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We introduce a class of novel hybrid methods for detailed simulations of large complex systems in physics, 

biology, materials science and statistics. These generalized shadow Hybrid Monte Carlo (GSHMC) methods combine 
the advantages of stochastic and deterministic simulation techniques. They utilize a partial momentum update to 
retain some of the dynamical information, employ modified Hamiltonians 1-3) to overcome exponential performance 
degradation with the system’s size and make use of multi-scale nature of complex systems. Variants of GSHMCs 
were developed for atomistic simulation, particle simulation and statistics: GSHMC (thermodynamically consistent 
implementation of constant-temperature molecular dynamics), MTS-GSHMC (multiple-time-stepping GSHMC), 
meso-GSHMC (Metropolis corrected dissipative particle dynamics (DPD) method), and a generalized shadow 
Hamiltonian Monte Carlo, GSHmMC, (a GSHMC for statistical simulations). All of these are compatible with other 
enhanced sampling techniques and suitable for massively parallel computing allowing for a range of multi-level 
parallel strategies. 

A brief description of the GSHMC approach, examples of its application on high performance computers and 
comparison with other existing techniques are given. Our approach is shown to resolve such problems as resonance 
instabilities of the MTS methods and non-preservation of thermodynamic equilibrium properties in DPD, and to 
outperform known methods in sampling efficiency by an order of magnitude4). 
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I. Introduction1 

The statistical sampling method (later known as the 
Monte Carlo (MC) method) has a very long history5). Lord 
Kelvin used the method in 1901 for testing the equipartition 
theorem6) whereas E. Fermi employed the statistical 
sampling to study neutron moderation in 19347).  However 
only after the advent of the first electronic computers, the 
method has received an increasing interest as a powerful tool 
for solving important physical problems. The first published 
report on the method appeared in 1953. In their paper 
Metropolis et al.8) introduced what is today known as Monte 
Carlo importance sampling, also referred to as the 
Metropolis-Hasting algorithm for the Boltzmann distribution 
or Metropolis Monte Carlo. The algorithm generates a 
random walk using a proposal density and includes a method 
for rejecting / accepting the proposed moves. Nowadays the 
algorithm is used in nearly every aspect of scientific inquiry 
and in the year 2000 it was ranked as one of the “10 
algorithms with the greatest influence on the development 
and practice of science and engineering in the 20th 
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century”9).   
Another method for molecular simulation was reported 

soon after the introduction of Metropolis Monte Carlo.  The 
first molecular dynamics simulation was presented at a 
conference in Brussels in 1956 by Alder and Wainwright 
and then published in 195710). Molecular dynamics (MD) is 
a computer simulation technique where the time evolution of 
a set of interacting atoms is studied by numerically 
integrating their Newton’s equations of motion.  

In the following decades molecular dynamics and Monte 
Carlo were considered as two basic techniques for molecular 
simulations. Both methods have their advantages and 
disadvantages. Interestingly, the methods appear to be 
surprisingly complementary: where one method fails another 
succeeds.    

Molecular dynamics is a deterministic procedure yielding 
smooth trajectories where time has a clear interpretation. The 
method generates kinetic and thermodynamic data. On the 
contrary, Monte Carlo is a stochastic (random) method 
yielding discontinuous trajectories. The time has no clear 
meaning in MC and the method does not provide kinetic 
information.  

MD allows only for slow exploration of configurational 



 

 

space through a sequence of many small steps in the 
discretized version of the equations of motion which in turn 
leads to the systematic discretization error. By contrast, MC 
does not have an equivalent of a time step error, its sampling 
is exact with only statistical errors involved. The method is 
flexible in the choice of sequences of steps which potentially 
can lead to rapid exploration of configurational space. 
However for complex dense systems (e.g. biomolecules) it is 
becoming very hard to choose a good trial move11) that could 
help to achieve sampling performance better than that of the 
MD.    

The MD method utilizes an expensive force computation 
and requires additional modifications to sample from a 
constant temperature ensemble. The MC method does not 
require force calculation; it maintains the temperature by 
construction through the Metropolis test function.  

From computational point of view, the MD algorithm is 
not, by its nature, embarrassingly parallel although a 
significant progress has been achieved in developing 
efficient parallel MD software codes12-21). The most obvious 
approach to parallelize MC is simply to run multiple chains 
in parallel22-23). This parallel chains approach does not 
require any parallel programming although more 
sophisticated schemes combined with this approach for 
further performance improvement can be effective 24). 	 

Efforts have been made to take advantage of both 
simulation techniques by uniting them in yet another 
simulation method. The Hybrid Monte Carlo (HMC) method 
introduced by Duane, Kennedy, Pendleton and Roweth in 
198725) combines short constant energy MD trajectories with 
an MC rejection step. Each new trajectory is accepted with 
Metropolis probability after which momenta are randomly 
reset. HMC can be viewed either as an efficient MC with a 
“smart” collective move or an MD with corrupted dynamics 
which rigorously samples from the target temperature. The 
method can also be adapted to the simulation at constant 
pressure 26). The HMC approach has not become as popular a 
sampling method as MD or MC outside the lattice filed 
community (to whom it was originally addressed) because of  
its two essential drawbacks. First, the HMC cannot provide 
detailed dynamic information. Second, it suffers from 
exponential performance degradation (low acceptance rate) 
with respect to the system’s size and the time step. This is 
due to discretization errors introduced by the numerical 
integrator 27, 28). 

To keep more of the dynamic information, the HMC has 
been generalized to allow for partial momentum updates 
between Monte Carlo steps, instead of complete 
replacements of momenta by random samples from the 
appropriate Boltzmann distribution 29,30). However, to satisfy 
the detailed balance condition 31), the generalized hybrid 
Monte Carlo (GHMC) method requires a momentum 
reversal (flip) in case of rejection of the molecular dynamics 
proposal. This means that the GHMC method essentially 
reverses its direction upon rejection condition 32) which, in 
combination with the poor acceptance rate discussed above, 
makes the approach unsuitable for effective simulation of 

large complex systems.  The acceptance rate of the HMC 
method can be increased by using importance sampling with 
respect to a shadow Hamiltonian as first proposed in 1) and 
further developed in 33). Efficient implementation of shadow 
Hamiltonians in the context of the GHMC method was 
achieved in the generalized shadow hybrid Monte Carlo 
(GSHMC) method 2,3). The method offers a rigorous, flexible 
and efficient approach to conformational sampling in 
atomistic simulations. In the GSHMC, a modified 
Metropolis criterion and a flexible momentum update 
significantly improve the acceptance rate compared with 
standard hybrid Monte Carlo simulation and at the same 
time allow more dynamical information to be retained, 
making GSHMC a powerful tool for simulation of large 
molecules. It is also well suited to massively parallel 
computation. Parallelism in the momentum update step and 
in the molecular dynamics trajectories can be combined with 
any inherent parallelism in the application of interest and 
with other enhanced sampling techniques to achieve high 
levels of efficiency. 

The GSHMC was originally designed for atomistic 
simulations. In this paper we adopt the method to three other 
simulation methodologies: macromolecular simulation, 
particle simulation and statistical simulation. Accordingly, 
this yields three new simulation methods: 
multiple-time-stepping generalized shadow hybrid Monte 
Carlo (MTS-GSHMC), meso-GSHMC and generalized 
shadow Hamiltonian Monte Carlo (GSHmMC).  

The MTS-GSHMC method belongs to the class of 
multiple-time-stepping (MTS) methods 34-39) which make use 
of the multi-scale nature of the macromolecular systems. In 
MTS methods, savings of computational time can be 
realized if the slowly varying forces are held constant over 
longer intervals than the more rapidly varying forces. 
Standard integration procedures in MD can then be modified 
by splitting the forces into fast (short-range) and slow 
(long-range) components and evaluating the former more 
frequently than the latter. The ratio between frequencies of 
evaluation of the long-range forces and short-range forces 
measures the gain in simulation time and will be further 
referred as “the step-size ratio”.   

Though in theory MTS methods can dramatically speed 
up MD simulations by reducing the number of expensive 
slow force evaluations, in practice such impulse MTS 
methods, e.g., the popular Verlet-I/r-RESPA 34,35) suffer 
from severe resonance instabilities that limit their practical 
performance gain 36,37). Performance of impulse MTS 
methods was recently improved in the Langevin stabilized 
MTS methods 37) by reducing resonance induced instabilities 
through the introduction of mollified MTS methods (see 
Izaguirre et al. 38))  and by introducing of a weak coupling 
to a stochastic heat bath (Langevin dynamics) 37). However, 
accurate simulations still restrict the step-size ratio 37,38). 

In addition to the limitations which are specific to each of 
the above methods, all of them share a common drawback – 
they do not exactly sample from the target temperature even 
if the simulations are stable and are subject to a thermostat 



 

 

40,41). This error can be controlled only with a loss of 
computational efficiency. 

In this paper we introduce a novel MTS method, 
MTS-GSHMC, which takes advantage of the recent 
advances and removes the bottlenecks of existing multi-scale 
methods. 

MTS-GSHMC utilizes the GSHMC to provide the desired 
weak stochastic stabilization for the MD multi-scale 
integrator to enhance computational performance 37). It also 
employs a mollified impulse MTS method 38) in the 
Molecular Dynamics step of the GSHMC to eliminate 
resonance induced instabilities. We also introduce a new 
technique for computing shadow Hamiltonians for 
multiple-time-stepping (MTS) methods, which was 
successfully applied in MTS-GSHMC.  

