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Abstract. In this paper, we consider the data assimilation problem for perfect
differential equation models without model error and for either continuous or
intermittent observational data. The focus will be on the popular class of
ensemble Kalman filters which rely on a Gaussian approximation in the data
assimilation step. We discuss the impact of this approximation on the temporal
evolution of the ensemble mean and covariance matrix. We also discuss options
for reducing arising inconsistencies, which are found to be more severe for the
intermittent data assimilation problem. Inconsistencies can, however, not be
completely eliminated due to the classic moment closure problem. It is also
found for the Lorenz-63 model that the proposed corrections only improve the
filter performance for relatively large ensemble sizes.

1. Introduction. Let us consider an ordinary differential equation

dx

dt
= f(x, t) (1)

with state vector x ∈ RN . We assume that there is a reference trajectory xref(t)
for t ≥ t0 which we would like to approximate. However, contrary to standard
initial value problems we do not have access to the initial value xref(t0). Instead we
treat the model states x(t) as realizations of a random variable with known initial
probability density function (PDF) π0(x) at time t0. The PDF for the model states
x(t) at t > t0 is then provided by the solution of the Liouville equation

∂π

∂t
= −∇x · (πf)

2000 Mathematics Subject Classification. Primary: 93E11, 60G35, 65C05; Secondary: 62M20,
62F15, 65C35.

Key words and phrases. Data assimilation, ensemble Kalman filter, particle filter.

1



2 SEBASTIAN REICH AND SEOLEUN SHIN

with initial PDF π(x, t0) = π0(x). In general, the PDF π(x, t) will have little in
common with the measure

πref(x, t) = δ(x− xref(t))

induced by the reference solution for t � t0 even if π0 and πref(·, t0) are close.
Here δ(·) denotes the Dirac delta function and closeness should be measured with
an appropriate distance function such as the Wasserstein distance of two measures.
See, e.g., [17].

In this paper, we consider the situation where in addition to the model (1) and
the initial PDF π0 we have access to partial observations of the state variable
x. If the observations are taken continuously in time we talk about a continuous
data assimilation problem. If the observations are taken at discrete points in time
we have an intermittent data assimilation problem. Details of the mathematical
setting will be discussed in the following section. See also the excellent introduction
by Jazwinski [11].

Numerical methods for approximating either the continuous or the intermittent
data assimilation problem are subject of ongoing research. Particle filters (also
called sequential Monte Carlo methods) are a common choice [3] which however
do not seem to work well for high dimensional problems and moderate ensemble
sizes. Alternative methods such as the ensemble Kalman filter (EnKF) have be-
come popular in recent years [10]. The EnKF is an example of a particle transform
filter (contrary to the importance sampling approach of sequential Monte Carlo
methods). However, the EnKF does not provide an approximation to the data as-
similation problem in a mathematical sense unless the PDFs π(x, t) are Gaussian.
In this paper, we take the ensemble transform filter idea as a starting point (see
recent work by Crisan and Xiong [8] and Reich [14]) and discuss the consistency
of ensemble transform filters with regard to their ensemble mean and covariance
matrix propagation. Our work was inspired by Lei and Bickel [12] who proposed
modifications to the EnKF which lead to a consistent update of ensemble moments
during a single intermittent data assimilation step. The alternative analysis pro-
posed in this paper also presents a unified view on ensemble transform filters for
continuous and intermittent data assimilation.

2. Mathematical background. We assume that observations are either in form
of continuous measurements y(t) ∈ RK , t ≥ t0, satisfying the stochastic differential
equation

dy(t) = h(x(t))dt + R1/2dη(t), (2)
where η(t) denotes K-dimensional standard Brownian motion and R ∈ RK×K is
a symmetric positive-definite matrix, or intermittent measurements yq ∈ RK at
discrete times tq ≥ t0, q ≥ 1, satisfying

yq = h(x(tq)) + R1/2ηq,

where ηq ∈ RK are i.i.d. Gaussian random variables with mean zero and covariance
matrix equal to the identity matrix. In both cases, we call h : RN → RK the
forward operator. Note that y, h, η, and R take different meanings depending on
whether we consider the continuous or the intermittent data assimilation problem.

