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Abstract
Assimilation of measurements into stochastic dynamical systems is challenging due

to the generally non-Gaussian behavior of the underlying probability density functions.
While sequential Monte Carlo methods have emerged as a methodology for tackling as-
similation problems under rather general circumstances, those methods suffer from the
curse of dimensionality. At the same time ensemble transform filters, such as the ensemble
Kalman filter, have emerged as attractive alternatives to sequential Monte Carlo methods
since they also work for high dimensional problems. Typical ensemble transform filters
are however based on rather crude approximations to the involved probability density
functions and are therefore of limited accuracy. For that reason there have been a number
of recent attempts to combine sequential Monte Carlo methods with ensemble transform
techniques, so called, guided sequential Monte Carlo methods. In this paper, we first
put ensemble transform filters in the context of coupling and optimal transportation and
secondly propose a new guided sequential Monte Carlo method based on combining ap-
proximate couplings with importance sampling. The effect of various filtering strategies
is demonstrated for a simple Brownian dynamics model.

1 Introduction

We consider random dynamical systems (Gardiner, 2004) induced by the iteration

Xn+1 = Ψ(Xn) + Ξn, n ≥ 0, (1)

under the assumption that X0 : Ω → RN is a multivariate random variable over some sample
space Ω with given probability density function (PDF) π0(x), Ξn : Ω → RN are independent
and identically distributed Gaussian random variables with mean zero and covariance matrix
Q ∈ RN×N , i.e. Ξn ∼ N(0, Q), and Ψ : RN → RN is an appropriate map. The associated
Chapman-Kolmogorov equation (Gardiner, 2004) for the marginal PDFs πn(x), i.e. Xn ∼ πn,
is given by

πn+1(x) =

∫
RN

1

(2π)N/2|Q|1/2
exp

(
−1

2
(x−Ψ(x′))TQ−1(x−Ψ(x′))

)
πn(x′) dx′

=

∫
RN

π(x|x′)πn(x′) dx′ (2)
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with Markov transition kernel

π(x|x′) =
1

(2π)N/2|Q|1/2
exp

(
−1

2
(x−Ψ(x′))TQ−1(x−Ψ(x′))

)
.

Here |Q| denotes the determinant of Q.
In this paper, we will assume that (1) arises from the discretization of an underlying stochas-

tic differential equation (SDE) by the Euler-Maruyama method (Kloeden and Platen, 1992) with
step-size ∆t > 0, i.e.

Xn+1 = Xn + ∆tf(Xn) +
√

∆tZn, tn+1 = tn + ∆t,

and the marginal PDFs will be denoted by πX(x, tn) = πn(x). To avoid confusion we will also
use the notation X(tn) = Xn from now on. Hence Ψ(X(tn)) = X(tn) + ∆tf(X(tn)) is the
drift term and Ξ(tn) =

√
∆tZn describes diffusion with Zn ∼ N(0, γI) and diffusion coefficient

γ > 0. The zero diffusion limit γ = 0, i.e.

X(tn+1) = Ψ(X(tn)) = X(tn) + ∆tf(X(tn)),

gives formally rise to the Chapman-Kolmogorov equation

πX(x, tn+1) =

∫
RN

δ(x−Ψ(x′))πX(x′, tn) dx′,

which is equivalent to
πX(Ψ(x), tn+1) |DΨ(x)| = πX(x, tn), (3)

where DΨ(x) ∈ RN×N denotes the Jacobian matrix of partial derivatives of Ψ(x) and δ(·) the
Dirac delta function. We emphasize that we are not interested in the ∆t → 0 limit in this
paper and will consider ∆t > 0 as a given, fixed quantity. We emphasize furthermore that the
algorithms considered in this paper do not depend on this assumption and are applicable to
general intermittent data assimilation problems.

We assume the availability of partial observations yobs(j∆tobs) of the stochastic process gen-
erated by (1) in discrete time intervals ∆tobs and for j ≥ 1. We also assume that ∆tobs = L∆t,
i.e. measurements are taken every L ≥ 1 time-steps. The forward model for the observational
process is assumed to be linear, i.e.