The second novel method discussed in this paper inherits 
the sampling abilities of its predecessor, GSHMC, and also 
respects the Galilean invariance of the underlying 
conservative dynamics so that it can be applied for efficient 
sampling in advanced simulation at mesoscopic scales. This 
method, called meso-GSHMC, puts dissipative particle 
dynamics, DPD 42-51), within the framework of Markov chain 
Monte Carlo (MCMC) methods which implies rigorous 
sampling from the canonical distribution regardless of the 
chosen time step. Meso-GSHMC employs a novel (local) 
momentum refreshment Monte Carlo step, which conserves 
the Boltzmann velocity distribution as well as total linear 
and angular momentum. The proposed method can be 
viewed as Metropolis corrected time-stepping method 
similar to the MALA 52) scheme for first-order Brownian 
dynamics. 

Finally, the third new method discussed here, GSHmMC, 
is a reformulation of GSHMC designed for solving statistical 
inference problems. The idea to adopt HMC for statistical 
simulation belongs to R. Neal 53-54). It was further developed 
in 31,55-60). Recently the name “Hamiltonian Monte Carlo” 
mainly replaced “Hybrid Monte Carlo” term in statistical 
computation despite the fact that the dynamics considered in 
that case is fictitious, in contrast to molecular simulation 
applications.  Hamiltonian Monte Carlo makes efficient use 
of gradient information to reduce random walk behavior. 
The gradient indicates in which direction one should go to 
find states with high probability. The end result of HMC is 
that proposals move across the sample space in larger steps 
and are therefore less correlated and converge to the target 
distribution more rapidly. 

It was shown that for indirect observation models, the 
nonlinear state-space model, the non-linear random effects 
model, neural network models and the generalized linear 
models, HMC can be more efficient than the standard 
Markov Chain Monte Carlo methods 54-57). However for high 
dimensional systems the HMC method becomes less 
efficient due to increased rejections. With a large number of 
hidden units, or when the data set becomes large, the success 
of this method may require a very large number of 
evaluations of the posterior distribution and its partial 
derivatives. In situations where the posterior distribution is 

computationally costly to evaluate, this may lead to an 
unacceptable computational load for HMC. In this case 
reduction of the number of required evaluations is the 
obvious solution. GSHmMC offers all the advantages of 
HMC while greatly reducing the number of such evaluations. 
In general, the method largely eliminates the dependence of 
the acceptance rate on the system size 3). 

The outline of the paper is as follows. In Section II we 
summarize the GSHMC algorithm, discuss its 
implementation on massively parallel computers and its 
application to simulation of real physical systems. In Section 
III and IV we present the MTS-GSHMC and meso-GSHMC 
methods respectively and show, on simple test models, their 
advantages as compared to the commonly used similar 
techniques. We reformulate the GSHMC algorithm for 
statistical inference problems in Section V and discuss the 
possibilities for further improvement of the GSHmMC 
sampling abilities and its applicability to a wider range of 
distributions. Concluding remarks can be found in Section 
VI.  

 
II. GSHMC  
1. Ideas behind GSHMC 
 

The objective for developing the generalized shadow 
hybrid Monte Carlo was to improve the acceptance rate in 
GHMC29,30) for large system sizes by reducing a 
discretization error in the numerical solution. This would 
lead to more efficient sampling, fewer momentum reversals 
and thus to more dynamical information being retained.   

Let us assume a system of  N atoms and introduce the 
collective atomic position vector X , the diagonal mass 
matrix of atomic masses M , the collective atomic 
momentum vector XP=M  , the potential energy U   and 
the Hamiltonian (energy)  

 
                                            (1) 
                                                                     
Throughout the paper, we will use the following 

conventions. We assume that X  and P  are column 
vectors of length 3N. We also introduce the collective atomic 
velocity vector XPMV == −1 . TY in (1) denotes the 
transpose of a vector Y , i.e., TY is a row vector if Y is a 
column vector and vice versa. 

The standard HMC method consists of two sub-steps: 
molecular dynamics and momentum refreshment.   

Molecular dynamics requires an approximate integration 
of Newton's equations of motion for a classical 
unconstrained simulation,  
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using a time-reversible and volume-preserving method, e.g., 
that of Verlet 62), over NMD steps and step-size Δt.  

The associate canonical Hamiltonian equations of motion 
are given by  

).(
2
1=),( 1 XUPMPPXH T +−

U(X)=XM ∇−
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MD simulations within HMC methods are performed at a 

constant number of particles N, a volume V and an energy E 
(NVE ensembles) whereas HMC samples either in the 
canonical ensembles under constant number of particles N, 
volume V and temperature T (NVT ensembles) or in the 
isobaric-isothermal NPT ensembles i.e. under constant 
number of particles N, pressure P and temperature T. In this 
paper we concentrate on NVT ensembles simulations.  

Expectation values from a NVT ensemble are 
characterized by the canonical distribution  

 
               ,                            (4)    
                                                                                               

where         , and      the Boltzmann constant. 
  

On completion of a molecular dynamics step, the new 
trajectory is accepted with the probability  

                                                                                                             
               ,                            (5) 
         

where 0HHH n −=Δ and 0H and nH are values of the 
Hamiltonian at the beginning and at the end of the molecular 
dynamics step, respectively.  

HMC only retains the accepted position vector X. The 
accepted momentum vector is replaced by a new momentum 
vector drawn from the Boltzmann distribution at the given 
temperature T. This completes a single HMC step.  

It is a well known observation that the energy fluctuations 
along numerical trajectories are scaled with system sizes and 
time-steps 27, 28):  

 
                                            (6)                                                                                

 
assuming that a time-stepping method of order p was 
applied.  

This means that the acceptance rate of the molecular 
dynamics proposal step governed by (5) deteriorates with 
increasing time-steps and increasing system sizes. One 
option to counteract this effect is to apply higher-order 
symplectic time-stepping methods. However this also 
increases the computational cost of HMC. An alternative, 
less expensive approach is based on the concept of 
modified/shadow Hamiltonians  for symplectic 
time-stepping methods. The key observation is that 
symplectic time-stepping methods conserve a 
modified/shadow Hamiltonians/energy to much higher 
accuracy than the accuracy of the method itself 63-64): 

 
                                  ,         (7) 
                                                  

where 4≥m . 
This suggests to implement HMC in the framework of 

importance sampling with respect to such shadow 
Hamiltonians.  

The GSHMC method is based on the simple idea that the 
canonical ensemble (4) may be replaced by the shadow 
ensemble 

 
              .                             (8)  
                                                                                                            

However, the shadow ensemble (8) makes the momentum 
refreshment part of HMC more complex, since the momenta 
are no longer Boltzmann distributed under  . The GSHMC 
method adopted the momentum refreshment step introduced 
for a generalized HMC methodology 29,30). The key idea of 
the GSHMC momentum refreshment step is to use the 
GHMC partial momentum update combined with the 
modified Metropolis acceptance criterion to recover the 
Boltzmann distribution. 

Another consequence of using the shadow ensemble in 
GSHMC is the need for re-weighting of the observables of 
the GSHMC simulation in order to obtain proper canonical 
averages, thus eliminating the bias introduced by the shadow 
Hamiltonian.  

In the next section we formulate the GSHMC algorithm 
and discuss some practical issues.  

 
2. GSHMC: Algorithmic Summary 
 

The GSHMC simulation algorithm can be summarized as 
follows: 

Step 1.  Given the positions X and momenta P generate 
momenta 'P and a noise vector 'Ξ : 

                                                                      
                           

                                            (9) 
 
 
 

where /2<0 πφ ≤  is a given angle and ][0,~ 1−Ξ MβN . 
Here ][0, 1−MβN  denotes the (3N)-dimensional normal 
distribution with zero mean and covariance matrix 1−Mβ . 
The angle φ in equation (9) is a tuneable parameter of the 
GSHMC method. Special cases are φ = π/2 for performing  
sampling only and          to provide statistically 
rigorous implementation of stochastic Langevin dynamics. 
The friction coefficient γ is a positive constant and NMD  has 
to be set to 1 61).  

 Step 2.  Evaluate shadow Hamiltonians       at (X, P) 
and at (X, 'P ) using either the methodology described in 3) 
or the method for evaluating shadow Hamiltonians as 
proposed by Skeel and Hardy 6). 
The new momenta 'P  are accepted with probability  
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If 'P  is accepted, choose Pnew = 'P as the new momentum, 
otherwise set Pnew = P. 

 Step 3.   Given (X, Pnew), run MD simulation for a 
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fixed number of steps NMD with time step Δt to generate new 
positions Xnew. 

 Step 4.   Evaluate modified Hamiltonians      at 
(Xnew, Pnew). Accept the new state (Xnew, Pnew) with 
probability 

  
                                .       (11)                           
  

If accepted, choose (Xnew, Pnew) as a starting state for the next 
GSHMC step, otherwise take X and negate momenta Pnew. 

Step 5.    Return to Step 1. 
We note that one can repeat the refreshment steps 1-2 

before continuing with the molecular dynamics part of 
GSHMC. Hence the complete GSHMC cycle in this case 
will consist of a molecular dynamics Monte Carlo step and a 
Monte Carlo momentum update step, followed by one or 
more additional Monte Carlo momentum update steps. In 
other words, GSHMC becomes the concatenation of three or 
more Markov processes with identical invariant distribution 
functions (here the canonical distribution with respect to a 
modified Hamiltonian). This is important in achieving a high 
acceptance rate for the momentum update step and high 
overall efficiency.  

