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Abstract. Constraints typically arise from the elimination of high fre-
quency oscillations in mechanical systems. Examples are provided by
bond constraints in molecular simulations and incompressibility con-
straints in fluid dynamics. A key issue is the accuracy of constrained
dynamics with regard to the full dynamics. In this review we focus
on the smooth solution components and discuss the concept of slow
manifold and soft constraints in molecular and geophysical fluid dy-
namics. While the formal mathematical derivation of constraints is the
same for both molecular and fluid dynamics, the predominant numeri-
cal techniques for dealing with constraints are different in the two fields.
Semi-implicit time- stepping methods are often used in geophysical
fluid dynamics while explicitly enforced constraints are more common
in molecular dynamics.

1 Introduction

We consider mechanical systems with stiff potential contributions, which give rise to
rapid oscillations compared to the slow time-scales of interest. To keep the exposition
as transparent as possible, we will mostly consider N degrees of freedom systems with
a single fast degree of freedom of type

dq

dt
= M−1p, (1)

dp

dt
= −∇qV (q)− ε−2G(q)T g(q), (2)

where q ∈ RN is the vector of particle positions, p ∈ RN is the vector of particle
momenta, M ∈ RN×N is a positive-definite mass matrix, V : RN → R is a smooth
potential, g(q) : RN → R is an appropriate convex functions, G(q) = gq(q) ∈ R1×N

denotes the Jacobian of g, and 0 < ε � 1 is a small constant. The system (1)-(2)
conserves the energy (Hamiltonian)

H(q, p) =
1
2
pT M−1p + V (q) +

1
2ε2

g(q)2.
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If the system (1)-(2) is solved by the explicit Störmer-Verlet method [1,2]

pn+1/2 = pn − ∆t

2
[
∇qV (qn) + ε−2G(qn)T g(qn)

]
, (3)

qn+1 = qn + ∆tM−1pn+1/2, (4)

pn+1 = pn+1/2 − ∆t

2
[
∇qV (qn+1) + ε−2G(qn+1)T g(qn+1)

]
(5)

with step-size ∆t > 0, linear stability requires that

∆t = O(ε),

which can impose a severe step-size restriction when one is primarily interested in the
slow dynamics on time-scales of order O(ε0) or longer. In the limit ε → 0, the slow
dynamics can be recovered from the constrained system [1,2]

dq

dt
= M−1p, (6)

dp

dt
= −∇qV (q)−G(q)T λ, (7)

0 = g(q), (8)

where the Lagrange multiplier λ ∈ R is determined from

d2

dt2
g(q) =

d

dt
G(q)M−1p

= G(q)M−1
[
−∇qV (q)−G(q)T λ

]
+ pT M−1gqq(q)M−1p.

Here gqq(q) ∈ RN×N denotes the Hessian of g. For this limit to hold (see, e.g. [5,3],
we need to require that the initial conditions (qε(0), pε(0)) are chosen such that

H(qε(0), pε(0)) = O(ε0)

as well as
g(qε(0)) = O(ε2), G(q)p = O(ε)

meaning that the energy in the fast degree of freedom vanishes as ε → 0. The later
assumption is not realistic for molecular simulations and correcting force terms arise
in general [5,3,4], which we do not discuss further in this paper. The interested reader
is referred to the contribution of [6] in this volume for a discussion of constraints in
the context of equilibrium statistical mechanics. Equations (6)-(8) can be solved by
the SHAKE/RATTLE method and the step-size can now be chosen independent of
ε.

In fluid dynamics a similar situation occurs. In a first instance, barotropic ideal
fluid dynamics can be formulated as a continuum mechanical system where the forces
depend only on the density of the fluid [7]. This special force structure allows one
to reduce the equations of motion (similar to the reduction possible for rigid body
motion) to the compressible Euler fluid equations

vt = −v · ∇xv −∇xπ(ρ), (9)
ρt = −∇x · (ρv), (10)

where ρ(x, t) denotes the density of the fluid, π(ρ) its pressure as a function of density,
and v(x, t) its velocity field. Here x ∈ Rd, d = 2, 3 represents the (now) independent
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spatial coordinates in two or three dimensions. The limit of incompressibility gives
rise to a holonomic constraint similar to g(q) in terms of the Lagrangian formulation
of ideal fluid dynamics which, in terms of (9)-(10), becomes

vt = −v · ∇xv −∇xπ, (11)
0 = ∇x · v, (12)

under the assumption of a homogeneous initial fluid density. Pressure takes now the
role of a Lagrange multiplier determined from

0 = ∇x · vt = ∇x · [−v · ∇xv −∇xπ] . (13)

It should be noted that (12) corresponds to the velocity constraint G(q)p = 0 and
that (13) itself is a consequence of the holonomic contraint that the fluid density is
kept constant in space and time.