Y = HX + Θ (4)

with forward operator H : RN → RK , measurement error Θ ∼ N(0, R), and measurement error
covariance matrix R ∈ RK×K . It is assumed that measurement errors at different instances in
time are independent and identically distributed. The associated likelihood function is denoted
by πY (y|x).

The task of intermittent data assimilation is to determine the conditional PDFs πX(x, tn|Yk)
of the random variable X(tn) at tn = n∆t given collected measurements

Yk = (yobs(t1)
T , yobs(t2)

T , · · · , yobs(tk)
T )T

at observation times tj = j∆tobs, j = 1, . . . , k. We will consider the two cases tn = tk (filtering)
and tn > tk (prediction). See Jazwinski (1970) for an excellent introduction to stochastic
processes and filtering.
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Let us first consider the pure prediction problem with no observations (k = 0). A Monte
Carlo simulation of (1) would proceed as follows. First one finds M independent realizations
xi(t0) from the initial PDF πX(x, t0). Secondly, each realization is updated recursively and
independently according to

xi(tn+1) = Ψ(xi(tn)) + ξi(tn), n ≥ 0, (5)

where ξi(tn) are independent realizations from the normal distribution N(0, Q) with Q = γ∆tI.
Under appropriate conditions on the marginal PDFs πX(x, tn) it can be shown that the empirical
distribution

πem
X (x, tn) =

1

M

M∑
i=1

δ(x− xi(tn))

converges weakly to πX(x, tn) as M →∞ for any fixed n > 0.
Monte Carlo simulation approaches for the pure prediction problem have been extended to

the combined filtering-prediction problem and have given rise to a broad range of sequential
Monte Carlo methods (Doucet et al., 2001; Bain and Crisan, 2009). The essential idea is to
augment the realizations xi(tn) by weights wi(tn) > 0 subject to∑

i

wi(tn) = 1

and to adjust the weights such that they reflect the importance of the samples xi(tn) relative
to the available measurements Yk while the samples xi(tn) continue to follow the stochastic dy-
namics (1). A common problem of this basic importance sampling approach is a degeneracy of
weights which requires resampling techniques. Straightforward resampling can be achieved by
eliminating samples with small weights and duplication of those with large weights. Practical
experience shows that the just described combined importance sampling-resampling approach
of sequential Monte Carlo methods does not work well for high dimensional problems unless
the number of samples M is increased at a rate which scales exponentially in the phase space
dimension N (Bengtsson et al., 2008). At the same time, the ensemble Kalman filter (EnKF)
(Evensen, 2006) has emerged as a robust alternative to sequential Monte Carlo methods ap-
plicable to high dimensional problems. The EnKF relies on Gaussian approximations to the
marginal PDFs πX(x, tn|Yk) and can be shown to be statistically inconsistent in the limit
M → 0 (contrary to sequential Monte Carlo methods) (Lei and Bickel, 2011). Hence the EnKF
is only applicable to problems with an unimodal and nearly Gaussian behavior of the underlying
PDFs.

Recently, increased efforts have been made to turn sequential Monte Carlo methods viable
for large-scale problems. All these efforts have in common that one tries to dynamically steer
samples xi(tn) to regions of high probability in πX(x, tn|Yk) and hence to maintain nearly
uniform weights wi(tn) without the need for frequent resampling. We will call these methods
guided sequential Monte Carlo (GSMC) methods. Particular instances of GSMC methods have
been discussed, for example, by Leeuwen (2010); Chorin et al. (2010); Morzfeld et al. (2012);
Bocquet et al. (2010). An alternative line of research is focused on improvements of the EnKF.
We mention the rank histogram filter (RHF) of Anderson (2010) and the moment corrected
EnKFs of Lei and Bickel (2011).

In this paper, we combine the coupling/transportation perspective on filtering with sequen-
tial Monte Carlo methods in order to propose a novel GSMC method. The outline of the paper
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is as follows. We will first review Bayes’ theorem and its connection to coupling of random
variables in Section 2. This will provide us with an abstract Monte Carlo methodology for the
combined filtering-prediction problem. Finding exact couplings is impossible in most practical
cases which suggest to combine available couplings, such as EnKFs (Evensen, 2006), with se-
quential Monte Carlo methods. Algorithmic details will be given in Section 3 while a numerical
demonstration is provided in Section 4.

