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Abstract1

The ensemble Kalman filter has emerged as a promising filter algorithm for nonlinear2

differential equations subject to intermittent observations. In this paper, we extend the well-3

known Kalman-Bucy filter for linear differential equations subject to continous observations4

to the ensemble setting and nonlinear differential equations. The proposed filter is called the5

ensemble Kalman-Bucy filter and its performance is demonstrated for a simple mechanical6

model (Langevin dynamics) subject to incremental observations of its position.7
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1 Introduction8

We consider stochastic differential equations of type

dx = f(x, t)dt+Ω1/2dw(t) (1.1)

where x(t) ∈ RN , Ω ∈ RN×N is a symmetric positive semi-definite matrix, and w(t) denotes9

N -dimensional standard Brownian motion (GARDINER, 2004).10

The standard intermittent data assimilation problem for (1.1) can be stated as follows. Given

initial conditions x(t0) at time t0 and measurements

y(tq) = Hx(tq) + ηq (1.2)

at discrete times tq , q = 1, . . . , J , find the optimal estimate for solutions at times t > t011

provided measurements at all instances tq < t are available (filtering/prediction problem). Here12

H ∈ RK×N is the forward operator, y(tq) ∈ RK is the measurement at time tq and ηq ∈ RK are13

realizations of a Gaussian random variable with mean zero and covariance matrix R ∈ RK×K .14

In recent years, the ensemble Kalman filter (EVENSEN, 2006) has emerged as a powerful15

tool to approximately solve the filtering/prediction problem; see also related work on the16

unscented Kalman filter (JULIER and UHLMANN, 1997). Implementations of the ensemble17

Kalman filter can be grouped into ensemble transform/square root filters (TIPPETT et al., 2003)18

and ensemble filters based on perturbed observations (EVENSEN, 2006). BERGEMANN et al.19

(2009), BERGEMANN and REICH (2010a), BERGEMANN and REICH (2010b), and REICH20

(2011a) have developed associated continuous ensemble Kalman filter implementations which21

are closely related to the Kalman-Bucy filter for linear differential equations (JAZWINSKI, 1970).22

Implementation issues and a comparison to the local ensemble transform Kalman filter (HUNT23

et al., 2007) have been addressed in AMEZCUA et al. (2011).24

In this paper, we demonstrate how to use the continuous formulations of BERGEMANN

and REICH (2010a,b); REICH (2011a) to tackle assimilation problems for which observations
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of incrementally changing variables are to be assimilated. A typical example is provided by

Lagrangian data, i.e. ocean drifter positions which are used to correct Eulerian velocity fields

forecasted by models (KUZNETSOV et al., 2003; MOLCARD et al., 2003). To be more specific,

let X(t) ∈ R2 denote the horizontal position of a drifter at time t and X(t + τ) its position at

t + τ , where τ is the (assumed to be small) observation interval. Then also assuming that the

drifter’s velocity is subject to random perturbations to its surrounding horizontal fluid velocity

field v(X, t) ∈ R2, we obtain the approximation

X(t+ τ)−X(t) = v(X, t)τ +
√
τσrt

where σ > 0 is a constant and rt ∈ R2 is a random vector with mean zero and covariance equal

to the identity matrix I. In the limit τ → 0, one obtains the stochastic differential equation

dX = v(X, t)dt+ σds(t),

where s(t) ∈ R2 denotes two dimensional standard Brownian motion.25

The paper is organized as follows. The continuous ensemble Kalman filter formulation of26

BERGEMANN and REICH (2010a,b) is reviewed in Section 2 in the context of intermittent data27

assimilation. The ensemble Kalman-Bucy filter for continuous data assimilation is derived in28

Section 3 and implemented in Section 4 for a simple mechanical system to assess the performance29

of the proposed ensemble Kalman-Bucy filter relative to that of the extended Kalman-Bucy filter30

(JAZWINSKI, 1970).31

2 Background32

Ensemble Kalman filters provide a generalization of the classic linear Kalman filter to nonlinear

models such as (1.1). It is based on propagating an ensemble of independent solutions xi, i =

1, . . . ,m, of our model (1.1) and using it to extract an empirical mean

x =
1

m

m∑
i=1

xi (2.1)
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and an empirical error covariance matrix