Geophysical fluid dynamics requires the augmentation of these equations by ad-
ditional forcing terms and an equation for temperature [7,8]. However, these more
complex equations are not necessary for the purpose of this paper.

In many instances, enforcing constraints of type (8) or (12), respectively, is too
restrictive since the parameter value ε for the physical system under consideration
is not so small as to allow the formal mathematical limit ε → 0 to be taken. Two
strategies to deal with such situations have been developed. The first is to replace
the constraints by a more accurate representations of the manifold on which the slow
dynamics takes place (see, e.g. [15,9]. The second approach is to use linearly implicit,
also called semi-implicit, time-stepping methods for the unapproximated equations of
motion (see, e.g. [11,8]).

2 Stiff spring pendulum

The stiff spring model is used in molecular as well as geophysical fluid dynamics as
a toy model to demonstrate the coupling between slow motion and rapid oscillations
(see, e.g. [5,12]. In this section, we therefore discuss the concepts of slow manifolds
and regularized equations of motion for a planar stiff spring pendulum

dqx

dt
=

px

m
,

dqy

dt
=

py

m
,

dpx

dt
= −k

qx

r
(r − l),

dpy

dt
= −mg − k

qy

r
(r − l),

where the coordinates are q = (qx, qy), the momenta are p = (px, py), and r =√
q2
x + q2

y. Here l > 0 is the equilibrium length of the stiff spring, k � 1 is the force
constant, m > 0 is the body’s mass, and g is the gravitational constant.

To gain more insight we reformulate the equations of motion in polar coordinates
(θ, r), where r is the radius, i.e. the length between the body and the fixed suspen-
sion, and θ is the angle between position vector and y-axis. Further, we define the
radial momentum pr = mdr/dt and the angular momentum pθ = mr2dθ/dt. The
Hamiltonian function of the elastic pendulum is now given by

H(q, p) =
1

2 m

(
p2

r +
p2

θ

r2

)
+

1
2
k (r − l)2 −mgr cos θ.
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with the corresponding Hamiltonian equations of motion

dθ

dt
=

pθ

mr2
(14)

dpθ

dt
= −mgr sin θ (15)

dr

dt
= pr/m (16)

dpr

dt
=

p2
θ

mr3
− k(r − l) + mg cos θ. (17)

The stiff spring gives rise to rapid oscillations with frequency

ωS =

√
k

m
.

We now formally set ε2 = 1/k and, in the limit ε → 0, the constraints g(q) = 0 and
G(q)M−1p = 0 are now provided in terms of the general formulation (1)-(2) by

r(t) = l, pr(t) = 0

and the reduced equations of motion are given by (14)-(15), which corresponds to
(6)-(8) in cartesian coordinates. The frequency of small angle pendulum motion is

ωP =
√

g

l

and ωP � ωS for 0 < ε � 1.
A more accurate representation of the slow motion on time-scales of order O(ε0)

is provided by the bounded derivative principle (see, e.g. [13,12])

dr

dt
= O(ε2),

dpr

dt
= O(ε1).

Initial conditions which satisfy these conditions are said to be in nonlinear balance.
Obviously, nonlinearly balanced initial conditions require here that pr(0) = 0 and

rNL(0) = l + k

(
cos θ(0) +

p2
θ(0)
ml3

)
to leading order in ε2 = 1/k. Once initialized in nonlinear balance, or close to it,
the system will remain close to a nonlinearly balanced state [14] and, hence, the fast
oscillations are controlled by the slow pendulum motion and a good approximation
to the full dynamics could be made by the slow equations:

dθ

dt
=

pθ

mr2
, (18)

dpθ

dt
= −mgr sin θ, (19)

0 = pr, (20)

0 =
p2

θ

ml3
− k(r − l) + mg cos θ. (21)

The fast mode has thus been eliminated on the level of the continuous model. This
could be seen as favorable for a numerical approach to the elastic pendulum, where
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the time step of an explicit integration scheme is no longer restricted by the elastic
motion. However, contrary to the hard constraints pr = 0, r = 0, the modified
constraint (21) is no longer holonomic since the angular momentum pθ is involved. A
standard holonomic constraints approach is possible once (21) is replaced by

0 = −k(r − l) + mg cos θ.