Let assume that K cycles of five steps forming the 
GSHMC algorithm are required to accomplish the 
simulation and Ω(X, P) = { Ω1, Ω2, … ΩK} are observables 
along a sequence of states (Xi, Pi), i = 1, 2, …K. Then due to 
the use of a modified ensemble the averages are computed 
using re-weighted Ωi values 1,33): 

 
 
 
                                                                                                                     
         ,                             .    (12) 
 
 
 
 
We have to stress that by construction the modified 

Hamiltonians   are approximations of the true 
Hamiltonians and a value of the time-step Δt has to be 
chosen in GSHMC such that the backward error analysis is 
valid. This implies that the true and the modified 
Hamiltonians should stay close to each other during the 
simulation. Under this condition the variance in the weights 
in (12) remains small. Though non-constant weights reduce 
the efficiency of the implied estimators, this reduction in 
efficiency is minor in our case. Also, in any case, such 
reduction in efficiency is much less dramatic than rejecting 
many proposal steps which induces a high correlation 
between samples and thus degrades the performance of the 
estimator. In other words, one has to balance the efficiency 
of the estimator as determined by the weight factors versus 
the higher correlation of samples due to a higher rejection 
rate under a non-modified Metropolis test. Our experience is 
that the former is to be preferred over the latter. 

The tunable parameters of the GSHMC method are the 

time-step Δt, the number of MD steps NMD and the angle φ. 
The acceptance rate generally decreases for φ approaching 
the value π/2. On the other hand, if φ is too small, the 
sampling of the GSHMC method can become less efficient. 
An optimal value of φ is typically found by requiring that the 
rejection rate in the velocity refreshment step should be 
about or less than 10 %. To keep the rejection rate in the 
velocity update at this level for a given angle φ it is advised 
to repeat this computationally inexpensive step a sufficient 
number of times, as it was already mentioned above. This 
strategy can be efficiently implemented in parallel (see 
Section 3). Further details and other options to increase the 
acceptance rate of the partial momentum update step of 
GSHMC can be found in Ref.3). 

Finally, it should be noted that a rejection of an MD 
proposal step leads to a simple negation of momenta (a 
momentum flip) and the next Monte Carlo cycle would start 
with a time reversed MD trajectory. This is needed to 
guarantee the accuracy of the method through obeying the 
detailed balance condition and to increase its sampling 
efficiency. However momentum flips interfere strongly with 
the dynamics of the underlying Langevin equations.  This is 
a well-known deficiency of the generalized hybrid Monte 
Carlo methods 30,61). In order to reduce this undesired effect, 
the time-step of integration in the MD stage of GSHMC, the 
parameter φ and the order of shadow Hamiltonian should be  
chosen such that the probability of having both the position 
as well as momentum refreshment steps being 
simultaneously rejected is sufficiently small (e.g. less than 
1 %).  

Alternatively, one can use the GSHMC method without 
momentum flip as suggested in 61). The method is a viable 
option for thermostatted dynamics since it meddles less with 
the natural autocorrelation functions of the underlying 
(stochastic) dynamics model provided the rejection rate of 
MD proposals is kept below 10% and φ is sufficiently small.  

We now move to practical use of the GSHMC algorithm 
and discuss the implementation of the GSHMC method on 
modern computers.  

  
3. Parallelization of GSHMC  

 
Computer simulation of complex physical systems (e.g., 

in biology or nanotechnology) remains one of the current 
challenges. Namely, the challenge lies in being able to cope 
with nearly ten orders of magnitude of time scales, with the 
conformational flexibility and multiple interactions which 
lead to systems of enormous complexity. One possible way 
to fill the gap between the timescales currently attainable by 
simulation techniques and important physical phenomena is 
to develop simulation methodologies with better sampling 
characteristics like the ones we discuss in this paper.  
Another possibility to extend the reachable timescales is to 
better utilize powerful compute resources via massive 
parallelization. These approaches are complementary.   

There are two places in the GSHMC algorithm where 
parallelism can always be employed. As pointed out earlier, 
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the momentum update step can be run an arbitrary number of 
times (with different random seeds) to try to ensure 
acceptance of the momentum refreshment step. These 
independent momentum update steps can be run in parallel 
in order to reduce the real computation time. One needs, 
however, to be careful to ensure that this parallelism does 
not result in excessive communication. For example, if in a 
cluster system distributed nodes are used for running the 
parallel momentum update steps, then communications (in 
our implementation, copying the data across NFS) are 
required after completion of each momentum update step 
and, thus, become expensive for a large number of 
processors. If possible, preference should be given to using 
shared memory processors for the momentum update step. It 
might be beneficial to keep the number of processors 
required for the momentum update step low and use an 
alternative strategy for increasing the acceptance rate of the 
momentum update, e.g. applying GS2HMC approach 3). 
Alternatively, one can perform multiple momentum update 
steps on a single processor to avoid expensive 
communication and to get a better control over acceptance 
rates in momentum update step.      

The second place where parallelism can be employed is  

Fig.  1 Scheme used to parallelize GSHMC calculation of 
absolute free energies of binding. 

                                                           
MD trajectory step. This simply uses a parallel version of the 
MD software – for example, GROMACS 15), NAMD 14), etc. 
In addition to the parallelism in the momentum update and 
the MD trajectory, the particular application of interest 
might contain its own inherent parallelism. For example, if 
one is interested in the sampling of phase space only, an 
ensemble of independent GSHMC simulations can be run to 
achieve an efficient sampling of the phase space. This 
approach is embarrassingly parallel and can be employed 

successfully for sampling rare events such as finding 
transition states in simulations of large systems when the 
kinetic details are not of interest. Similarly, for applications 
requiring the collection of statistics at different values of 
parameters, e.g. free energy calculation using 
non-equilibrium work values, each GSHMC simulation can 
be run in parallel for different values of those parameters. 
No communication is needed at this stage and the choice of 
the number of processors will be regulated by the 
requirements on parameters.   

Finally, we note that the flexibility of GSHMC makes it a 
natural sampling device to be combined with other enhanced 
sampling strategies such as multicanonical replica exchange 
66), multiplexed-replica exchange 67) and ConfJump 68). The 
latter was specially designed for sampling with the hybrid 
Monte Carlo method. 

The calculation of absolute free energies of binding using 
the Bennett acceptance ratio (BAR) method 69) for 
computing free-energy differences between intermediate λ 
states is a good example of how one might go about 
parallelizing GSHMC simulations. In this case, independent 
simulations are required for N_states values of λ for each 
solvated ligand and solvated protein–ligand system. The  

 
 
 
 

procedure used to parallelize such calculations is shown in  
Fig. 1. In Fig. 1, the parallel computer consists of a set of 
multi-processor / core nodes (as found for example in a 
cluster system). Each independent λ value is treated by 
exactly one node, and this implies that there is no need for 
inter-node communication. Within a node both the 
momentum update step and the MD trajectory are 
parallelized over N_proc SMP processors / cores (N_proc = 

MC 
momentum 
update  

MD system 

Node 0 

CPU1 

CPU2 CPU0 

λ =  λ0 

λ=λ2, … 
λ32 

p = Node 2,…Node 
32 

MD 
trajectories 

Node 1 

CPU1 

CPU2 CPU0 

λ =  λ1 



 

 

3 in Fig. 1). This implies that the value of φ must be chosen 
in such a way that N_proc momentum update steps yield a 
sufficiently high acceptance rate. Alternatively this approach 
can be combined with the multiple momentum update steps 
performed serially on each processor.  The choice of 
number of nodes should be made on the basis of achieving 
good load balance for N_states values of  λ (λ =33 in our 
example): optimal values are the factors of N_states, as any 
other choice will lead to some degree of load imbalance. 
With this parallel decomposition we can achieve high 
parallel efficiencies for these calculations. 

In the next section we demonstrate the effectiveness of 
the GSHMC approach for simulation of complex systems.  

 
4. Simulations Using GSHMC  

 
The first example of the usefulness of GSHMC comes 

from its comparison with MD for a coarse-grained 
representation (CG-MD) of a small peptide toxin interacting 
with phospholipid bilayer 4). Specifically, we demonstrate 
that GSHMC allows for a quicker localization of the toxin to 
the head-group/water interface of the bilayer. 

The simulation system comprises the gating-modifier 
peptide toxin, Voltage-Sensor Toxin 1 (VSTx1, taken from 
spider venom), in the palmitoyl-oleoyl-phosphatidyl choline 
(POPC) membrane environment. The coarse-grained protein 
model introduced by Bond and Sansom 70) is used. The toxin 
is initially “buried” in the hydrophobic core of the POPC 
bilayer (see Fig. 2). The objective then is to measure the rate 
of drift of the toxin along the bilayer normal to the preferred 
interfacial location. The GSHMC simulations use NMD = 
1000 and φ = 0.32 with the order of the modified 
Hamiltonian being 6. This choice leads to acceptance rates 
for MD step and momentum update steps of ~99% and 
~90%, respectively. All MD simulations in this study are 
performed using the GROMACS code 15).  
 

Fig.  2 The evolution of the toxin from the initial position within 
the membrane to its preferred position at the surface of the 
bilayer observed during CG-MD (red) and GSHMC (golden) 
simulations. GSHMC finds a preferred position of toxin faster 
than CG-MD does.  

 
Three CG-MD and three GSHMC simulations each of 

duration 50 ns are performed with different initial velocities 
but identical initial coordinates. In all simulations the toxin 
drifts towards the head-group/water interface of the bilayer, 
to an average distance d of ~23–25 Å as measured from the 
bilayer centre. However the GSHMC method leads to a 

much more rapid repositioning of the toxin compared to a 
CG-MD simulation (Fig. 2). 

The sampling superiority of GSHMC over CG-MD is also 
confirmed by the analysis of autocorrelation functions 
(ACF). As can be seen from Fig. 3, GSHMC converges to 
the equilibrium values more rapidly (up to 12 times more 
rapidly according to the examination of integrated ACFs) 
than the CG-MD simulations. Also, fluctuations about the 
mean in GSHMC (not shown) are of shorter duration 
compared with the CG-MD simulations which means that 
GSHMC locates its equilibrium value more frequently (up to 
8 times) than CG-MD simulations 4). 

One more application which can obviously benefit from 
using the GSHMC approach is calculation of free energies of 
binding.  