The time evolution of an initial probability density function (PDF) π0(x) is
provided by Kushner’s equation

dπ = −∇x · (πf)dt− π(h− h̄)T R−1(h̄dt− dy) (3)
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in case of the continuous filtering problem (see, e.g., [11]) and by
∂π

∂t
= −∇x · (πf)− 1

2

∑
q≥1

δ(t− tq)π
{
hT R−1(h− 2yq)− Eπ[hT R−1(h− 2yq)]

}
(4)

in case of the intermittent (continuous-discrete) filtering problem [6, 14]. Here h̄
denotes the expectation value of h with respect to π, i.e.

h̄(t) = Eπ[h] =
∫

h(x)π(x, t)dx.

Eq. (4) is to be understood as the limit of smooth approximations to the Dirac delta
function (mollification) [6].

We will consider particle methods for approximating the filtering problem, i.e. we
will consider (conditional) empirical measures

πem(x, t) =
1
M

M∑
i=1

δ(x− xi(t)) (5)

of M > 1 particles xi(t) for which we need to find appropriate evolution equations.
In the absence of observations the appropriate ensemble evolution is simply given
by

d
dt

xi = f(xi, t). (6)

To illustrate this point we introduce the empirical expectation value

ĝ = Eπem [g] =
1
M

M∑
i=1

g(xi)

of a smooth (test) function g(x). If xi ∼ π, then ĝ → ḡ as M →∞. We have
d
dt

Eπem [g] = Eπem [∇g · ∇f ]

under equation (6), which is consistent with the continuity equation
d
dt

∫
π(x, t)g(x)dx = −

∫
g(x)∇ · (π(x, t)f(x, t))dx

after integration by parts and setting π = πem.
We now turn to the observation driven contributions to the filter equations (3)

and (4), respectively, and their treatment under a particle method. Contrary to
standard sequential Monte Carlo methods (see, e.g., [3]), we follow recent work by
Crisan and Xiong [8] and Reich [14], i.e. we seek a vector field du such that

∇x · (πdu) = π(h− h̄)T R−1(dy − h̄dt) (7)

in case of continuous filtering or a vector fields uq such that

∇x · (πuq) =
1
2
π

{
hT R−1(h− 2yq)− Eπ[hT R−1(h− 2yq)]

}
(8)

in case of continuous-discrete filtering. The complete particle filter is then given by
either

dxi = f(xi, t)dt + du(xi, t),
in case of continuous observations or by

d
dt

xi = f(xi, t) +
∑
q≥1

δ(t− tq)uq(xi, t)
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respectively, in case of intermittent observations. There are different options for
finding these vector fields du and uq, respectively. See, for example, [15] and [9]. In
this paper, the focus will be on vector fields which satisfy (7) or (8), respectively,
in a weak form using the empirical measure (5). More precisely, the vector fields
should satisfy either

− 1
M

M∑
i=1

∇xg(xi)du(xi) =
1
M

M∑
i=1

g(xi)(h(xi)− ĥ)T R−1(dy − ĥdt) (9)

or

− 1
M

M∑
i=1

∇xg(xi)uq(xi) =
1

2M

M∑
i=1

g(xi)h(xi)T R−1(h(xi)− 2yq)

− 1
2M

M∑
i1=1

g(xi1)
1
M

M∑
i2=1

h(xi2)
T R−1(h(xi2)− 2yq)

respectively, for appropriate choices of the test function g. Here ĥ is defined in the
obvious manner, i.e.

ĥ =
1
M

M∑
i=1

h(xi).

In this paper, the set of admissible test functions g will be restricted to g(x) = x[l],
where x[l] denotes the l-th component of the vector x ∈ RN , and g(x) = (x[l] −
x̄[l])(x[k] − x̄[k]), k, l = 1, . . . , N . We emphasize at this point that the empirical
measure πem(x, t) is always conditioned on the available measurements up to time
t. This dependence is not explicitly expressed in the subsequent discussions.

