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Abstract

We develop a multigrid, multiple time stepping scheme to reduce computa-
tional efforts for calculating complex stress interactions in a strike-slip 2D
planar fault for the simulation of seismicity. The key elements of the mul-
tilevel solver are separation of length scale, grid-coarsening, and hierarchy.
In this study the complex stress interactions are split into two parts: the
first with a small contribution is computed on a coarse level, and the rest for
strong interactions is on a fine level. This partition leads to a significant re-
duction of the number of computations. The reduction of complexity is even
enhanced by combining the multigrid with multiple time stepping. Compu-
tational efficiency is enhanced by a factor of 10 while retaining a reasonable
accuracy, compared to the original full matrix-vortex multiplication. The
accuracy of solution and computational efficiency depend on a given cut-off
radius that splits multiplications into the two parts. The multigrid scheme
is constructed in such way that it conserves stress in the entire half-space.

Keywords: Multigrid, Multiple time stepping, Strike-slip fault model

1. Introduction1

Multiplications of a vector by a dense matrix demand high computational2

expense for half-space elastodynamic solutions in a fault model for the sim-3

ulation of seismicity (Ben-Zion and Rice, 1993; Ben-Zion, 1996; Zöller et al.,4

2004, 2005). Such fault models calculate the evolution of slip, stress, and5

other related quantities as a response on long-term accumulation of stress in6

the Earth’s crust resulting from the motion of the tectonic plates. The out-7

come of those models is an earthquake catalog including time, hypocenter and8

Preprint submitted to Computers and Geoscience August 26, 2010



magnitude of each event. These data are useful for purposes of earthquake9

statistics (e.g. frequency-size distributions, recurrence times) and seismic10

hazard studies. In this way, the poor statistics of observational earthquake11

data can be overcome to some extent. The interseismic build-up of stress12

period is related to plate motion with constant velocity. The release of stress13

comes from power-law creep (interseismic) accounting for aseismic processes14

and from earthquakes (coseismic). On average there is a balance between15

build-up and release of stress (backslip model). Recurrence times of large16

earthquakes are tens to hundreds of years, while the earthquake itself occurs17

on a time-scale of a few seconds. In simple fault models, different regimes18

of a fault are loaded independently during the periods between earthquakes.19

More realistic models include complex spatio-temporal interactions at each20

time. This leads to expensive multiplications as in many-body simulations21

in other physical problems. There have been a number of efforts to reduce22

the computational cost for many-body calculations such as the Barnes-Hut23

method, the parallel tree methods, and the fast multipole expansion method24

in tree algorithms for long-range potentials. Meanwhile mesh-based fast algo-25

rithms include the particle-particle particle-mesh method, the particle-mesh26

Ewald summation, and multigrid methods and adaptive refinement (Griebel27

et al. (2007) and references therein). These methods attempted to reduce28

the complexity of N × N to O(N) or O(N logN) for interactions of a set of29

N particles or bodies. Moreover, these approaches can be combined with a30

multiple time stepping to further enhance the computational speed. To de-31

velop efficient solvers for elastodynamics some studies use, for example, fast32

multipole boundary element methods (e.g., Chaillat et al., 2008) or parallel33

computations on grids with different spacing (Aoi and Fujiwara, 1999).34

Iterative multigrid methods are used as fast numerical methods for the35

solution of a linear equation arising for partial differential equations (Trot-36

tenberg et al., 2007). The idea of using multiple grids was adopted for an37

efficient multiplication by a dense matrix, in a non-iterative way (e.g., Brandt38

and Lubrecht, 1990). Amongst fast multiplication methods, multigrid meth-39

ods have advantages in that they are relatively simple to implement and40

applicable to general potentials. In this work we test multigrid methods41

combined with a multiple time stepping, based on the multigrid approach in42

Skeel et al. (2002), hereafter STH02. Then we compare the results with those43

from the original full matrix-vector multiplications. In preliminary tests we44

found that the method of STH02 can lead to a lower error than using the45

multigrid method suggested by Brandt and Lubrecht (1990), hereafter BL90,46
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for the problem in the fault model. The difference between the algorithms in47