Our final test of the efficiency and accuracy of GSHMC 
comes from calculations of absolute free energies of binding 
of three ligands to FKBP protein. Comparison is made with 
the study of Fujitani et al.71) which uses methods based on 
standard MD simulation. 

FKBP is a 107-residue protein, best known as the target 
of the widely used immunosuppressive drug FK506. We 
have examined the binding of three ligands (L12, LG2 and 

Fig.  3  Autocorrelation function of d computed over data from 0 
to 8 ns. 
 

LG3) to FKBP using methods very similar to those 
described in ref.71), namely the AMBER99 force field for the 
protein, GAFF force field for the ligands, TIP3P water and 
the BAR method 69) for computing free-energy differences. 
Binding energies are evaluated using the double-annihilation 
method. This requires free-energy calculations for the 
solvated ligand system and the solvated FKBP–ligand 
system. We started our simulations using the equilibrated 
structures from ref.71), and use the same number of λ points 
(33) as in the earlier study. The GSHMC simulations are 
carried out using NMD = 500, φ = 0.35 for the solvated ligand 
systems, φ = 0.2 for the solvated FKBP–ligand systems, and 
with modified Hamiltonians of order 6. The chosen 
parameters provide acceptance rates for MD and momentum 
update steps of ~99% and 95% respectively. 

CG-MD vs.     GSHMCCG-MD vs.     GSHMCCG-MD vs.     GSHMC



 

 

In Table 1 we compare the computed absolute binding 
energies with the values reported in Fujitani et al. 

In all three cases the binding energies agree well. GSHMC 
achieves the same accuracy as MD in one seventh of the 
computer time. 

 
Table  1 Absolute free energies of binding computed using MD 

(Fujitani et al.) and GSHMC 

Ligand Fujitani et al. GSHMC 
L12 
LG2 
LG3 

–7.1 
–4.3 
–4.9 

 

–7.52 ± 0.42 
–4.57 ± 0.46 
–4.96 ± 0.35 

 
 

Finally, we note that in the study of Fujitani et al. long 
(20 ns) equilibration simulations were required prior to 
gathering free-energy data. Because of its efficient sampling 
(see the previous toxin test), GSHMC could be also very 
valuable for this initial equilibration phase. 

The basic GSHMC algorithm, originally designed for 
atomistic simulation of complex systems, can be modified in 
many ways to make it useful for a wider range of 
applications. The methods we will discuss further in this 
paper take all advantages of GSHMC which makes them 
competitive alternatives to the existing approaches currently 
dominating in the specific applications areas.     
 
III. MTS-GSHMC  
1. Motivation 
 

The potential energy U in Newton’s equations of motion 
(2) is typically given by a sum of bonded and nonbonded 
interactions: 

 
                                           (13)   
                                                                                                                                      
                                           (14)                                                               
  
                                           (15)

  
and the gradient vector )(XU∇−  is the force. The 
computational complexity of bonded interactions is 
proportional to N while it scales with N2 for the non-bonded 
interactions. Simple cut-off schemes have been devised to 
reduce the computational cost of non-bonded case. But it has 
also been found that cut-off schemes lead to poor 
approximations for highly charged systems such as 
biomolecular ones 72). 

The approximate computation of ensemble averages 
requires performing MD simulations over as large as 
possible number of time steps. The length of a MD 
simulation is, on the other hand, limited by the length of the 
time-step that can be used. Making use of the multi-scale 
structure of the molecular force fields, MD simulations have 
been greatly accelerated by the use of multiple-time-stepping 

(MTS) methods, such as the Verlet-I/r-RESPA method 34,35)  
which is based on approximating "slow" forces as widely 
separated impulses.   

One derives impulse MTS methods by first rewriting (2) 
as  

                                                                                            
                                             (16) 
 
where astast UF ff = −∇  and lowlow UF ss = −∇  subject to  
 
                 .                            (17) 

                                                                                                                
Partitioning the potential U  into a "fast" part astU f  and 

a "slow" part lowU s  is done in such a way that an 
appropriate outer time-step tΔ for the slow part is 
significantly larger than an inner time-step tδ  for the fast 
part, and evaluations of the fast force field astF f  are 
computationally much less expensive than evaluations of 

lowF s .  
Given an integer 1>p  such that the outer time-step tΔ  

and the inner time-step tδ  satisfy tpt δ=Δ , an impluse 
MTS method can now be stated as 

 
                                           (18) 
                  

for                ,    is the Dirac delta function, and    
         except when 0== nm  or         ,  
        , respectively, in which case            .  

MTS methods, such as (18) can dramatically speed up 
MD simulations since the expensive force field evaluations 

lowF s  need to be performed only at the larger outer time-step 
tΔ . In this context, note that, for biomolecular applications, 

the computational complexity of the fast force field 
evaluations scales linearly in the number of atoms N while it 
scales quadratically in N for the slow force field evaluations. 
Furthermore, while the short-ranged (bonded) fast forces are 
easy to compute in parallel, long-ranged (non-bonded) slow 
forces require global data communication and hence are 
more difficult to parallelize efficiently. 

However, the impulse MTS method (18) suffers from 
resonance instabilities. For example, for solvated 
biomolecular systems, one has to restrict the step-size ratio 

ttp δ/= Δ  to 4≤p  with an inner time-step of 1=tδ  fs 38).  
Recent research has partially resolved some of these 

issues. On the one hand, resonance induced instabilities of 
impulse MTS methods have been eliminated through the 
introduction of mollified MTS methods by Izaguirre et al.38). 
Further improvements have been achieved by weak coupling 
to a stochastic heat bath (Langevin dynamics) 37). However, 
accurate simulations are still limited by a step-size ratio 

ttp δ/= Δ  in the range of 126= −p  for solvated 
biomolecular systems 37,38).  

Another problem is that common time-stepping methods 
do not exactly sample from the target temperature T even if 
the simulations are stable and are subject to a thermostat 40, 

41). This error can be controlled by making the step-size  tΔ
sufficiently small and, in particular, much smaller than 
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required by stability considerations alone. However, 
reducing tΔ  also reduces computational efficiency. 

In constrast, as discussed in the previous sections, the 
GSHMC method rigorously samples from the canonical 
ensemble while only weakly interfering with the underlying 
molecular dynamics model. Here we propose to extend the 
GSHMC method such that a thermodynamically consistent 
weak stochastic stabilization of mollified MTS methods can 
be achieved. We will demonstrate that the combined 
MTS-GSHMC method results in an improved stability of 
mollified MTS methods.  

The following changes in GSHMC are required to achieve 
those goals. First, a mollified impulse MTS method has to be 
implemented in the Molecular Dynamics Monte Carlo step 
of the GSHMC method to eliminate resonance induced 
instabilities. Second, the derivation of shadow Hamiltonians 
for the mollified MTS methods is necessary since the 
shadow Hamiltonians used in GSHMC are specific to the 
single time-step Störmer-Verlet method. To overcome this 
limitation we employed a highly efficient method for 
evaluating shadow Hamiltonians as proposed by Skeel and 
Hardy 65) for symplectic splitting methods 63,64). However, 
due to the multi-scale nature of MTS methods, a non-trivial 
modification of the approach of Skeel and Hardy is required 
to make it applicable to the MTS-GSHMC method 73). 

We summarize the new results and the GSHMC-MTS 
algorithm in the next section. More details can be found 
elsewhere 73).  

 
2. MTS-GSHMC: Summary 

 
We now demonstrate how to combine GSHMC with a 

mollified MTS method. To do so, we assume that a splitting 
of the potential energy function U  into a fast contribution 

astU f  and a slow contribution slowU  (17) is given. We also 
assume that an averaging operator  

 
         ,                                 (19)                                                                                                                     

 
which assigns a filtered, averaged position X  38) to an 
instantaneous collective atomic position vector X has been 
defined. The averaging operator is then applied to the slow 
potential to yield a mollified slow potential  

                    
                                           (20)                                                                     

 
Also, we assume that an extended mollified MTS method 
(21) as well as a shadow Hamiltonian (22) of order 4≥q  
have been implemented.  

As we showed in 73) the extended mollified MTS methods 
(with introduction of an additional variable R∈b  required 
for computing shadow Hamiltonians 73)) can be expressed 
compactly as follows:  

           
                                           (21)                      
 
 

Besides, in 73) we derived the q-th order shadow 
Hamiltonians to be used in MTS-GSHMC. 

Let         denote the q-th order shadow Hamiltonian 
for an MTS method according to the construction of Skeel 
and Hardy 65). Let            denote the q-th order 
shadow Hamiltonian for the same MTS method with 
set equal to zero. Finally, let           denote the q-th 
order shadow Hamiltonian for the Störmer-Verlet method 
applied to the fast system with step-size tδ . Then the 
shadow Hamiltonian for use in the new MTS-GSHMC 
method is given by:  

                                                                          
                                             (22) 
 
  We now summarize the proposed MTS-GSHMC method. 
As GSHMC, the MTS-GSHMC is defined as the 
concatenation of two MCMC steps: a molecular dynamics 
Monte Carlo (MDMC) and a partial momentum refreshment 
Monte Carlo (PMMC) steps. The algorithmic scheme 
introduced in section II.2 for GSHMC remains the same for 
MTS-GSHMC. The difference is that instead of performing 
conventional MD in step 3 one should apply the extended 
mollified MTS method (21). Also, in steps 2 and 4 the 
shadow Hamiltonians have to be computed according to 
(22).   

We wish to point out that in step 3 (MDMC) it is possible 
to skip negating momenta in case of rejection of the MDMC 
proposal following the suggestions in 61).  

Reweighting of averages is also required in 
MTS-GSHMC and has to be performed according to (12).  