We will discuss first (mean) and second-order (covariance matrix) consistency of
the ensemble Kalman-Bucy formulation [7]

dxi = f(xi, t)dt− 1
2
P̂xxHT R−1(Hxidt + Hx̂dt− 2dy) (10)

for continuous data assimilation. Here

x̂ = Eπem [x] =
1
M

M∑
i=1

xi

denotes the empirical mean and

P̂xx = Eπem [(x− x̂)(x− x̂)T ] =
1
M

M∑
i=1

(xi − x̂)(xi − x̂)T

the empirical covariance matrix, respectively. Note that we also used a linear for-
ward operators, i.e. h(x) = Hx, in (2). We will also consider ensemble square root
filter formulations [16] for intermittent data assimilation and their formulation in
terms of an embedded continuous formulation

d
ds

xi = −1
2
P̂xxHT R−1(Hxi + Hx̂− 2y) (11)

with s ∈ [0, 1] [5, 6, 4, 1]. The initial conditions are the prior ensemble positions
while the final positions xi(s = 1) yield the posterior ensemble approximation.

The rest of the paper is organized as follows. In Section 3, we analyse the prop-
agation of the ensemble mean and the ensemble covariance matrix under ensemble
transform filters for both the continuous and the intermittent data assimilation
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problem. It is demonstrated that currently available ensemble transform filters suf-
fer from inconsistency issues which can be reduced by appropriate modifications
while not being completely avoidable due to the familiar moment closure prob-
lem. The problem appears to be more serious for the intermittent data assimilation
problem. In Section 4, we present two types of numerical results. First we study
two simplified 1D test problems with trivial model dynamics dx/dt = 0 while the
Lorenz-63 model [13] is used as a more challenging test problem for assessing the
different assimilation schemes.

3. Consistency of ensemble transform filters. To simplify the derivation of
our ensemble transform filters, we restrict the discussion in this section to the trivial
model equation dx/dt = 0. This restriction is justified by the fact that the empirical
measure (5) is consistent with respect to all smooth test functions g under the model
equations (1) alone.

3.1. Continuous filtering problem. Under Kushner’s equation (3), the expec-
tation value ḡ = Eπ[g] of a smooth scalar-valued test function g satisfies

dḡ = −gdK + ḡdK = −(g − ḡ)(dK − dK) (12)

with
dK = hT R−1(h̄dt− dy)

and overbar denotes expectation with respect to the PDF π(x).
We now take g(x) equal to the l-th component of the state vector x ∈ RN and

set π = πem, i.e. we effectively derive an evolution equation for the ensemble mean
x̂ of the complete state vector. Straightforward calculations yield

dx̂ =− 1
M

M∑
i=1

∫
x(h(x)− ĥ)T R−1(ĥdt− dy)δ(x− xi)dx

=− 1
M

M∑
i=1

xi(h(xi)− ĥ)T R−1(ĥdt− dy).

Using the abbreviations

∆xi = xi − x̂, ∆hi = h(xi)− ĥ,

we obtain the equivalent formulation

dx̂ =− 1
M

M∑
i=1

∆xi∆hT
i R−1(ĥdt− dy)

=− P̂xhR−1(ĥdt− dy),

since
M∑
i=1

x̂∆hT
i R−1(ĥdt− dy) = 0.

Here we have introduced the empirical covariance matrix

P̂xh =
1
M

M∑
i=1

∆xi∆hT
i .

This formulation is consistent with the evolution equation for the mean obtained
from the ensemble Kalman-Bucy filter (10) for linear forward operators, i.e. h(x) =
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Hx. This consistency property is also valid for the ensemble Kalman-Bucy filter
with ”perturbed” observations for M →∞, which is given by

dxi = f(xi, t)dt− P̂xxHT R−1(Hxidt + R1/2dηi − dy), (13)

where ηi(t), i = 1, . . . ,M , denote independent realizations of standard Brownian
motion.