This approach corresponds to what is called soft or elastic constraints in [15,9]. See
also the contribution of [10] in this volume.

In the following we discuss approaches of numerically solving the original, full
equations without explicitly eliminating the fast mode. The advantage of implicit
schemes, such as the implicit midpoint method, is that they are unconditionally stable
with respect to linear fast and slow modes. On the other hand, they introduces fully
implicit relations in linear and nonlinear terms which, in general, requires an iterative
method for solving the resulting nonlinear equations. This is most unfavorable in
situations where the calculation of the nonlinear terms is a computationally very
expensive task, because iterative methods usually require multiple evaluations of these
terms. Indeed, in practice, the implicit midpoint rule is neither widely used in the
context of molecular dynamics nor for fluid dynamics simulations. Implicit methods
can also suffer from nonlinear instabilities (see, e.g., [16]).

A plausible alternative is provided by linearly implicit (semi-implicit) one-step
methods. A very simple scheme of that class can be constructed by using an ex-
plicit Euler step for the nonlinear term and an implicit midpoint discretization of
the linearized stiff spring oscillations. The method can be written in the following
algorithmic form:

θn+1 = θn + ∆t
pn

θ

m(rn)2
(22)

pn+1
θ = pn

θ −∆tmgrn sin θn (23)

rn+1 = rn + ∆t
p

n+1/2
r

m
(24)

pn+1
r = pn

r + ∆t

[
(pn

θ )2

m(rn)3
+ mg cos θn − k(rn+1/2 − l)

]
, (25)

where a midpoint value is defined by

Xn+1/2 =
Xn + Xn+1

2
.

However, this method, while being linearly stable in the stiff spring oscillations for
step-sizes ∆t = O(ε0), is still not suitable for molecular and geophysical fluids simu-
lations since the time-reversibility of the equations of motion is lost.

We now demonstrate how to obtain a time-reversible linearly implicit time-stepping
method using the concept of regularized equations [17]. We start by rewriting (24)-
(25) as updates of the midpoint values

rn+1/2 = rn +
∆t

2m
pn+1/2

r (26)

pn+1/2
r = pn

r +
∆t

2
(Cn − k(rn+1/2 − l)), (27)

where we collected the explicit nonlinear terms in

Cn :=
pn

θ )2

m(rn)3
+ mg cos θn.
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We substitute (27) into (26) and obtain a linearly implicit equation in rn+1/2, i.e.(
1 +

k∆t2

4m

)
(rn+1/2 − l) = r̂n+1/2 − l +

∆t2

4
Cn

m
(28)

in which the explicit midpoint predictor is defined by a ∆t/2 forward Euler step

r̂n+1/2 = rn +
∆t

2m
pn

r .

The stability property of the implicit midpoint scheme guarantees that the eigenvalues
of the numerical propagation matrix corresponding to the linear fast modes are on
the unit circle independently of the size of the time step. The idea is to build this
feature into a new variable, i.e. a regularized radius r̃. Hence we identify r̂n+1/2 with
r(tn+1/2) and rn+1/2, as obtained from the implicit midpoint rule, with a regularized
radius r̃(tn+1/2), which is then determined by the equation(

1 +
k∆t2

4m

)
[r̃ − r] =

∆t2

4m

[
p2

θ

mr3
− k(r − l) + mg cos θ

]
. (29)

The equations of motion for the regularized spring pendulum are finally given by the
system

dθ

dt
=

pθ

mr2
, (30)

dpθ

dt
= −mgr sin θ, (31)

dr

dt
=

pr

m
, (32)

dpr

dt
=

p2
θ

mr3
− k(r̃ − l) + mg cos θ, (33)

together with the additional (linear) equation (29) to be solved for the regularized
radius r̃.

We can now apply a symmetric time-stepping method to the regularized equations
which is explicit in the conservative forcing terms. A natural choice is the general-
ized Störmer-Verlet method [1,2], which applied to the regularized spring pendulum
problem (30)-(33) and (29) yields:

First half step in momentum:

p
n+1/2
θ = pn

θ −
∆t

2
mgrn sin θn

pn+1/2
r = pn

r +
∆t

2

[
(pn+1/2

θ )2

m(rn)3
+ mg cos θn − k(r̃n − l)

]

Full step in coordinates:

rn+1 = rn + ∆t
p

n+1/2
r

m

θn+1 = θn + ∆t
p

n+1/2
θ

m(rn+1/2)2
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Fig. 1. Standard Störmer-Verlet simulations with m = 1, l = 1, g = π2, k = 102 π2, ∆t =
0.01. Left panel: linear balance initial conditions (θ(0), pθ(0), r(0), pr(0)) = (π/8, 0, 1, 0);
Right panel: nonlinear balance initial conditions (θ(0), pθ(0), r(0), pr(0)) = (π/8, 0, [1 +
ε2 cos θ0], 0).