2 Bayes’ theorem, filtering and coupling of random vari-

ables

Recall that we have assumed that observations are taken in intervals of ∆tobs which satisfy
∆tobs = ∆tL for an appropriate integer L ≥ 1. In this context it is helpful to generalize the
Chapman-Kolmogorov equation (2) to its L-fold recursive application, i.e.

πX(x, tn + ∆tobs) =

∫
RN

· · ·
∫

RN

π(x|x′)π(x′|x′′) · · ·π(x(L−1)|x(L))πX(x(L), tn) dx′ · · · dx(L)

=

∫
RN

πL(x|x̃)πX(x̃, tn) dx̃.

At the level of PDFs, the sequential data assimilation problem can now be stated as follows:
For j = 0, 1, . . . alternate between

(i) Prediction:

πX(x, tj+1|Yj) =

∫
RN

πL(x|x′)πX(x′, tj|Yj) dx
′, (6)

(ii) Filtering:

πX(x, tj+1|Yj+1) =
πY (yobs(tj+1)|x)πX(x, tj+1|Yj)∫

RN πY (yobs(tj+1)|x)πX(x, tj+1|Yj) dx
(7)

with likelihood function

πY (y|x) =
1

(2π)K/2|R|1/2
exp

(
−1

2
(y −Hx)TR−1(y −Hx)

)
from the forward model (4).

Recall that πX(x, 0|Y0) is equal to the given PDF πX(x, t0) of the initial random variable X(t0).
We now summarize a few Monte Carlo approaches for sequential data assimilation. We have

already discussed a Monte Carlo approach to simulating the Chapman-Kolmogorov equation
(2). We formally extend this approach to the data assimilation problem (6)-(7). We introduce
the notation (xf

i (tj), w
f
i (tj)), i = 1, . . . ,M , to denote M weighted samples from the forecast

(or predicted) distribution πX(x, tj|Yj−1) and, correspondingly, (xa
i (tj), w

a
i (tj)), i = 1, . . . ,M ,

to denote weighted samples from the analysed (or filtered) distribution πX(x, tj|Yj) at time
tj = j∆tobs. It follows that expectation values ḡ of a function g : RN → R can be approximated
according to

ḡf
M =

M∑
i=1

wf
i (tj) g(x

f
i (tj)) ≈

∫
RN

g(x)πX(x, tj|Yj−1) dx
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and

ḡa
M =

M∑
i=1

wa
i (tj) g(x

a
i (tj)) ≈

∫
RN

g(x)πX(x, tj|Yj) dx,

respectively.
The basic sequential Monte Carlo method is based on the following importance sampling

approach (Doucet et al., 2001; Bain and Crisan, 2009): For j = 0, 1, . . . alternate between

(i) Prediction:
xf

i (tj+1) ∼ πL(·|xa
i (tj)), wf

i (tj+1) = wa
i (tj), (8)

(ii) Filtering:

xa
i (tj+1) = xf

i (tj+1), wa
i (tj+1) ∝ wf

i (tj+1)πY (yobs(tj+1)|xf
i (tj+1)), (9)

where the constant of proportionality is chosen such that

M∑
i=1

wa
i (tj+1) = 1.

Due to a possible degeneracy of weights, it is necessary to perform resampling either after
each filtering step or whenever an appropriate criterion on the distribution of weights is satisfied.
Residual resampling is one of the popular resampling methods (Künsch, 2005; Bain and Crisan,
2009).

We now summarize an alternative approach which leads to constant weights wf
i = wa

i =
1/M . The basic idea is that of coupling the prior and posterior distributions (Reich, 2011;
Moselhy and Marzouk, 2011; Cotter and Reich, 2013). In order to explain this idea in more
detail, we simplify the notation in (7) and use the shorthands

πprior
X (x) = πX(x, tj+1|Yj), πpost

X (x) = πX(x, tj+1|Yj+1)

for the prior and posterior distributions at tj+1, respectively. A coupling between these two
distributions is defined by a joint PDF πXZ(x, z) (or more generally by a joint measure µXZ on
RN × RN) such that

πprior
X (x) =

∫
RN

πXZ(x, z) dz

and

πpost
X (z) =

∫
RN

πXZ(x, z) dx,

respectively. Given a coupling, one can replace (9) by the following Monte Carlo approach:

(ii) Filtering:

xa
i (tj+1) ∼ πZ(·|xf

i (tj+1)) :=
πXZ(xf

i (tj+1), ·)
πprior

X (xf
i (tj+1))

, wa
i (tj+1) = wf

i (tj+1). (10)
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Hence the filtering step has now the same structural form as (8). The important difference is
that the Markov transition kernel πL(x|x′) is determined explicitly by the model (1) while such
a transition kernel needs to be constructed using a coupling in case of the Bayesian filtering
step (7) and depends on the observed yobs(tj+1). In the literature, this is sometimes called the
McKean approach to filtering (Del Moral, 2004).

There is a further difficulty in that the prior and posterior PDFs are not explicitly available
in the context of sequential Monte Carlo methods and that approximations π̄prior

X and π̄post
X , re-

spectively, need to be estimated from the available samples xf
i , their weights wf

i and likelihoods
πY (yobs|xf

i ) either via parametric or non-parametric statistics (Wand and Jones, 1995; Hastie
et al., 2009).

We now continue with a simple demonstration of the concept of coupling by means of two
univariate Gaussian random variables X ∼ N(x̄, σ2

xx) and Z ∼ N(z̄, σ2
zz). Since the marginal

are given a priori, a joint Gaussian has to be of the form N(m,P ) with mean m = (x̄, z̄)T ∈ R2

and covariance matrix

P =

(
σ2

xx σ2
xz

σ2
zx σ2

zz

)
∈ R2×2,

where the only free parameter σ2
xz = σ2

zx has to satisfy

σ2
xxσ

2
zz − σ4

xz > 0

to make P symmetric positive definite. Setting σxz = 0 implies independence of X and Z and
is equivalent to defining a coupling via the product PDF

πXZ(x, z) = πprior
X (x)πpost

X (z)

in the general case. We now consider σ2
xz > 0 and recall that (10) requires the conditional PDF

πZ(z|x) which in this example is characterized by the conditional mean

z = z̄ +
σ2

xz

σ2
xx

(x− x̄)

and the variance
σ2 = σ2

zz − σ2
zxσ

−2
xx σ

2
xz.

If one sets σ2
xz =

√
σ2

xxσ
2
zz, then σ2 becomes zero and one obtains a deterministic coupling of

the two random variables via
Z = z̄ +

σzz

σxx

(X − x̄),

which amounts to the well-known transformation of univariate Gaussians under a linear func-
tion.

Inspired by this example we will search for general deterministic couplings Z = T (X) with
associated joint probability measure

µXZ(dx, dz) = δ(z − T (x))πprior
X (x) dxdz

from which it follows via margenalization that T has to satisfy

πpost
X (T (x)) |DT (x)| = πprior

X (x) (11)

(compare (3)). Once a deterministic coupling has been found, (10) can be replaced by
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(ii) Filtering:
xa

i (tj+1) = Tj+1(x
f
i (tj+1)), wa

i (tj+1) = wf
i (tj+1) (12)

where Tj+1 is a transport map, satisfying (11) at tj+1, given the prior πX(x, tj+1|Yj) and
the measurement yobs(tj+1).

Optimality in the sense of Monge-Kantorovitch (Villani, 2009) is defined by

µ∗XZ = arg inf
µXZ∈Π

∫
RN×RN

‖x− z‖2µXZ(dx, dz),

where the infimum runs over the set of all couplings µXZ , denoted by Π, with marginals πprior
X

and πpost
X . We first note that finding the optimal coupling between empirical measures

µprior
X (dx) =

1

M

M∑
i=1

δ(x− xf
i )dx

and

µpost
X (dz) =

M∑
i=1

wiδ(z − xf
i )dz

leads to a linear programming problem (Cotter and Reich, 2013; Reich, 2012b). Another key
result of optimal transportation states that the optimal coupling is induced by a transport map
T (x) for sufficiently regular prior PDFs πprior

X (Villani, 2009). Furthermore, the transport map
satisfies T (x) = ∇xψ(x) for an appropriate potential ψ : RN → R. It follows from (11) that
the potential ψ has to satisfy the nonlinear elliptic PDE