A similar calculation yields an equation for the covariance matrix

Pxx = Eπ[(x− x̄)(x− x̄)T ]

in the form of (see [11] for details)

dPxx = −PxhR−1PT
xhdt− Eπ[(x− x̄)(h− h̄)T R−1(h̄dt− dy)(x− x̄)T ]

Here we have also introduced the covariance matrix between the state vector x and
its forward operator value h(x):

Pxh = Eπ[(x− x̄)(h− h̄)T ].

Upon replacing the PDF π by the ensemble induced empirical measure πem, we
obtain

dP̂xx = −P̂xhR−1P̂T
xhdt− 1

M

M∑
i=1

∆xi∆hT
i R−1(ĥdt− dy)∆xT

i .

Since

dP̂xx =
1
M

M∑
i=1

{
∆xid∆xT

i + d∆xi∆xT
i

}
,

the ansatz

dxi = −1
2
P̂xhR−1∆hidt− 1

2
∆xi∆hT

i R−1(ĥdt− dy)− 1
2
P̂xhR−1(ĥdt− dy)

leads to a consistent ensemble Kalman-Bucy filter formulation, i.e. this choice of
du(xi, t) satisfies, while not being unique, the weak form (9) of (7) for g equal to
x[l] and (x[l] − x̄[l])(x[k] − x̄[k]), k, l = 1, . . . , N .

The complete modified ensemble Kalman-Bucy filter equations are provided by

dxi = f(xi, t)dt− 1
2
∆xi∆hT

i R−1(ĥdt− dy)− 1
2
P̂xhR−1(hidt− dy) (14)

3.2. Intermittent filtering problem. Following Lei and Bickel [12] (but see also
[11]), we define consistent estimators for the posterior mean and covariance matrix
for an intermittent data assimilation problem by

x̂a =
∑M

i=1 xil(xi, y)∑M
i=1 l(xi, y)

(15)

and

P̂ a
xx =

∑M
i=1(xi − x̂a)(xi − x̂a)T l(xi, y)∑M

i=1 l(xi, y)
,

respectively. Here

l(x, y) = exp
(
−1

2
(h(x)− y)T R−1(h(x)− y)

)
denotes the likelihood function for observing y given x and the ensemble members
xi are assumed to follow the prior distribution. Then, using y = yq at t = tq
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and an ensemble Kalman filter analysis step to produce posterior proposals xp
i , the

corrected posterior ensemble members xa
i , defined by

xa
i = x̂a + (P̂ a

xx)1/2(P̂ p
xx)−1/2∆xp

i , (16)

are consistent with regard to the posterior mean and covariance matrix at time tq.
Here ∆xp

i = xp
i − x̂p, P̂ p

xx denote quantities derived from the proposal ensemble. A
related formula has been given by Lei and Bickel [12] for the ensemble Kalman filter
formulation with perturbed observations [10]. However, while the formulation of Lei
and Bickel [12]) requires M + 1 calculations of a matrix square root, formulation
(16) requires only two. See also the particle filter resampling scheme of Xiong et
al. [18].

We now investigate the inconsistency of an ensemble square root filter with re-
gard to its ensemble mean and covariance matrix propagation in more detail. We
recall that, instead of applying Bayes theorem [11] directly, one can solve at any
observation instance tq, q ≥ 1, the evolution equation

∂π

∂s
= −π(L− Eπ[L]) = −π(L− L̄)

over a unit time interval, i.e. s ∈ [0, 1], with (modified) negative log likelihood
function

L = − log l =
1
2
h(x)T R−1(h(x)− 2y)

and y = yq at t = tq. The initial value is given by the prior PDF while the solution
at s = 1 yields the posterior PDF according to Bayes’ theorem. See [14] for a
derivation. The time evolution of the expectation value of a scalar-valued function
g is now given by

dḡ

ds
= −gL + ḡL̄ = −(g − ḡ)(L− L̄) = −(L− L̄)g = −(g − ḡ)L. (17)

This formula should be compared to the corresponding formula (12) for the contin-
uous data assimilation problem.