The free parameters of the MTS-GSHMC scheme include 
the angle φ  in (9), the inner and outer step-sizes tδ  and 
tΔ , respectively, as well as the number of outer time-steps 

    and the order of the shadow Hamiltonian. We will 
always assume that  

                                                                                                               
                                             (23) 
 
Here 0>γ  is the collision frequency of an underlying 
Langevin model and          .  

Note that only differences in b  appear in the formulas 
for shadow Hamiltonians and, hence, one can set 0=b  at 
the beginning of each MDMC and PMMC step. See 73) for 
more details and explanations. 

 
3. Numerical Test 

 
We consider a one-dimensional chain of diatomic 

molecules interacting through Lennard-Jones potentials. 
One-dimensional test problems such as the one considered 
here have been widely used to test MTS algorithms (see, for 
example, Hairer et al. 63)). 

We assume periodic boundary conditions over a domain 
of length 20=l  and set the number of atoms to N = 20. The 
potential energy of the system is given by 
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                                          ,   
                                            , (24) 
 
 
where )(in  contains the indices of the 3)( −N  nearest 
non-bonded neighbors of particle i , position ][0,lxi ∈ , 

1/2=6σ , and 154210=K .        
We perform constant NVT simulations at 1=1/= TkBβ  

using the proposed MTS-GSHMC method and compare the 
results to Langevin stabilized and mollified MTS 
simulations (MTS-LD) 37). Following 37), the collision 
frequency is 0.2=γ  ps 1−  in all cases. The slow and fast 
potential energy contributions are defined by the stiff bonded 
interactions and the Lennard-Jones interactions, respectively. 
The inner time-step tδ  was set to 1 fs for both MTS 
methods.  

The MTS-GSHMC method was implemented with 
fourth-order shadow Hamiltonian (22),        and         

       . The number of Monte Carlo samples I  is 
given by the closest to tΔ10000/  so that each simulation 
covers approximately the same ``MD time-span'' of 10 
microseconds. 

We found that the largest achievable outer time-step for 
MTS-LD is 10=tΔ  fs. This might be surprising at the first 
glance since constant energy simulations with Lennard-Jones 
interactions alone allowed for a larger time-step of 15=tΔ  
fs. However, one has to keep in mind that thermostatted MD 
simulations lead to relatively large fluctuations in 
instantaneous values of total energy which allow for rare 
high energy Lennard-Jones collisions. These collisions can 
destabilize MTS-LD. Hence the achievable outer step-size of 
MTS-LD is determined by stability and not by accuracy of 
the method. MTS-GSHMC, on the contrary, was found to be 
stable for all implemented outer step-sizes ranging from 

10=tΔ  fs to 22=tΔ  fs. Given that errors in mean total 
energy and in the computational temperature should not 
exceed 5% of the reference values (obtained with Langevin 
dynamics) and that the acceptance rate should stay above  
70% 61), we found that the largest acceptable outer time-step 
of MTS-GSHMC is 20=tΔ  fs. To measure the efficiency 
of MTS-GSHMC we introduced the effective outer step-size 
which takes into account acceptance rates achieved in the 
method: 
                                                 
                                           .  (25) 
 
The efficiency gain is then defined as the ratio of      to 
the largest achievable outer step-size for MTS-LD ( 10=tΔ ). 
Using this measure, it was found that the efficiency gain of 
MTS-GSHMC over MTS-LD is about 1.9.  

We refer the reader to Table 2 for the computed values of 
mean total energy 〉〈H , temperatures  and acceptance rates 
of MDMC (AR MDMC) and PMMC (AR PMMC) proposal 
steps. To get a better impression on the accuracy of 
MTS-GSHMC as a function of the outer time-step we also 
computed the center of mass velocity ACFs (Fig. 4). Given 
the fact that we cover a relative large range of time-steps 

beyond the stability limit of MTS-LD, the computed ACFs 
agree remarkably well. The corresponding ACF from the 
small time-step reference simulation LD are also provided 
for comparison. 

 
Table  2 Mean total energies, temperatures and acceptance rates 

computed using MTS-GSHMC and MTS-LD methods for a 
range of outer step-sizes values 

Method 
 

tΔ fs 
ffteΔ fs numerical 

〉〈H  
numerical 
temperature 

AR 
PMMC 

AR 
MDMC 

MTS- 
GSHMC 

10  10.0  28.0218 0.9948 98.5% 99.9% 

MTS- 
GSHMC 

12  12.0  28.5266 1.0086 98.4% 99.7% 

MTS- 
GSHMC 

14  13.9  29.2522 1.0259 98.2% 99.1% 

MTS- 
GSHMC 

16  15.3  28.0826 0.9974 98.0% 98.3% 

MTS- 
GSHMC 

18  17.5  28.2329 0.9965 97.8% 97.3% 

MTS- 
GSHMC 

20  19.2  28.5648 1.0178 97.6% 96.0% 

MTS- 
LD 

10  N/A 29.3044 1.0041 N/A N/A 

 
There are limitations of our model system compared to 

biomolecular simulations that need to be pointed out clearly. 
In particular, numerical evidence suggests that the 
achievable outer step size of mollified MTS methods is 
limited by resonance instabilities at about 8 fs for explicit 

 

 

Fig.  4  Autocorrelation functions (ACFs) of diatomic center of 
mass velocities for MTS-GSHMC as a function of the outer 
time-step Δt. 

 
water simulations 38). Additional resonance instabilities are 
found for even larger outer step-sizes 37). These instabilities 
can be masked by using Langevin dynamics with 
increasingly large values of the collision frequencies γ 37). 
On the other hand, the achievable outer step-size for our 
model system is limited by the stability of Störmer-Verlet 
method with respect to Lennard-Jones interactions. This 
instability cannot be overcome by Langevin dynamics even 
with increasingly large values of γ. This (non-resonance) 
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stability barrier also limits the possible efficiency gains for 
MTS-GSHMC and we expect larger possible increases of 
outer-step sizes for simulations of biomolecular systems. 
Finally, note that short range contributions of the 
Lennard-Jones interactions have been treated as part of the 
fast forces in 37,38) which again points towards larger 
achievable outer time-steps for MTS-GSHMC in 
biomolecular applications. 

 
IV. Meso-GSHMC  
1. Motivation 

 
Mesoscopic scales (or meso-scales) are transitional 

regions between macroscopic and microscopic regimes. 
Mesoscopic phenomena embrace a diverse range of systems 
including liquid crystals, colloids, biomembranes, 
micro-/nano-channels, polymer solutions and melts. 
However, simulation at mesoscopic level is beyond the 
practical limits of atomistic (microscopic) simulation 
methods. Prediction of mesoscopic phenomena is not within 
the reach of continuum (macroscopic) simulations either as 
the latter neglect all microstructure.  

Dissipative particle dynamics (DPD) 42-51) has become a 
powerful and popular method to perform meso-scale 
simulations. Its computational cost scales linearly with the 
number of particles if the DPD algorithm is properly 
implemented, and hence very large systems can be modelled. 
The method can be used in complex-geometry domains. 
Mathematically, DPD predicts the behavior of systems 
consisting of particles which are interacting through a 
combination of conservative, dissipative and fluctuation 
forces. 

Following 74) the DPD method can be formulated via a 
stochastic differential equation (SDE):  

                                                                             
 
                                           (26) 
 

where 
 

                                           (27)  
                                               

and the functions            can be chosen quite 
arbitrarily. To reproduce a constant temperature ensemble, 
the friction coefficients 0>γ and the noise amplitudes 

0>σ  have to satisfy the fluctuation dissipation relation 
 

            .                              (28)                                                                                                                        
 
Finally,    are independent Wiener processes. 

An intriguing aspect of the DPD equations (26) is that 
they can be made to satisfy Newton’s third law which 
implies conservation of total linear momentum as well as 
total angular momentum. 

Despite its advantages, DPD has certain practical 
problems. For example, none of the existing numerical 

implementations of DPD can reproduce correctly the 
simulation temperature under the full DPD dynamics. Since 
the fluctuation-dissipation terms in DPD can be comparable 
to the conservative contributions, the non-preservation of 
thermodynamic equilibrium properties poses a serious 
obstacle for practical simulations. 

A similar problem arises in classical molecular 
simulations when they are performed under constant 
temperature using a thermostat. 

In this section we demonstrate how to implement a DPD 
–type momentum refreshment step within the GSHMC 
methodology such that the resulting method, meso-GSHMC, 
samples exactly from the canonical distributions and can be 
applicable to meso-scale particle simulations.  

 
2. Momentum Update in Meso-GSHMC 

 
To derive a time-stepping method for stochastic 

thermostats with position-dependent fluctuation-dissipation 
terms such as DPD, the composition approach can be applied 
62,64). It consists of a composition of two time-stepping 
methods: one for the conservative part and one for the 
fluctuation-dissipation part. Note that none of these methods 
is necessarily the exact propagator to the corresponding 
stochastic or deterministic equations of motion. As before 
(see section II), we suggest to discretize the conservative 
dynamics part by the standard Störmer-Verlet method. For 
the fluctuation-dissipation part, we proposed a methodology 
75) that exactly samples from the underlying Boltzmann 
distribution and can be applied to arbitrary position 
dependent fluctuation-dissipation terms.  The key idea is to 
obtain a numerical momentum update step in (26) as the 
solution of a generating differential equation for the 
fluctuation-dissipation part of the general DPD formulation 
(26): 

                                                                      
                                           (29) 
 
 
 

at  
                 
         , Δt is the step-size                   (30)                                                                      

 
for given initial conditions 

                                                     
                                           (31) 
 

The solution conserves the extended canonical distribution 
                                                                                                    

                           ,                 (32) 
 
where    

                                                                                   
                                             (33)        
 
Using the implicit midpoint rule 
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the solution can be found by a simple fixed point iteration or 
some other iterative solver for sΔ  sufficiently small. The 
suggested procedure can be viewed as a momentum update 
step compatible to DPD. This completes the time-stepping 
method for the fluctuation-dissipation part.  