Second half step in momentum:

pn+1
θ = p

n+1/2
θ − ∆t

2
mgrn+1 sin θn+1

r̃n+1 = rn+1 +
(

1 +
k∆t2

4m

)−1
∆t2

4m

[
(pn+1

θ )2

m(rn+1)3
− k(rn+1 − l) + mg cos θn+1

]
pn+1

r = pn+1/2
r +

∆t

2

[
(pn+1/2

θ )2

m(rn+1)3
+ mg cos θn+1 − k(r̃n+1 − l)

]

For this example, the specific coupling of linear and nonlinear terms results in a
completely explicit algorithm, but we must generally expect a weakly implicit scheme
which converges quickly with only a few fixed point iterations, without the need of
applying a more complicated Newton method.

Numerical methods are now implemented for a spring pendulum with mass m = 1,
equilibrium spring length of l = 1 and gravitational constant g = π2, as described in
[12]. With this choice of parameters the frequency corresponding to the slow pendulum
motion is ωP = π. The spring coefficient is chosen to be either k = 102 π2 or k =
1002 π2. In the first case the stiff spring frequency is ωS = 10π which implies a ratio
of ε = 0.1 and for the alternative choice we have a ten times larger ωS = 100π with
ratio ε = 0.01. Numerical test use either the initial conditions (linear balance)

(θ(0), pθ(0), r(0), pr(0)) = (π/8, 0, 1, 0)

or the balanced initial conditions (nonlinear balance) given by

(θ(0), pθ(0), r(0), pr(0)) =
(
π/8, 0, 1 + ε2 cos θ0, 0

)
.

A visual impression of the spring pendulum motion with k = 102 π2 for both
linearly and nonlinearly balanced initial conditions is given in Fig. 1. The results are
computed by standard Störmer-Verlet method and step-size ∆t = 0.01.

Fig. 2 demonstrates that the regularized Störmer-Verlet method produces stable
results both in terms of energy as well as balanced dynamics for a time step ∆t =
0.01, which violates the stability condition of Störmer-Verlet for the unregularized
equations with stiff spring constant k = 1002π2.
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Fig. 2. Energy and positions of slow pendulum motion obtained from integrating the regu-
larized Störmer-Verlet method for parameter values ∆t = 0.01, k = 1002 π2.

3 General formulations

We now return to formulation (1)-(2) in Cartesian coordinates. The standard con-
strained manifold is provided by

MS = {(q, p) ∈ R2N : g(q) = 0, G(q)M−1p = 0}

and the Lagrange multiplier in (6)-(8) is explicitly given by

λ(q, p) = (G(q)M−1G(q)T )−1
[
G(q)M−1p−∇qV (q) + pT M−1gqq(q)M−1p

]
A better approximation to the slow dynamics of (1) - (2) can be obtained by follow-
ing [15,9], where the idea of self-consistent flexible constraints has been introduced.
Instead of a hard or rigid constraints, it is required that the fast force contribution
satisfies the balance condition

−ε−2G(q)T g(q) = −G(q)T λ(q, p). (34)

This condition can be understood as replacing the rigid constraint g(q) = 0 by the
condition

g(q) = ε2 λ(q, p) (35)

and suggests to numerically integrate

Mq̇ = p, (36)

ṗ = −∇V (q)−G(q)T Λ, (37)
0 = g(q)− ε−2 λ(q, p) (38)

instead of (6)-(8). The new Lagrange multipliers Λ are obtained by twice differen-
tiating the constraint (38). Note that (38) is non-holonomic unless we set p = 0 in
λ(q, p). See [9] and also [18] for implementation details.

In order to derive a general regularized model based on the concept of self-
consistent flexible constraints, we first write down a semi-implicit discretization of
the system (1)-(2):

qn+1 = qn + ∆tM−1pn+1/2, (39)

pn+1 = pn −∆tε−2G(qn)T gn+1/2 −∆t∇qV (qn), (40)
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where gn+1/2 is defined by

gn+1/2 = g

(
qn+1 + qn

2

)
.