Using the empirical measure for π and applying the above formula component
wise, we obtain the following consistent update for the ensemble mean:

dx̄

ds
=− 1

2M

M∑
i=1

∆xih
T
i R−1(hi − 2y)

=− 1
2M

M∑
i=1

∆xi∆hT
i R−1(hi − 2y)− 1

2M

M∑
i=1

∆xiĥ
T R−1(hi − 2y)

=− 1
2M

M∑
i=1

∆xi∆hT
i R−1(hi − 2y)− 1

2M

M∑
i=1

∆xi∆hT
i R−1ĥ

=− 1
2M

M∑
i=1

∆xi∆hiR
−1(hi + ĥ− 2y)

=− 1
M

M∑
i=1

∆xi∆hT
i R−1(ĥ− y)− 1

2M

M∑
i=1

∆xi∆hT
i R−1∆hi

=− PxhR−1(ĥ− y)− 1
2M

M∑
i=1

∆xi∆hT
i R−1∆hi.
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We find that the continuous ensemble Kalman filter formulation (11) in [5, 6] is
not consistent with the evolution equation for the ensemble mean even for linear
forward operators and, more precisely, a third-order moment correction term is
being introduced, which vanishes for Gaussian PDFs. We mention that the same
inconsistency problem arises for the ensemble Kalman filter for intermittent data
assimilation [12]. Note that the inconsistency can simply be removed by recentering
the analysed ensemble about the posterior mean x̂a.

The corresponding equation for the empirical covariance matrix is

d
ds

P̂xx = − 1
M

M∑
i=1

(Li − L̂)∆xi∆xT
i , (18)

which one obtains from (17) with g = ∆x∆xT using the abbreviation

Li =
1
2
hT

i R−1(hi − 2y)

and L̂ denotes the ensemble mean of L. Again we find that the continuous ensemble
Kalman filter equation (11) is not consistent with this evolution equation for the
empirical covariance matrix.

Let us discuss the source of inconsistency in more detail for the simple problem
x ∈ R and yq = x + ηq with ηq ∼ N(0, 1). Then

d
ds

P̂xx = −1
2

{
Eπem [(x− x̂)4]− (Eπem [(x− x̂)2])2

}
− Eπem [(x− x̂)3](ĥ− y)

and the Kalman update is obtained for Gaussian PDFs π = N(x̄, Pxx) since the
third-order moment vanishes and

Eπ[(x− x̄)4] = 3(Eπ[(x− x̄)2])2 = 3P 2
xx.

In all other cases the consistent estimation of the fourth-order moment is required
to satisfy the second-order moment evolution equation. Hence we face a classic
moment closure problem.

We now derive an alternative, consistent filter formulation in terms of the en-
semble mean x̂ and deviations ∆xi using (17). We first note that

dx̂

ds
= −L̂∆x

is the update equation for the mean, which we have already analysed explicitly.
Next we set g = ∆x∆xT and find that

d∆xi

ds
= −1

2
(Li − L̂)∆xi +

1
2
L̂∆x

leads to an update which is consistent with (18) since

dĝ

ds
=

1
M

M∑
i=1

d∆xi

ds
∆xT

i +
1
M

M∑
i=1

∆xi
d∆xT

i

ds

and which satisfies
1
M

M∑
i=1

d∆xi

ds
= 0.

We finally obtain assimilation equations
dxi

ds
= −1

2
(Li − L̂)∆xi −

1
2
L̂∆x (19)
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in terms of the ensemble members xi, i = 1, . . . ,M . Note that instantaneous
consistency with regard to first and second-order moments does not imply that the
update is consistent over the whole interval s ∈ [0, 1] since higher than second-order
moments are not consistently propagated.