πpost
X (∇xψ(x)) |D∇xψ(x)| = πprior

X (x). (13)

For univariate prior and posterior random variables with cumulative probability distribution
functions

Fprior(x) =

∫ x

−∞
πprior

X (x′) dx′

and Fpost(x), respectively, a transport map is easily found via

z = T (x) = F−1
post(Fprior(x)). (14)

It becomes however computationally infeasible to solve (13) for ψ in case the dimension N
of phase space is large and/or πprior

X is non-Gaussian. Being forced to give up the idea of
strict optimality, one can resort to an idea of Moser (1965) (see also Villani (2009)) to find a
deterministic coupling. Moser suggested to utilize a dynamic embedding of the form

dx

ds
= − 1

πs(x)
∇xφ(x), (15)

with linearly interpolated PDFs

πs = (1− s)πprior
X + sπpost

X , s ∈ [0, 1],

and the potential φ determined by the Poisson equation

∇x · (∇xφ) = −πprior
X + πpost

X .
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The desired transport map T is defined as the time-one flow map of the ODE (15). The
embedding technique of Moser has been applied and refined for the Bayesian filtering step in
sequential data assimilation by Reich (2011). It has been demonstrated by Reich (2012a) that
explicit solutions to the embedding technique (15) can be found in case πprior

X is a multivariate
Gaussian or a mixture of multivariate Gaussians.

Furthermore, the popular family of EnKFs (Evensen, 2006) can be viewed as providing
couplings under the assumption that the prior distribution is approximated at tj+1 by a mul-
tivariate Gaussian with mean x̄f and covariance matrix P f . For example, the EnKF with
perturbed observations leads to a non-deterministic (non-optimal) coupling, which gives rise to

xa
i (tj+1) ∼ πZ(·|xf

i (tj+1)) = N(xf
i (tj+1)−K(Hxf

i (tj+1)− yobs), KRK
T )

in (10) with Kalman gain matrix

K = P fHT (HP fHT +R)−1.

See also the discussion in Cotter and Reich (2013) on an optimal coupling for EnKFs based on
the work of Olkin and Pukelsheim (1982).

We will now utilize available couplings for Bayesian inference in order to derive GSMC
methods for more general classes of prior and posterior distributions.

3 A guided sequential Monte Carlo (GSMC) method

We assume that, at initial time t0 = 0, an ensemble of M independent samples xi(0) ∈ RN

from the given PDF πX(x, 0) is being generated. Each sample is given an initial weight of
wf

i (0) = 1/M .
In between observations, the ensemble is propagated under the dynamical model (5). The

initial conditions for each simulation interval are provided by the analysed ensemble members
xa

i (tj) from the most current data assimilation step. The model predictions at the next ob-

servation point tj+1 are denoted by xf
i (tj+1). The weights wi(tj) do not change during model

simulations. Observed values y(tj) ∈ RK are assimilated in time intervals of ∆tobs using the
forward model (4).

An essential ingredient of the proposed GSMC method is to find an appropriate estimate
π̄prior

X (x, tj+1) of the prior PDF from the weighted samples (xf
i (tj+1), w

f
i (tj+1)), i = 1, . . . ,M .

For example, the prior distribution at time tj+1 can be approximated using a Gaussian mixture
or a Gaussian kernel density estimator (Wand and Jones, 1995) of the form

π̄prior
X (x, tj+1) =

M∑
i=1

wf
i

(2πh)N/2|P f |1/2
exp

(
− 1

2h
(x− xf

i )
T (P f )−1(x− xf

i )

)
,

where xf
i = xf

i (tj+1), w
f
i = wf

i (tj+1), P
f denotes the empirical covariance matrix of the forecast

ensemble, and 1 ≥ h > 0 is the bandwidth of the estimator. From now on we will drop the time
argument and assume that all relevant quantities are computed for t = tj+1 unless indicated
otherwise.

Our GSMC approach relies on an appropriate transport map T̂ : RN → RN , which will
depend on both the forecast ensemble {(xf

i , w
f
i )}M

i=1 and the measured yobs. It should be chosen
such that the transformed posterior distribution π̃post

X , defined according to (11) by

π̃post
X (T̂ (x))|DT̂ (x)| = π̄prior

X (x),
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is close to the desired posterior distribution

π̄post
X (x) := πX(x|yobs) ∝ πY (yobs|x)π̄prior

X (x).