The proposed composed approximation of two methods 
does not exactly sample from the NVT ensemble since the 
conservative time-stepping method does not simultaneously 
conserve energy and volume. The Metropolis acceptance 
criterion can be applied for correction of numerically 
induced errors in the conservation of total energy in the way 
as it was done in GSHMC (see section II).  

Also, as in the two previously described GSHMC-based 
methods, in meso-GSHMC we want to increase the 
acceptance rate in the conservative dynamics part through 
the use of a shadow Hamiltonian. Thus we replace the 
canonical density (4) with (8) in the conservative 
time-stepping method. Similarly, at the DPD momentum 
update step the extended canonical density (32) has to be 
substituted by       

                                                 
                                    .      (35) 
 
Thus, we have obtained an extension of the GSHMC 

method to the generalized DPD equations (26), which we 
call meso-GSHMC.  See 75) and the algorithmic summary 
below for details. 

 
3. Algorithmic Summary of Meso-GSHMC 

 
The meso-GSHMC method is defined through an 

energy/Hamiltonian (1), a shadow energy    , inverse 
temperature         , a set of position-dependent 
functions,               friction constant 0>γ , 
time-step tΔ , and number of time-steps NMD . We now 
summarize a single step of the meso-GSHMC method. 

Step 1.   Given (X0, P0), numerically integrate the 
Hamiltonian equations of motion (3) for a fixed number of 
steps NMD with time step Δt with the Störmer-Verlet method 
to generate a new pair (Xnew, Pnew). 

Step 2.   Evaluate modified Hamiltonians       at  
(X0, P0) and at (Xnew, Pnew) using either the methodology 
described in 3) or the method for evaluating shadow 
Hamiltonians as proposed by Skeel and Hardy 65). 
Accept the new state (Xnew, Pnew) with probability  

                                                           
                                         .   (36) 
 
If accepted, choose (Xnew, Pnew) as new positions X and 
momenta P, otherwise take X0 and negate momenta P0. 

Step 3.   Generate a sequence of i.i.d. random numbers   
                         Choose initial momentum 

and fixed position to be equal to P and X respectively. Using 
the implicit midpoint rule implementation of the momentum 
refreshment step, solve the system (34) for          by 
fixed point iteration. 

Step 4.   Evaluate modified Hamiltonians       at  
(X, P'). The new momenta P'' are accepted with probability                                       

                                                                                                             
                                                                   
                                    .      (37) 
 
 

The newly accepted pair of position and momentum vectors 
is provided by X (from the conservative dynamics part) and 
P'' (from the momentum refreshment step), respectively if 
P'' is accepted or by (X, P') otherwise.                                     

Step 5.   Return to Step 1. 
Since the meso-GSHMC method samples with respect to a 

modified canonical ensemble, it is necessary to re-weight the 
computed sample of the observables according to (12). 
 
4. Numerical Test 

 
The numerical experiment is conducted for Model A as 

described in 47) and compared to the MD-VV 
implementation of DPD 47).  

We consider a total of N = 4000 particles with mass m = 1 
in a cubic domain of size 10×10×10 with periodic boundary 
conditions.  The conservative forces are set equal to zero, 
i.e., the Hamiltonian (1) reduces to 

 
                                 
 

and the  resulting  equations  of motion  can be solved 
exactly.  Since proposal steps are always accepted, 
meso-GSHMC is also equivalent to a stochastic splitting 
method without Metropolis test. We set NMD = 1 in the 
conservative dynamics part of meso-GSHMC, i.e., τ = ∆t and 
perform experiments for different values of the step-size ∆t. 
For the chosen units, we have kB T = 1 in dimensionless 
variables. The functions                    for the 
momentum refreshment step are defined via 

 
 
                          .                (38) 
 
The cutoff distance is set equal to       .  We also use                         

           in (34) with γ = 4.5. 
The reference experiments with the DPD method 47) use 

the same parameter settings. The numerical results from the 
meso-GSHMC and traditional DPD simulations can be 
found in Fig. 5-6. Following the argument of 50), Fig. 5 
demonstrates that the deviations of        the numerically 
computed radial distribution function, from its exact value  
      is of purely statistical origin (finite sample size) for 
the meso-GSHMC method. The same does not hold for the 
DPD method unless ∆t ≤ 0.05. We also note that the 
meso-GSHMC method exactly reproduces the target inverse 
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temperature β = 1 for all values of ∆t, while the DPD  
method  leads to a nearly linear increase in the numerically 
observed temperature with respect to the step-size ∆t (see 
Fig. 6).  

Fig.  5 Radial distribution function        for different values 
of the step–size Δt in Model A.  

 
Further results for other DPD time-stepping methods can 

be found in the study 48) which recommended the methods of  

Fig.  6  Numerically observed temperature       vs. the 
step-size Δt in Model A. 

 
Lowe 45) and Shardlow 46) as promising candidates for DPD  
simulations. While the Lowe scheme leads to exact 
temperature preservation similar to the meso-GSHMC 
method, the Shardlow scheme leads to a small systematic 
shift in temperature under force free motion. However we 
have to stress that the meso-GSHMC is the only method to 
sample correctly under the full DPD setting. 

 
V. GSHmMC  

GSHMC can be applied to solve statistical inference 
problems in the same manner as the hybrid Monte Carlo 
(HMC) method 57).  

The target posterior distribution can always be written out 
explicitly, up to a normalization constant, as 

                               ,       (39)            
                             
where  is the probabilistic model that connects data Y  
with unknown parameters X ,   is the prior distribution 
in X  (which is often assumed to be Gaussian), and 

    
                            .              (40) 
 
In order to use GSHMC to sample the posterior 

distribution (39), we introduce an auxiliary ’momentum’ 
variable P , a (constant) symmetric positive-definite ‘mass 
matrix’ M , and the guide Hamiltonian 

 
                                           (41) 
 

with associated Newtonian equations of motion 
                                    
                                        .  (42) 
 
The matrix M takes the role of a preconditioner, i.e. one 

should select M such that the dynamics of the guide 
Hamiltonian system is as uniform as possible to enhance 
sampling. The ‘mass matrix’ is typically diagonal and is 
often a scalar multiple of the identity matrix. The equations 
(42) look exactly like (3) but ‘position’, ‘momentum’ and 
‘mass’ in (42) are entirely artificial and do not have physical 
meaning. These equations can be integrated in time by a 
symplectic and time-reversible method such as 
Störmer-Verlet.  

In order to sample (39) with GSHMC the partial 
derivatives of the log of the density function have to exist 
except perhaps on a set of points with zero probability, for 
which some fictitious value could be returned.  

There are two principal differences between GSHmMC 
and Hamiltonian Monte Carlo which, in fact, make 
GSHmMC more efficient for sampling than Hamiltonian 
MC, particularly for high dimensionality systems.  

First, in the GSHMC method guide Hamiltonians in the 
Metropolis criterion are replaced with modified guide 
Hamiltonians which are asymptotic expansions of guide 
Hamiltonians in powers of the step size and are more 
sensitive indicators than guide Hamiltonians of drift in the 
‘energy’ caused by instability. As a result, as already was 
discussed in this paper and in 3), one can achieve nearly  
100% acceptance rate independent of the system size 
provided that high-order modified guide Hamiltonians are 
used. The modified guide Hamiltonians are computed 
diagnostically at the beginning and the end of a simulation 
interval only and produce little computational overhead. We 
have to stress here that GSHmMC is designed as a purely 
sampling device. Momentum flips described in section II.2 
and claimed to be a drawback of GSHMC do not have any 
negative effect on the performance of GSHmMC. Moreover 
as it was discussed in 61) momentum flips improve sampling 
efficiency of generalized hybrid Monte Carlo methods. 

Second, instead of completely resetting ‘momentum’ as 
done in Hamiltonian MC, GSHmMC introduces a partial 
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momentum refreshment procedure accompanied by a 
modified Metropolis acceptance criterion. Such a procedure 
improves the overall sampling rate 4).  

The partial momentum refreshment part and the 
re-weighting procedure for expectation values in GSHmMC 
do not differ from the ones introduced in GSHMC.  

Therefore the GSHmMC algorithm has precisely the same 
formulation as GSHMC as given in section II.2 even though 
it uses different definitions.  

There is a potential for further increase in efficiency of 
GSHmMC. Thus, improving the accuracy of the integration 
phase by replacing the ‘standard’ Störmer-Verlet integrator 
with a more appropriate one, e.g. linearly implicit methods, 
will allow keeping a comparatively large step size even for 
highly oscillatory guide Hamiltonians. Combining partial 
momentum refreshment with the “window” method by Neal 
76) may lead to a substantial improvement which would 
increase with dimensionality 57).  

The well known bottleneck of the Hamiltonian MC 
method, also inherited by GSHmMC, is the amount of 
tuning required to obtain reasonable rates of acceptance. The 
number of integration steps, the size of each step, parameter 
φ in (9) and the ‘mass’ matrix are the parameters to tune. 
Whilst the choice of the first three parameters can be tuned 
based on the overall acceptance rate of the GSHmMC 
sampler using different adaptive schemes, (see for example 
77-79)), it is unclear how to select the values of the weight 
matrix M in any automated manner that does not require 
some knowledge of the target density.   

One of the possible ways to overcome this problem was 
suggested in 59). The authors picked up the idea of Zlochin 
and Baram 80) to define the Hamiltonian in general form on a 
Riemann manifold. Then the deterministic proposal is 
guided not only by the derivative information of the target 
density but also by the local geometric structure of the 
manifold as determined by the metric tensor. As a result, 
matrix M, defining a globally constant metric, is now 
replaced with the position specific metric. This removes the 
need for tuning the ‘mass’ matrix that dramatically affects 
the performance of Hamiltonian MC. They also suggested 
using the time reversible volume preserving Generalized 
Leapfrog algorithm 64) for solving the non-separable 
Hamiltonian equations to ensure a correct  MCMC scheme 
satisfying detailed balance and convergence to the desired 
target density. 