P =
1

m− 1

m∑
i=1

(xi − x)(xi − x)T . (2.2)

Several different variants of the ensemble Kalman filter have been proposed in recent years,33

like the perturbed observations EnKF (BURGERS et al., 1998), the EnSRF/ETKF (TIPPETT34

et al., 2003) or the LETKF (HUNT et al., 2007), which all use different methods to modify35

the ensemble members xi every time new observations y(tq) become available such that the36

resulting ensemble mean (2.1) and covariance matrix (2.2) satisfy the Kalman analysis equations37

(JAZWINSKI, 1970).38

BERGEMANN and REICH (2010a,b) proposed a continuous ensemble Kalman filter where the

ensemble members xi are modified at every observation time tq using the ordinary differential

equation

d

ds
xi = −

1

2
PHTR−1(Hxi +Hx− 2y(tq)), (2.3)

which is solved in a ficticious time s over the interval [0, 1], i.e. we use the forecast ensemble39

members as initial conditions xi(s = 0) = xi,f for (2.3) and obtain analysed ensemble members40

xi,a = xi(s = 1). This reformulation of the Kalman analysis step is attractive since it allows41

for localization (BERGEMANN and REICH, 2010a) and mollification (BERGEMANN and REICH,42

2010b) in a straightforward manner as well as providing the starting point for non-Gaussian43

extensions (REICH, 2011b). Time-stepping methods for (2.3) are discussed in AMEZCUA et al.44

(2011).45

Furthermore, BERGEMANN and REICH (2010b) demonstrated that (1.1) with Ω = 0 and

(2.3) can in fact be combined into a single differential equation via

d

dt
xi = f(xi, t)−

1

2

J∑
q=1

δ(t− tq)PHTR−1(Hxi +Hx− 2y(tq)), (2.4)

where δ(t) denotes the Dirac delta function.46
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Although ensemble Kalman filters use the full nonlinear model to propagate the ensemble,47

the analysis is still based on the standard Kalman equations which require the background,48

measurement and possible model errors to be Gaussian distributed. This cannot be guaranteed49

in a nonlinear setting because even if the initial background errors are Gaussian the nonlinear50

dynamics of the model will destroy Gaussianity. Therefore ensemble Kalman filters are not51

nonlinear filters in a strict sense.52

3 Ensemble Kalman-Bucy filter for continuous data53

assimilation54

The Kalman-Bucy filter is concerned with continuously assimilating observations of trajectory

increments rather than trajectory values at discrete points in time. In other words, measurements

in a Kalman-Bucy framework are formulated mathematically as a stochastic differential equation

dz = Gxdt+C1/2dr(t), (3.1)

in terms of the state vector x(t) where G ∈ RK×N is the linear forward operator, r(t) denotes55

standard K-dimensional Brownian motion, and C ∈ RK×K is a positive definite matrix. See56

JAZWINSKI (1970) for more details.57

As already discussed in Section 1, dz(t) is not observable in practice and instead increments

∆z(t) = z(t+τ)−z(t) of z(t) with τ > 0 being small relative to the model dynamics are being

measured. However, (3.1) is nevertheless useful as a mathematical abstraction since it indicates

how an appropriate likelihood function for observing ∆z given x should scale with regard to the

measurement interval τ . To gain a better intuitive understanding of the problem, we replace the

measurement equation by its forward Euler discretization

∆zn = Gxnτ + τ1/2ξn (3.2)
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with ξn independent and identically distributed Gaussian random variables with mean zero and58

covariance matrix C and observed ∆zn = zn+1 − zn, where the superscript n denotes the nth59

time-step.60

It should be noted that the error model (3.2) entails that measurement errors are now assumed61

to be Gaussian in the increments between two subsequent measurements of z(t) rather than in62

the values z(t) itself. This error model might also provide an alternative for the assimilation of63

measurements arriving at a high sampling rate since the point-wise measurement errors in (1.2)64

should be correlated in time, in general. In line with standard filter theory, we assume that the65

model and measurement errors are uncorrelated.66

Upon accepting the measurement error model (3.2) we obtain the likelihood function

π(∆zn|xn) ∝ exp

(
− 1

2τ
(∆zn −Gxnτ)TC−1(∆zn −Gxnτ)