Following the idea of importance sampling, we now define the analysed ensemble by xa
i =

T̂ (xf
i ) with updated weights

wa
i ∝ wf

i

πY (yobs|xa
i ) π̄

prior
X (xa

i )

π̃post
X (xa

i )

= wf
i πY (yobs|xa

i ) |DT̂ (xf
i )|

π̄prior
X (xa

i )

π̄prior
X (xf

i )
,

where the normalization constant is chosen such that
∑

iw
a
i = 1.

Furthermore, we will assume that the transport map T̂ couples a prior π̂prior
X and its associ-

ated posterior PDF π̂post
X exactly. Such transport maps exists for Gaussian prior PDFs as well

as Gaussian mixture prior PDFs. The coupling property implies that

|DT̂ (x)| = π̂prior
X (x)

π̂post
X (T̂ (x))

and, furthermore, since

π̂post
X (T̂ (x)) ∝ πY (yobs|T̂ (x)) π̂prior

X (T̂ (x))

we may conclude that

|DT̂ (x)| ∝ π̂prior
X (x)

πY (yobs|T̂ (x)) π̂prior
X (T̂ (x))

.

Combining all these results leads to the modified filtering step:

(ii) Filtering:

xa
i = T̂ (xf

i ), wa
i ∝ wf

i

π̂prior
X (xf

i )

π̂prior
X (xa

i )

π̄prior
X (xa

i )

π̄prior
X (xf

i )
, (16)

where the time argument tj+1 has been dropped for notational convenience. Here π̄prior
X (x)

denotes an estimate of the true underlying prior and π̂prior
X (x) denotes a PDF which allows

for the computation of a transport map T̂ (x).

The PDF π̂prior
X (x) should be chosen such that particle weights remain nearly uniform. If

the accumulated weights become however strongly non-uniform, particles can be resampled by
the same techniques as being employed for traditional sequential Monte Carlo methods.

We mention that the proposed GSMC algorithm can be extended to the case that an exact
coupling cannot be found for the given likelihood πY (y|x) and a simplified likelihood π̂Y (y|x)
needs be employed. In that case one would use

wa
i ∝ wf

i

πY (yobs|xa
i )

π̂Y (yobs|xa
i )

π̂prior
X (xf

i )

π̂prior
X (xa

i )

πprior
X (xa

i )

πprior
X (xf

i )

in (16).
We next provide a simple numerical demonstration of the proposed GSMC method using

one-dimensional Brownian dynamics.
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Figure 1: Shown is the reference solution from which observations are generated by adding
Gaussian noise with mean zero and variance R = 36.

4 Brownian dynamics under a double well potential

We consider one-dimensional Brownian dynamics

dx = −V ′(x) dt+ dW (t)

with potential

V (x) = cos(x) +
3

4

(x
6

)4

and standard Brownian motion W (t) as a test example. The stochastic equations are solved
numerically by the Euler-Mayuama method, i.e.

xn+1 = xn −∆tV ′(xn) +
√

∆tZn

with step-size ∆t = 0.1 and Zn ∼ N(0, 1).
The measurement equation is

Y = X +
√
RΞ

with Ξ ∼ N(0, 1) and R = 36 is the variance of the measurement error. Actual measurements
are obtained from a reference trajectory (see Figure 1) of our Brownian dynamics model and
added measurement noise. Ensemble sizes vary between M = 20, 50 and 100. Measurements
are taken every 10 units of time (i.e. ∆tobs = 10∆t) and a total of 1,000 assimilation steps are
performed.