4. Numerical examples. We conduct two type of experiments. In the first set, we
assume a trivial model dynamics and only assess the behavior of ensemble transform
filters with respect to the assimilation of continuous or intermittent data under non-
Gaussian PDFs/non-linear forward operators. The second experiment is based on
the Lorenz-63 model [13] and examines the interplay of non-linear dynamics with
intermittent data assimilation with regard to moment consistency.

4.1. 1D test problems. We test our formulation first for a single intermittent
assimilation step where the prior is a bimodal Gaussian

πprior(x) =
1
2

1√
2π

e−(x−π)2/2 +
1
2

1√
2π

e−(x+π)2/2 (20)

and the likelihood is

π(yobs|x) =
1√
2π4

e−(x−π)2/32. (21)

The posterior distribution is again bimodal Gaussian and can be computed analyt-
ically. The same applies to the mean and the second-order moment of the posterior
distribution. Here we demonstrate how an EnKF and the continuous ensemble
transform filter fail to reproduce the correct mean and covariance. See Table 1. We
note that the formulation (19), which we denote by consistent ensemble transform
filter (CEnTF), does not improve the results. This is again due to the moment
closure problem, i.e. (19) fails to reproduce the higher than second-order moments
correctly. In contrast, both the second-order modified filter in [12] as well as the
formulation (16) reproduce the correct mean and covariance as M → ∞ by con-
struction. However, both these filters are difficult to implement for high-dimensional
problem since they require computing the square roots of N × N covariance ma-
trices. Furthermore, ensemble sizes M � N = 1 are required to see the improved
behavior of (16).

As a second example, we consider the continuous filtering problem with trivial
model dynamics dx/dt = 0, a reference trajectory xref(t) = 1, t ≥ 0, observations

dy(t) = h(xref) + dη(t)

with η(t) denoting standard Brownian motion, and nonlinear forward operator h =
x3/2. The initial PDF π0 is Gaussian with mean zero and variance equal to Pxx = 4.
We compute x̄(t) for t → ∞ using a high resolution approximation to Kushner’s
equation and compare this result to x̂(t) from the ensemble Kalman-Bucy filter (10)
and the modified formulation (14) with M = 1000 ensemble members. We plot the
evolution of x̄ and the two approximations x̂ in Figure 1. Both approximations
x̂(t) approach x̄(t) ≈ xref = 1 for t sufficiently large. It should be noted that the
underlying PDFs π(x, t) are strongly non-Gaussian in the initial phase. See 2. We
conclude that the modified formulation (14) does not offer an improved behavior
for this particular test problem.
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Table 1. Computed posterior mean and covariance matrix for
the EnKF with perturbed observations, the continuous EnKF
(CEnKF), the formulation (16) (MEnKF), and the continuous for-
mulation (19) (CEnTF) for four different ensemble sizes. Displayed
are the averaged results and their standard deviation from 100
independent simulations. The exact results are x̄ = 1.7314 and
Pxx = 7.2917 to five significant digits.

EnKF CEnKF MEnKF CEnTF

M = 2 1.6390±0.5008 1.6397±0.5009 1.6638±0.7615 1.4146±0.5686
4.8242±5.9592 4.2534±0.9466 6.5862±2.2480 9.6891±3.9863

M = 10 1.3263±0.2389 1.3268±0.2389 1.7333±0.3631 1.4578±0.2883
6.1631±2.5845 6.0766±0.7524 7.1293±1.1778 10.4530±1.9098

M = 50 1.2900±0.0886 1.2904±0.0886 1.7417±0.1285 1.4439±0.1295
6.2992±1.1105 6.3937±0.3032 7.2655±0.4505 10.4404±0.9817

M = 200 1.2746±0.0515 1.2750±0.0515 1.7339±0.0675 1.4448±0.0560
6.3747±0.6020 6.4668±0.1493 7.3180±0.2428 10.3446±0.3909

0 2 4 6 8 10
0.2

0

0.2

0.4

0.6

0.8

1

1.2

time

computed mean values

Figure 1. Time evolution of the mean x̄ (blue) and its approx-
imations by the standard ensemble Kalman-Bucy filter (10) (red)
and the modified ensemble Kalman-Bucy filter (14) (green). Both
approximations approach x̄(t) for t sufficiently large. The correct
asymptotic value is xref = 1.