Unfortunately essential overheads are associated with this 
approach. One is the developing of analytical or numerical 
procedures for calculating the metric tensor and the 
associated derivatives. The second is the O(N 3) scaling of 
solving the linear systems when inverting the metric tensor. 

This approach, called RM-HMC, can be implemented in 
GSHmMC. However, we recommend using it mainly for 
high dimensional problems with strong correlations such as 
inferring the highly dimensional latent Gaussian field 81) 

where HMC fails due to the high levels of spatial correlation 
in the latent field.   

Combining GSHmMC with “tempering” methods such as 

parallel tempering 82), simulated tempering 83), tempered 
transitions 84), annealed importance sampling 85) to enhance 
sampling efficiency of the method is also feasible. The 
further ideas for performance improvement, theoretical 
analysis of limiting rates of convergence, ergodicity, optimal 
step sizes and acceptance rates for HMC-based methods can 
be found in 86). 

As to the computational aspects the automatic or adjoint 
differentiation methods 87) may be of use in GSHmMC. 

One of the important applications where GSHmMC can 
be effective is data assimilation. Data assimilation is a 
technique for combining mathematical models of physical 
systems with measurements in order to estimate either the 
state of the system or the parameters of the model. 
Mathematically, data assimilation leads to a deformation of 
the underlying probability density functions which is often 
achieved by Monte Carlo type methods (e.g. particle and 
ensemble Kalman filters) 88). As already pointed out, the 
necessary sampling of posterior probability density functions 
can be achieved efficiently by GSHmMC provided the 
density functions are sufficiently smooth. 

 
VI. Conclusion  

We introduced a class of hybrid methods which were 
designed to make feasible efficient and detailed simulation 
of large and complex systems.  

The methods are based on Hamiltonian Dynamics and 
Monte Carlo. They provide an exact temperature control 
during the molecular simulation and are able to extract 
dynamical information in a rigorous manner. They proved to 
be efficient sampling tools and overcome certain problems 
associated with MD, MC, conventional hybrid MC methods, 
MTS approaches and the simulation techniques commonly 
used for mesoscopic simulation.   

Due to their flexibility the introduced methods are easy to 
combine with other enhanced sampling methods and to 
efficiently implement on modern supercomputers. 

 
References 
1)  J. A. Izaguirre and S. S. Hampton, “Shadow Hybrid Monte 

Carlo: An efficient propagator in phase space of 
macromolecules,” J. Comput. Phys., 200, 581–604 (2004). 

2)  E. Akhmatskaya, S. Reich, “The targeted shadowing hybrid 
Monte Carlo (TSHMC) method,” in B. Leimkuhler et al, 
editor, New Algorithms for Macromolecular Simulations, 
volume 49 of Lecture Notes in Computational Science and 
Engineering, Berlin, Springer-Verlag, 145–158 (2006). 

3)  E. Akhmatskaya, S. Reich, “GSHMC: An efficient method for 
molecular simulations,” J. Comput. Phys., 227, 4934–4954 
(2008). 

4)  C. L. Wee, M. S. P. Sansom, S. Reich, E. Akhmatskaya, 
“Improved sampling for simulations of interfacial membrane 
proteins: Application of generalized shadow hybrid Monte 
Carlo to a peptide toxin/bilayer system,” J. Phys. Chem. B, 
112, 5710–5717 (2008).  

5)  J. M. Hammersley, D. C. Handscomb, Monte Carlo Methods, 
Chapman and Hall, London, 1 (1964). 

6)  L. Kelvin, “Nineteenth century clouds over the dynamical 



 

 

theory of heat and light,” Philos. Mag., 2,1 (1901).  
7)  E. Serge, From X-Rays to quarks, W.H. Freeman & Co., San 

Francisco (1980). 
8)  N. Metropolis, A. W. Rosenbluth, M. N. Rosenblut, A. H. 

Teller, E. Teller, “Equation of state calculations by fast 
computing machines,” J. Chem. Phys., 21, 1087–1092 (1953). 

9)  J. Dongarra, F. Sullivan, “Guest Editors’ Introduction: The 
Top 10 Algorithms,” Comput. Sci. Eng., 2[1], 22–23 (2000). 

10)  B. J. Alder, T. E. Wainwright, “Phase transition for hard 
sphere system,” J. Chem. Phys., 27, 1208 (1957). 

11)  A. Brass, B. J. Pendleton, Y. Chen, B. Robson, “Hybrid 
Monte Carlo simulations theory and initial comparison with 
molecular dynamics,” Biopolymers, 33, 1307–1315 (1993). 

12)  S. Plimpton, B. Hendrickson, “A new parallel method for 
molecular dynamics simulation of macromolecular systems,” 
J. Comp. Chem., 17, 326-337 (1996). 

13)  J. C. Phillips, G. Zheng, S. Kumar, L. V.  Kalé, “NAMD: 
biomolecular simulation on thousands of processors,” in 
Proceedings of SC 2002, 1-18 (2002). 

14)  S. Kumar, Chao Huang, G. Almasi, L. V. Kale, “Achieving 
strong scaling with NAMD on blue gene/l,” in Parallel and 
Distributed Processing Symposium. IPDPS 2006, 20th 
International, 10 (2006). 

15)  B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, “Gromacs 
4: Algorithms for highly efficient, load-balanced, and scalable 
molecular simulation,” Journal of Chemical Theory and 
Computation, 4, 435-447 (2008). 

16)  M. Snir, “A note on n-body computations with cutoffs,” 
Theory of Computing Systems, 37, 295-318 (2004). 

17)  Y. Shan, J. L. Klepeis, M. P. Eastwood, R. O. Dror, D. E. 
Shaw, “Gaussian split ewald: A fast ewald mesh method for 
molecular simulation,” The Journal of Chemical Physics, 122, 
054101 (2005). 

18)  K. J. Bowers, E. Chow, H. Xu, R. O. Dror, M. P. Eastwood, B. 
A. Gregersen, J. L. Klepeis,  I. Kolossvary, M. A. Moraes, F. 
D. Sacerdoti, J. K. Salmon, Y. Shan, D. E. Shaw, “Scalable 
algorithms for molecular dynamics simulations on commodity 
clusters”, Tampa, Florida, USA (2006). 

19)  K. J. Bowers, R. O. Dror, D. E Shaw, “Zonal methods for the 
parallel execution of range-limited n-body problems,” J. 
Comput. Phys., 221, 303-329 (2007). 

20)  D. E. Shaw, “A fast, scalable method for the parallel 
evaluation of distance-limited pairwise particle interactions,” 
J. Comput. Chem., 26, 1318-1328 (2005). 

21)  K. J. Bowers, R. O. Dror, D. E. Shaw, “The midpoint method 
for parallelization of particle simulations,” The Journal of 
Chemical Physics, 124, 184109 (2006). 

22)  J. S. Rosenthal, “Parallel computing and Monte Carlo 
algorithms,” Far East Journal of Theoretical Statistics, 4, 
207–236 (2000). 

23)  I. Azzini, R. Girardi, M. Ratto,  “Paralellization of matlab 
codes under windows platform for Bayesian estimation: A 
dynare application,” Working Paper 1, Euro-area Economy 
Modelling Centre (2007). 

24)  I. Strid, “Efficient parallelisation of Metropolis–Hastings 
algorithms using a prefetching approach,” Computational 
Statistics & Data Analysis, 54, 2814-2835 (2010). 

25) S. Duane, A. Kennedy, B. Pendleton, D. Roweth, “Hybrid 
Monte-Carlo,” Phys. Lett. B, 195, 216-222 (1987). 

26)  R. Faller, J. J. de Pablo, “Constant pressure hybrid Molecular 
Dynamics–Monte Carlo simulations,” J. Chem. Phys., 116, 
55-59 (2002). 

27)  M. Creutz, “Global Monte Carlo algorithms for many-fermion 
systems,” Phys. Rev. D, 38 [4], 1228–1238 (1988). 

28)  A. D. Kennedy, B. Pendleton, “Acceptances and 
autocorrelations in hybrid Monte Carlo,” Nucl. Phys. B (Proc. 
Suppl.), 20, 118–121 (1991). 

29)  A. M. Horowitz, “A generalized guided Monte-Carlo 
algorithm,” Phys. Lett. B, 268, 247–252 (1991). 

30)  A. D. Kennedy, B. Pendleton, “Cost of the generalized hybrid 
Monte Carlo algorithm for free field theory,” Nucl. Phys. B, 
607, 456–510 (2001). 

31)  J. S. Liu, Monte Carlo strategies in scientific computing, 
Springer-Verlag, New York (2001). 

32)  C.W. Gardiner, Handbook on Stochastic Methods, third ed., 
Springer-Verlag (2004). 

33)  C. R. Sweet, S. S. Hampton, R. D. Skeel, J. A. Izaguirre, “A 
separable shadow Hamiltonian hybrid Monte Carlo method,” 
J Chem Phys., 131[17], 174106 (2009). 

34)  H. Grubmüller, H. Heller, A. Windemuth, K. Schulten, 
“Generalized Verlet algorithm for efficient molecular 
dynamics simulations with long-range interactions,” Mol. 
Sim., 6, 121-142 (1991). 

35)  D. Humphreys, R. Friesner, B. Berne, “A multiple-time-step 
molecular dynamics algorithm for macromolecules,” J. Phys. 
Chem., 98[27], 6685-6892 (1994). 