We compute a highly accurate reference solution by solving the Fokker-Planck equation

∂πX

∂t
=

1

2

∂

∂x

(
π∗X

∂πX

∂x

)
with canonical PDF

π∗X(x) ∝ exp(−V (x))

over a computational grid with mesh-size ∆x = 1/16. The results are used to approximate the
prediction step (6) directly on the level of PDFs. The grid approximations to πX(x, tj+1|Yj) are
then used to find grid approximation to the analysed PDFs πX(x, tj+1|Yj+1) using (7). These
density approximations are finally used to approximate the time-evolved means x̄(tn) which are
taken as a reference for the ensemble-based filter algorithms.
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Given a set of particles xf
i ∈ R with weights wi > 0 we compute the unweighted ensemble

mean

x̄f =
1

M

M∑
i=1

xf
i

and the corresponding covariance matrix

P f =
1

M − 1

M∑
i=1

(xf
i − x̄f )2,

which implies a Gaussian prior

π̂prior
X (x) =

1

(2πP f )1/2
exp

(
− 1

2P f
(x− x̄f )2

)
for the application of the ensemble square root filter as a proposal map T̂ (x).

For the implementation of the GSMC approach we assume furthermore that particles are
given an index αi ∈ {−1, 1} indicating whether they belong to the left or the right, respectively,
potential well, i.e. αi = +1 if xf

i > 0 and αi = −1 if xf
i < 0. We then approximate the prior

distribution πX(x, tj+1|Yj) by

π̄prior
X (x) =

γ−1

(2π)1/2σ
exp

(
− 1

2σ2
(x− x̄−1)

2

)
+

γ+1

(2π)1/2σ
exp

(
− 1

2σ2
(x− x̄+1)

2

)
with

γj =
M∑
i=1

δj,αi
wi, j ∈ {−1,+1},

where δjk denotes the Kronecker delta,

x̄j =
M∑
i=1

δj,αi
wix

f
i

and fixed standard deviation σ =
√

2. Clearly, a more sophisticated Gaussian mixture model
could be fitted to the available ensembles using the expectation-maximization (EM) algorithm
(Dempster et al., 1977).

We also implemented the RHF of Anderson (2010) using piecewise linear ensemble based
approximations to the prior and posterior cumulative distribution functions Fprior, Fpost and
subsequent construction of a transport map for (12) using formula (14).

Numerical results are presented in Table 1, where the root mean square (RMS) error is
defined as

RMS error =

√√√√ 1

J

J∑
j=1

(x̄a(tj)− x̄ref(tj))2,

with x̄a(tj) denoting the analysed ensemble average from the filter at time tj and x̄ref(tj) its
numerical approximation from the Fokker-Planck approach.

The RHF with a transport map based on cumulative distribution functions yields the most
accurate filter results. In fact, the RHF converges to the analytic filtering solution as M →
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Table 1: RMS errors for ensemble means obtained from an ensemble square root filter (EnKF),
the ensemble Gaussian mixture filter (EGMF), the guided sequential Monte Carlo method
(GSMC), and the rank histogram filter (RHF) compared to the expected value computed by a
Fokker-Planck discretization with error variance R = 36 and ensemble sizes of M = 20, 50, 100
particles/ensemble members.

EnKF EGMF GSMC RHF

M = 20 1.1590 0.7683 1.0200 0.6551
M = 50 1.0701 0.5127 0.7172 0.3717
M = 100 1.0477 0.4033 0.6534 0.2691

∞. The second best result is obtained for the ensemble Gaussian mixture filter (EGMF)
of Reich (2012a) for which a transport map is constructed using a binary Gaussian mixture
approximation for the distributions in x using the EM algorithm. We also find that the GSMC
approach yields an improvement over the EnKF while not delivering results as accurate as
those from the RHF and the EGMF. Note that the GSMC implementation with T̂ based
on a ensemble square root filter can be viewed as an inexpensive post-processing step to the
associated EnKF algorithm.

5 Conclusions

From a mathematical perspective the coupling and optimal transportation approach to Bayesian
data assimilation offers attractive opportunities. Practical implementations are limited by
the fact that optimal transport maps are difficult to compute numerically. It has, however,
been demonstrated for a wide range of problems that rather crude approximations to the cou-
pling/transport problem, such as the EnKF, can lead to surprisingly robust data assimilation
algorithms. In this paper, we have followed a recent trend of combining crude ensemble trans-
form approximations with sequential Monte Carlo methods. More specifically, we have pro-
posed an importance sampling approach for post-processing existing ensemble transform filter
formulations. Such an approach should be useful whenever the underlying ensemble transform
filter is capable of tracking regions of high posterior probability while being of limited statis-
tical accuracy. Under those circumstances, postprocessing the data should lead to improved
statistics.
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