4.2. Lorenz-63 model. We consider the Lorenz-63 model [13]

dx[1]

dt
=− σ(x[1] − x[2]),

dx[2]

dt
=− x[1]x[3] + rx[1] − x[2],

dx[3]

dt
=x[1]x[2] − bx[3],

with parameter values b = 8/3, r = 28, and σ = 10. The equations are solved using
the fourth-order Runge-Kutta method with a step-size of ∆t = 0.05. Observations
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Figure 2. We display the initial PDF and its evolved values at
t = 0.05, t = 0.1 and t = 10. While the density becomes non-
Gaussian initially, it finally approaches a Dirac meassure in the
limit t →∞.

Table 2. Mean RMSE over 2000 assimilation cycles with tq =
0.05q for the Lorenz-63 model using five different filter algorithms
and three different ensemble sizes. FD (filter divergence) is be-
ing used whenever the mean RMSE exceeds the observation error
R1/2 = 2.

EnKF MEnKF1 MEnKF2 NLEAF1 NLEAF2

M = 10 0.4405 1.2045 FD FD FD
M = 40 0.3004 0.3140 0.2510 0.3772 FD
M = 400 0.3272 0.3262 0.2375 0.3037 0.2336

of the complete state vector x = (x[1], x[2], x[3])T ∈ R3 are taken at every time-step,
i.e. tq = q∆t and the measurement error covariance matrix is R = 4I3. Algorithmic
performance is evaluated by the root mean square error

RMSE(tq) =

√
1
3
‖x̂(tq)− xref(tq)‖2.

Here xref(tq) denotes the reference solution and x̂(tq) the mean of the analysed
ensemble at t = tq.

We compare the ensemble Kalman filter with perturbed observations (EnKF)
with an EnKF where the analysed mean is corrected to (15) (MEnKF1) and an
EnKF where both the analysed mean and covariance matrix are corrected by (16)
(MEnKF2). We also implemented the NLEAF1 and NLEAF2 schemes from [12].
Ensemble inflation [2] is not being applied.

In Table 2 we present results for M = 10, 40, 400 ensemble members over 6000
data assimilation cycles. The ensemble size M = 400 corresponds to the setting of
[12] and the results from Table 1 should be compared to those from Table 1 in [12].
We note that we obtain a significantly lower mean RMSE for the standard EnKF
as compared to the one presented by [12] for their implementation.
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We also implemented non-perturbative ensemble (square root) filter algorithms
[10] as well as the modified update (19). However, we found that none of the filters
worked for this example without additional modifications such as ensemble inflation.

5. Discussion. The consistency of ensemble transform filter algorithms has been
discussed with regard to their mean and covariance evolution. Under both assimila-
tion scenarios, i.e. continuous as well as intermittent data assimilation, one encoun-
ters the familiar closure problem for moment truncations. Due to the higher-order
terms in (17) compared to those in (12) – compare the definitions for L and dK –,
this problem is more severe for intermittent data assimilation. Various correction
methods have been discussed; only those for the mean are easy to implement. Over-
all the ensemble Kalman-Bucy filter (10) is found to work well also for non-Gaussian
PDFs while standard ensemble Kalman filters for intermittent data assimilation are
found to be more problematic under non-Gaussian PDFs. However, even if compu-
tational affordable, our results for the Lorenz-63 model indicate that the correction
term (16) is only advantageous for large ensemble sizes compared to the dimension
of phase space, in which case one could also resort to traditional sequential Monte
Carlo methods.

Even though we found that (14) as well as (19) did not offer improved results for
the tests performed in this paper, online comparison with (10) and (11), respectively,
could serve as an indicator for non-Gaussianity in the underlying PDFs and could
serve as a form of error indicator. This topic needs to be explored further.
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