)
,

which replaces the likelihood function of a standard ensemble Kalman filter. As for the standard

ensemble Kalman filter, the ensemble update is obtained by combining the likelihood with the

Gaussian prior

πprior(x
n) ∝ exp

(
−1

2
(xn − x̄n)T (Pn)−1(xn − x̄n)

)
using Bayes’ theorem. The ensemble covariance matrix Pn and the ensemble mean x̄n are

defined as for the standard ensemble Kalman filter (EVENSEN, 2006). The continuous ensemble

Kalman filter formulation (2.3) of BERGEMANN and REICH (2010a,b) for the ith ensemble

member becomes

dxn
i

ds
= −1

2
PnGTC−1(Gxn

i τ +Gx̄nτ − 2∆zn).

Note that R = C/τ , H = G, and y = ∆z/τ formally lead back to the continuous ensemble67

Kalman filter for intermittent data assimilation (BERGEMANN and REICH, 2010a,b). With this68

choice for R and H one could also implement a standard ensemble Kalman filter (EVENSEN,69
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2006). However, necessary matrix inversions and factorizations would introduce an unnecessary70

computational overhead.71

To formally derive a continuous filter equation, we let τ → 0 and simultaneously apply

forward Euler to the continuous formulation with ∆s = 1. Then, first (forward Euler with

∆s = 1)

∆xn
i = −1

2
PnGTC−1(Gxn

i τ +Gx̄nτ − 2∆zn)

and, second (τ → 0)

dxi = −
1

2
PGTC−1(Gxidt+Gx̄dt− 2dz(t)).

We emphasize that these limits have to be taken with great care in general since we are dealing72

with stochastic differential equations (JAZWINSKI, 1970). In our context, however, our simplified73

derivation can be justified.74

Since data is now (formally) collected continuously in time, we can — similarly to (2.4) —

combine the assimilation step with the model dynamics to yield the final result

dxi = f(xi, t)dt+Ω1/2dwi −
1

2
PGTC−1(Gxidt+Gx̄dt− 2dz(t)), (3.3)

which constitutes an ensemble Kalman-Bucy filter formulation. The corresponding continuous

formulation of the EnKF with perturbed observations instead (see REICH (2011a) for details) is

given by

dxi = f(xi, t)dt+Ω1/2dwi −PGTC−1(Gxidt− dz(t) +C1/2dui(t)).

Here ui(t) denotes K-dimensional Brownian motion and a different realization is chosen for

each ensemble member. Nonlinear forward operators g(x) can be treated by a modification of

the covariance matrix P in the same manner as for ensemble Kalman filters (EVENSEN, 2006),

i.e. PGT is replaced by

PGT ← 1

m− 1

m∑
i=1

(xi − x)(g(xi)− g)T .
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with

g =
1

m

m∑
i=1

g(xi).

The same applies to localization techniques (EVENSEN, 2006; BERGEMANN and REICH, 2010a).75

4 Numerical demonstration76

We now discuss an example from classical mechanics. The evolution of the state x = (q, v) ∈ R2
77

is described by Langevin dynamics (GARDINER, 2004) with equations of motion78

dq = v dt,

dv = −V ′(q) dt− γv dt+ σdw(t),

where the potential V (q) is given by

V (q) = cos(q) +
3

4
(q/6)4 +

q

10

(see Figure 1), the friction coefficient is γ = 0.25, w(t) denotes standard Brownian motion,79

and σ2 = 0.35. A reference solution, denoted by (qr(t), vr(t)), is obtained for initial condition80

(q0, v0) = (1, 1) and a particular realization of w(t).81

Let us address the situation that the reference solution is not directly accessible to us and that

instead we are only able to observe Q(t) subject to

dQ(t) = vr(t) dt+ c1/2dξ(t), (4.1)

where ξ(t) denotes again standard Brownian motion and c the measurement error variance.82

We got two independent sources of information and each individually allows us to guess the

q(t) component of the reference solution. Firstly, we may use the observations dQ(t) to obtain

an estimate Q(t) via

Q(t) = q0 +

∫ t

0

dQ(t).
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So by “summing up” the infinitesimal increments dQ(t) and adding them to the known initial83

position q0 we obtain an approximation for qr(t). Secondly, we may solve the Langevin equations84

with initial condition (q0, p0) = (1, 1) and some realization w(t) of Brownian motion and thus85

estimate qr(t) via a free model run. However both approaches diverge from the reference solution86

qr(t) fairly quickly.87

We now combine the model equations and the observations within the ensemble Kalman-88