36)  Q. Ma, J. Izaguirre, R. Skeel, “Verlet-I/R-Respa/Impulse is 
limited by nonlinear instabilities,” SIAM J. Sci. Comput., 24 
[6]. 1951-1973 (2003). 

37)  J. Izaguirre, D. Catarello, J. Wozniak, R. Skeel, “Langevin 
stabilization of molecular dynamics,” J. Chem. Phys., 114, 
2090-2098 (2001). 

38)  J. Izaguirre, S. Reich, R. Skeel, “Longer time steps for 
molecular dynamics,” J. Chem. Phys., 110, 9853-9864 (1999). 

39)  G. Zhang, T. Schlick, “LIN: A new algorithm to simulate the 
dynamics of biomolecules by combining implicit-integration 
and normal mode techniques,” J. Comp. Chem., 14, 1212 
(1993). 

40)  R. Pastor, B. Brooks, A. Szabo, “An analysis of the accuracy 
of Langevin and molecular dynamics algorithms,” Mol. Phys., 
65, 1409-1419 (1988). 

41)  S. Bond, B. Leimkuhler, “Molecular dynamics and the 
accuracy of numerically computed averages,” Acta Numerica, 
16, 1–65 (2007). 

42)  P. J. Hoogerbrugge, J. M. V. A. Koelman, “Simulating 
microscopic hydrodynamic phenomena with dissipative 
particle dynamics,” Europhys. Lett, 19, 155–160 (1992). 

43)  P. Español, P. B. Warren, “Statistical mechanics of dissipative 
particle dynamics,” Europhys.Lett., 30, 191–196 (1995). 

44)  I. Pagonabarraga, M. H. J. Hagen, D. Frenkel, “Self-consistent 
dissipative particle dynamics,” Europhys. Lett., 42, 377–382 
(1998). 

45)  C. P. Lowe, “An alternative approach to dissipative particle 
dynamics,” Europhys. Lett., 47, 145–151 (1999). 

46)  T. Shardlow, “Splitting for dissipative particle dynamics,” 
SIAM J. Sci. Comput., 24, 1267–1282 (2003). 

47)  I. Vattulainen, M. Karttunen, B. Besold, J. M. Polson, 
“Integration schemes for dissipative particle dynamics 
simulations: From softly interacting systems towards hybrid 
models,” J. Chem. Phys., 116, 3967–3979 (2002). 

48)  P. Nikunen, M. Karttunen, I. Vattulainen, “How would you 
integrate the equations of motion in dissipative particle 
dynamics,” Computer Physics Communications, 153, 
407–423 (2003). 



 

 

49)  E. A. Koopman, C. P. Lowe, “Advantages of a 
Lowe-Andersen thermostat in molecular dynamics 
simulations,” J. Chem. Phys., 124, 204103 (2006). 

50)  E. A. J. F. Peters, “Elimination of time step effects in DPD,” 
Europhys. Lett., 66, 311–317 (2004). 

51)  M. Serrano, G. De Fabritiis, P. Español, P. V. Coveney, “A 
stochastic Trotter integration scheme for dissipative particle 
dynamics,” Mathematics and Computers in Simulation, 72, 
190–194 (2006). 

52)  G. O. Roberts, R. L. Tweedie, “Exponential convergence of 
langevin diffusions and their discrete approximations,” 
Bernoulli, 2[4], 341–363 (1995). 

53)  R. M. Neal, “Probabilistic inference using Markov Chain 
Monte Carlo methods,” Technical report CRG-TR-93-1, Dept. 
of Computer Science, University of Toronto (1993). 

54)  R. M. Neal, Bayesian Learning for Neural Networks, 
Springer-Verlag, New York (1996). 

55)  P. Gustafson, “Large hierarchical Bayesian analysis of 
multivariate survival data,” Biometrics., 53, 230 – 242 (1997). 

56)  H. Ishwaran, “Applications of hybrid Monte Carlo to 
generalized linear models: quasicomplete separation and 
neural networks”, Journal of Computational and Graphical 
Statistics, 8, 779–799 (1999). 

57)  R. N. Neal, “MCMC using Hamiltonian dynamics,” 
Handbook of Markov Chain Monte Carlo, Chapman & Hall / 
CRC Press (2010). 

58)  M. N. Schmidt, “Function factorization using warped 
Gaussian processes,” Proceedings, Twenty-Six International 
Conference on Machine Learning (2009). 

59)  M. Girolami, B. Calderhead, “Riemannian Manifold Langevin 
and Hamiltonian Monte Carlo methods, J.R.Statist.Soc. B, 
73[2], 1-37 (2011). 

60)  S. H. Cheung, J. L. Beck, “Bayesian model updating using 
hybrid Monte Carlo simulation with application to structural 
dynamic models with many uncertain parameters,” Journal of 
Engineering Mechanics, 135[4], 243-255 (2009). 

61)  E. Akhmatskaya, N. Bou-Rabee, S. Reich, “Generalized 
hybrid Monte Carlo methods without momentum flip,” J. 
Comput. Phys., 228, 2256–2265 (2009). 

62)  M. Allen, D. Tildesley, Computer Simulation of Liquids. 
Clarendon Press, Oxford (1987). 

63)  E. Hairer, C. Lubich, G. Wanner, Geometric Numerical 
Integration, Springer-Verlag, Berlin Heidelberg (2002). 

64)  B. Leimkuhler, S. Reich, Simulating Hamiltonian Dynamics, 
Cambridge University Press, Cambridge (2005). 

65)  R. Skeel, D. Hardy, “Practical construction of modified 
Hamiltonians,” SIAM J. Sci. Comput., 23, 1172-1188 (2001). 

66)  Y. Sugita, Y. Okamoto, “Replica exchange multicanonical 
algorithm and multicanonical replica-exchange method for 
simulating systems with rough energy landscape,” Chem. 
Phys. Lett., 329, 261 (2000). 

67)  Y. M. Rhee, V. S. Pande, “Multiplexed-replica exchange 
molecular dynamics method for protein folding simulation”, 
Biophys. J., 84, 775 (2003). 

68) L. Walter, M. Weber, “ConfJump: a fast biomolecular 
sampling method which drills tunnels through high 
mountains,” Technical report, ZIB (2006). 

69) C. H. Bennett, “Efficient Estimation of Free Energy 
Differences from Monte Carlo Data,” J. Comput. Phys., 22, 
245 (1976). 

70)  P. J. Bond, M. S. P. Sansom, “Insertion and assembly of 
membrane proteins via simulation,” J. Amer. Chem. Soc., 
128[8], 2697 (2006).  

71)  H. Fujitani, Y. Tanida, M. Ito, G. Jayachandran, C. D. Snow, 
M. R. Shirts, E. J. Sorin, V. S. Pande, “Direct calculation of 
the binding free energies of FKBP ligands,” J. Chem. Phys., 
123, 084108 (2005). 

72)  T. Schlick, Molecular Modeling and Simulation, 
Springer-Verlag, New York (2002). 

73)  S. Reich, E. Akhmatskaya, “A multiple-time-stepping shadow 
generalized hybrid Monte Carlo (MTS-GSHMC) method.,” 
Technical Report, Fujitsu Laboratories of Europe (2009).  

74)  C. J. Cotter, S. Reich, “An extended dissipative particle 
dynamics model,” Europhys. Lett., 64, 723–729 (2003). 

75)  E. Akhmatskaya, S. Reich, “Meso-GSHMC: a stochastic 
algorithm for meso-scale constant temperature simulations,” 
Technical Report, submitted (2010).  

76)  R. M. Neal, “An improved acceptance procedure for the 
hybrid Monte Carlo algorithm,” Journal of Computational 
Physics, 111, 194-203 (1994). 

77)  C. Andrieu, J. Thoms, “A tutorial on adaptive MCMC,” 
Statistics and Computing, 18, 343–373 (2008). 

78)  R. M. Neal, “The short-cut Metropolis method,” Technical 
Report, N 0506, Department of Statistics, University of 
Toronto (2005).  

79)  R. M. Neal, “Short-cut MCMC: An alternative to adaptation,” 
Third Workshop on Monte Carlo Methods, Harvard (2007). 

80)  M. Zlochin, Y. Baram, “Manifold stochastic dynamics for 
Bayesian learning,” Neural Computation, 13, 2549–2572 
(2001). 

81)  O. F. Christensen, G. O. Roberts, J. S. Rosenthal, “Scaling 
limits for the transient phase of local Metropolis-Hastings 
algorithms,” Journal of the Royal Statistical Society: Series B., 
67[2], 253–268 (2005). 

82)  C. J. Geyer, “Markov chain Monte Carlo maximum 
likelihood,” in E. M. Keramidas, editor, Computing Science 
and Statistics: Proceedings of the 23rd Symposium on the 
Interface, 156-163 (1991).  

83)  E. Marinari, G. Parisi, “Simulated tempering: A new Monte 
Carlo scheme,” Europhysics Letters, 19, 451-458 (1992).  

84)  R. M. Neal, “Sampling from multimodal distributions using 
tempered transitions,” Statistics and Computing, 6 (1996). 

85)  R. M. Neal, “Annealed importance sampling. Statistics and 
Computing,” 11, 125-139 (2001). 

86)  A. Beskos, N. Pillai, G. Roberts, S. Serna, A. Stuart, “Optimal 
tuning of the Hybrid Monte-Carlo algorithm,” Technical 
Report, Department of Statistical Science, UCL (2010). 

87)  K. M. Hanson, “Use of probability gradients in Hybrid 
MCMC and a new convergence test,” Los Alamos Report 
LA-UR-02-4105, summary of talk presented at 7th Valencia 
International Meeting on Bayesian Statistics (2002). 

88)  G. Evensen, Data Assimilation: The Ensemble Kalman Filter, 
2nd edition, Springer-Verlag, New York (2009). 

  