We find that

gn+1/2 = g

(
q̂n+1/2 − ∆t2

4
M−1

(
ε−2G(qn)T gn+1/2 +∇qV (qn)

))
(41)

with predictor

q̂n+1/2 = qn +
∆t

2
pn.

Formal Taylor series expansion yields

gn+1/2 ≈ g
(
q̂n+1/2

)
− ∆t2

4
G(qn)M−1

(
ε−2G(qn)T gn+1/2 +∇qV (qn)

)
(42)

and the linearly implicit problem(
1 +

∆t2

4ε2
G(qn)M−1G(qn)T

)
gn+1/2 = ĝn+1/2 − ∆t2

4
G(qn)M−1∇qV (qn) (43)

with ĝn+1/2 = g(q̂n+1/2).
Next we replace the fast term g(q) by a regularized term g̃(q) in the Hamiltonian

system (1)-(2) to obtain

dq

dt
= M−1p, (44)

dp

dt
= −ε−2G(q)T g̃(q)−∇qV (q), (45)

where we require g̃(q) to be the solution of a smoothing problem of the following
form:

S [g̃ − g(q)] = −α2

ε2
R. (46)

Here the operator S and α2R are chosen in a way such that (46) mimics the linearly
implicit problem (43) under the identification gn+1/2 → g̃ and ĝn+1/2 → g(q). We get

S = 1 +
α2

ε2
G(q)M−1G(q)T ,

as well as
R = G(q)M−1

[
G(q)T g(q) + ε2∇qV (q)

]
,

and
α2 = ∆t2/4,

respectively, for the parameter α.
Note, that g̃ = g(q) whenever the system’s fast and slow force components are

balanced which is expressed by

G(q)T g(q) + ε2∇qV (q) = 0,

which is equivalent to (35) with p = 0. Then all forces balance in the direction of the
fast oscillations and the system remains close to that state.
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A Störmer-Verlet discretization of the regularized system (44)-(45) yields a stable
(provided α ≥ ∆t/2), linearly implicit, and time-reversible algorithm:

Half step in momentum:

pn+1/2 = pn − ∆t

2ε2
G(qn)T g̃n − ∆t

2
∇qV (qn)

Full step in coordinates:

qn+1 = qn + ∆t M−1pn+1/2

Regularization: (G = G(qn+1))(
ε2

α2
+ GM−1GT

)
g̃n+1 =

ε2

α2
g(qn+1)− ε2GM−1∇V (qn+1)

Second half step in momentum:

pn+1 = pn+1/2 − ∆t

2ε2
G(qn+1)T g̃n+1 − ∆t

2
∇qV (qn+1).

It is straightforward to extend these ideas to vector-valued g(q).
Following [17], the regularized formulation for the Euler equations (9)-(10) is pro-

vided by

vt = −v · ∇xv −∇xπ̃,

ρt = −∇x · (ρv),

with regularized pressure determined by the elliptic partial differential equation[
1− α2∇x · ρ∇x

]
[π̃ − π(ρ)] = α2∇x · (ρ[v · ∇xv +∇xπ(ρ)]) .

These formulations are well-suited for Störmer-Verlet type time-stepping methods
using semi-Lagrangian techniques for the (force free) transport part. See [19,20]. The
implementation of soft constraints for the Euler equations (9)-(10) would amount to
replacing (12) by

0 =
∂

∂t
{∇x · (ρ[v · ∇xv +∇xπ(ρ)])} . (47)

It would be of interest to discuss popular constraint formulations such as the anelastic
and pseudo-incompressible approximation [8] in the light of (47).

4 Conclusions

Linearly implicit methods are widely used in computational fluid dynamics. Explic-
itly filtered equations (which amounts to enforcing some sort of constraints on the
fluid equations) are also widely used but are not always suitable in particular for
operational weather forecasting. On the other hand, constraints are often used in
molecular dynamics for removing bond vibrations while implicit (or linearly implicit)
methods can hardly be found. We have summarized work that demonstrates that
both approaches are, in fact, closely related and that both communities could benefit
from an exchange of algorithmic ideas.

While constraints explicitly remove fast vibrations from the system at the price
of having to solve nonlinear equations, regularized equations artificially slow fast
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oscillations down such that explicit time-stepping methods can be applied. The im-
plementation of regularized equations then leads to linearly implicit time-stepping
methods which are time-reversible but not symplectic. This can potentially lead to
a drift in total energy in long time molecular dynamics simulations. Artificial reso-
nances between the slowed-down fast vibrations and other natural frequencies of the
system might also occur for conservative systems with no clear scale separation.
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