Bucy framework. The ensemble filter relies on the simultaneous propagation of an ensemble of89

solutions xi(t) = (qi(t), vi(t)), i = 1, . . . ,m. The filter equation (3.3) becomes90

dqi = vi dt−
Pqv

2c
(vi dt+ v̄ dt− 2dQ(t)),

dvi = −V ′(qi) dt− γvi dt+ σdwi(t)−
Pvv

2c
(vi dt+ v̄ dt− 2dQ(t))

with mean

v̄ =
1

m

∑
i

vi, q̄ =
1

m

∑
i

qi

and variance/covariance

Pvv =
1

m− 1

∑
i

(vi − v̄)2, Pqv =
1

m− 1

∑
i

(qi − q̄)(vi − v̄).

The equations are solved for each ensemble member with different realizations wi(t) of standard91

Brownian motion and step-size ∆t = 0.01. The observation interval in (3.2) is τ = ∆t.92

The extended Kalman-Bucy filter (JAZWINSKI, 1970) relies on the equations93

dq̄ = v̄ dt− Pqv

c
(v̄ dt− dQ(t)),

dv̄ = −V ′(q̄) dt− γv̄ dt− Pvv

c
(v̄ dt− dQ(t))

for the mean and

dP

dt
= A(t)P+PA(t)T +Ω− 1

c
Pe2e

T
2 P
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with e2 = (0, 1)T ,

A(t) =

 0 1

−V ′′(q̄(t)) −γ


and

Ω =

 0 0

0 σ2


for the covariance.94

Figure 2 shows the reference solution qr(t) that was used for all experiments. First we95

performed experiments using a small ensemble size m = 3 and different measurement error96

variances varying from c = 0.02 to c = 0.5. For c = 0.02 the ensemble Kalman-Bucy filter97

is able to track the reference solution, missing transitions from one local potential minimum98

to the other only in some instances and only very shortly (Figure 3, left panel). The extended99

Kalman-Bucy filter however is unable to track the reference solution and is trapped in one of100

the local potential minima (Figure 3, right panel). With increasing measurement error variance101

the performance of the ensemble Kalman-Bucy deteriorates. For c = 0.1 the ensemble Kalman-102

Bucy filter still tracks the reference most of the time but exhibits short episodes where the filter103

solution sojourns into the wrong potential minimum. The extended Kalman-Bucy filter is again104

trapped in one minimum and therefore unable to track the reference solution at all (Figure 4).105

Finally, for c = 0.5, the ensemble Kalman-Bucy filter cannot track the reference reliably either106

(Figure 5).107

In case of a larger ensemble size m = 10 the results are similar to the small ensemble108

scenario. For small measurement error variance c = 0.02 the reference solution is tracked very109

well and, as was to be expected, the variance of the estimation error qr(t)− q̄(t) is smaller than110

the estimation error in the previous scenario (Figure 6). For c = 0.1 the ensemble Kalman-Bucy111

filter still loses track of the reference solution in some cases but the duration of these episodes is112

greatly reduced (Figure 7). Again for c = 0.5 although the performance has improved it is not113
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reliable yet (Figure 8). Please note that, since the results of the extended Kalman-Bucy filter do114

not depend on the ensemble size, we do not include them in the Figures 6–8. Instead we show115

the results for the velocity component v. The fact that the assimilation of data does not improve116

the tracking of the reference solution in the velocity component is due to the error model (4.1)117

which implies that the measurement error in the velocity component is unbounded. This follows118

from the fact that formally dQ/dt = vr(t) + c1/2dξ/dt and dξ/dt is the derivative of Brownian119

motion.120

The filter behavior of the proposed ensemble Kalman-Bucy filter is clearly superior to the121

standard extended Kalman-Bucy filter for this highly nonlinear model problem. The performance122

of the ensemble Kalman-Bucy filter is limited by two factors. Firstly, limited ensemble sizes123

lead to estimation errors in the empirical ensemble mean and covariance matrix. Secondly, the124

