementation of the tent
map iteration will ultimately result in gn = 0, after sufficiently many iterations.
This is in stark contrast to the “true” tent map, which generically produces infi-
nite, non-repetitive sequences {gn}∞n=0. This example should serve as a warning
not to identify a mathematical model with a computer implementation of it.

The following modification mimics the desired asymptotic behaviour of the
tent map iteration when implemented in finite floating point arithmetic:

gn+1 =

{
1.99999gn if gn ∈ [0, 1/2),
1.99999(gn − 1) otherwise.

Similarly, the following modifications were applied to the iterations (1.6) and
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(1.9), respectively:

gn+1
i =

{
1.99999gni + a/2 if gni ∈ [−a/2, 0),
−1.99999gni + a/2 otherwise,

(1.27)

ξk+1 =

{
1.99999ξk + a/2 if ξk ∈ [−a/2, 0),
−1.99999ξk + a/2 otherwise.

(1.28)



Part I

Quantifying Uncertainty