Gaussian approximation in the data assimilation step is not appropriate in case of poorly observed125

systems. In our model system, this has been demonstrated for increasing measurement noise126

levels. The Gaussian approximation could be overcome by combining the proposed ensemble127

Kalman-Bucy filter with the Gaussian mixture approach of REICH (2011b).128

5 Conclusions129

We have extended the popular ensemble Kalman filter methodology to assimilation problems130

with continuously arriving measurements. The resulting ensemble filter is called ensemble131

Kalman-Bucy filter.132

It has been demonstrated by means of a simple Langevin dynamics model that an ensemble133

Kalman-Bucy filter can track the solutions of a mechanical system using noisy observations of134

incremental changes in the positions.135

A possible application is provided by Lagrangian data assimilation in ocean models136

(KUZNETSOV et al., 2003; MOLCARD et al., 2003). In this context ∆z could, for example, corre-137
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spond to the incremental change in the position of a Lagrangian drifter and Gx would equal the138

velocity of the surrounding fluid. We would assume that the drifter transmits its position in time139

intervals comparable to the model’s time-step. If that is not the case, some form of interpolation140

would be required. An alternative implementation of the ensemble Kalman filter for Lagrangian141

data assimilation has been proposed by SALMAN et al. (2005), where a state augmentation tech-142

nique combined with intermittent data assimilation is used.143

The proposed ensemble Kalman-Bucy filter should more genererally be useful for data144

arriving at a high sampling rate. For such data types the error model (3.2) might be more145

appropriate than the error model (1.2), which is normally used for intermittent data assimilation.146

An example is provided by the reentry tracking problem, where a radar is used for tracking a147

space vehicle reentering the atmosphere (see, for example, JULIER and UHLMANN (1997)).148
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Figure 1: Potential energy function of the Langevin dynamics model.
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Figure 2: Reference solution of the Langevin dynamics model. Shown here is the position qr(t) (left panel) and the
velocity vr(t) (right panel).
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Figure 3: Left panel: The estimated (ensemble mean) solution q̄(t) (gray) and the difference qr(t) − q̄(t) (black)
for an ensemble size m = 3 and a measurement error variance of c = 0.02. Right panel: The solution from the
extended Kalman-Bucy filter (gray) and the difference between reference and extended Kalman-Bucy solution (black)
for a measurement error variance of c = 0.02.
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Figure 4: Left panel: The estimated (ensemble mean) solution q̄(t) (gray) and the difference qr(t)− q̄(t) (black) for an
ensemble size m = 3 and a measurement error variance of c = 0.1. Right panel: The solution from the extended Kalman-
Bucy filter (gray) and the difference between reference and extended Kalman-Bucy solution (black) for a measurement
error variance of c = 0.1.
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Figure 5: Left panel: The estimated (ensemble mean) solution q̄(t) (gray) and the difference qr(t)− q̄(t) (black) for an
ensemble size m = 3 and a measurement error variance of c = 0.5. Right panel: The solution from the extended Kalman-
Bucy filter (gray) and the difference between reference and extended Kalman-Bucy solution (black) for a measurement
error variance of c = 0.5.
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Figure 6: Left panel: The estimated (ensemble mean) solution q̄(t) (gray) and the difference qr(t)− q̄(t) (black) for an
ensemble size m = 10 and a measurement error c = 0.02. Right panel: The estimated (ensemble mean) solution v̄(t)

(gray) and the difference vr(t)− q̄(t) (black) for an ensemble size m = 10 and a measurement error c = 0.02.
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Figure 7: Left panel: The estimated (ensemble mean) solution q̄(t) (gray) and the difference qr(t)− q̄(t) (black) for an
ensemble size m = 10 and a measurement error c = 0.1. Right panel: The estimated (ensemble mean) solution v̄(t)

(gray) and the difference vr(t)− q̄(t) (black) for an ensemble size m = 10 and a measurement error c = 0.1.
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Figure 8: Left panel: The estimated (ensemble mean) solution q̄(t) (gray) and the difference qr(t)− q̄(t) (black) for an
ensemble size m = 10 and a measurement error c = 0.5. Right panel: The estimated (ensemble mean) solution v̄(t)

(gray) and the difference vr(t)− q̄(t) (black) for an ensemble size m = 10 and a measurement error c = 0.5.
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