BL90 and STH02 will be discussed in the section of algorithm description.48

In the following section, we describe the fault in earthquake modeling49

briefly and the kernel used in the multiplications. In section 3, the idea of50

the multigrid algorithm in STH02 is explained and the advantage of this51

approach over that in BL90. In section 4, we present the results from the52

multigrid multiplications in the fault model. Finally we summarize this study53

and deliver outlook for implementations in operational models.54

2. Details of the fault model55

The earthquake model under consideration includes two mechanisms: first56

the stress loading of a fault region resulting from plate motion (interseismic57

period), and second, the earthquake process which is initiated when the stress58

equals a material threshold and leads to a sequence of stress redistributions59

on the fault (coseismic period). While the interseismic period lasts for years60

to centuries, the coseismic period takes only seconds to minutes. The present61

investigation focuses on the interseisimic process, which dominate the com-62

putational effort due to complex stress interactions during each time step.63

The computational grid, where stress and slip are maintained, is a rectangu-64

lar area which is segmented into cells (Ben-Zion, 1996; Zöller et al., 2005).65

The size of the grid is 70 km in length and 17.5 km in depth. This geom-66

etry corresponds approximately to the San Andreas fault near Parkfield in67

California (Ben-Zion and Rice, 1993; Ben-Zion, 1996). In fact, the entire68

fault is an infinite half-plane, but brittle processes are calculated only on the69

area depicted in Figure 1. The computational grid is discretized to 128 × 3270

cells of uniform size where stress and slip are calculated through interaction71

between the cells. The material surrounding the fault is assumed to be a72

homogeneous elastic half-space, which is characterized by elastic parameters73

and a Green’s function. For reasons of transparency, we start with a homoge-74

neous half-space. Models for layered half-spaces can be derived by changing75

the Green’s function (see e.g. Wang (1999)): A simple orthonormalization76

method for the stable and efficient simulations may be used, if corresponding77

data are given. The same holds for bimaterial interfaces and other model78

extensions. The static Green’s function G(xi; xj) in our study is based on79

Chinnery’s solution for static dislocations of rectangular patches in a strike-80

slip fault embedded in an elastic Poisson solid with rigidity µ = 30 GPa81

(Chinnery, 1963; Okada, 1992) and defines the interaction between two po-82
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sitions xi and xj on the grid. Here i = j = 1, 2, · · · , N , where N is the total83

number of cells, i.e., N = 128×32 = 4096. More details about the fault model84

can be found in Ben-Zion and Rice (1993), Ben-Zion (1996), and Zöller et al.85

(2005).86

While the loadings produce an increase of stress on the fault, the local stress may
be reduced by creep and brittle failure processes operating ‘‘in series.’’

2.1. The Creep Process

The ongoing creep motion on the fault is implemented as in BEN-ZION (1996).
The space- and time-dependent creep rate follows the formula

_ucreepðx; z; tÞ ¼ cðx; zÞsðx; z; tÞ3; ð2Þ

where cðx; zÞ are time-independent coefficients and s is the local stress.
Equation (2) corresponds to dislocation creep observed in laboratory experiments

with a coefficient c that increases with temperature and pressure. Following BEN-
ZION (1996), we choose a distribution cðx; zÞ that simulates ‘‘brittle-ductile’’
transitions in the vertical and horizontal directions:

cðx; zÞ ¼ A expðB $Maxððx% xDBÞ; ðz% zDBÞÞ þ ranðx; zÞ; ð3Þ

where A and B are constants and xBD ¼ 62:5 km; zBD ¼ 10:0 km are the horizontal
and vertical positions of the ‘‘brittle-ductile’’ transition zones. The transition in depth

models the occurrence of ductile deformation with increasing temperature and
pressure, while the transition along strike is based on the assumption that an

essentially brittle fault segment is connected with a creeping fault section. At xBD and
zBD, the creep rates equal approximately the tectonic loading rate, the stress increase

v  = 35 mm/year
pl

North
70 km

17.5 km

Depth

segmented fault

Figure 1
A sketch of a 2-D strike-slip fault in a 3-D elastic half space.
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Figure 1: Schematic diagram of the fault model. Courtesy of Zöller et al. (2004).

We are concerned with interseismic processes in which stress in the fault87

zone builds up. The stress response (τ) at xi to a static change of the88

displacement u at xj is given by89

τ(xi, t) =
∑

xj∈grid

G(xi; xj)[u(xj, t)− vplt], (1)

at time t since the start of the simulation (Ben-Zion and Rice, 1993; Ben-Zion,90

1996). The velocity of the tectonic plate, vpl = 35 mm/yr based on empirical91

values for the San Andreas fault in California. We denote xi as evaluation92

position and xj as source point. We assume that the computational grid is93

embedded in a half-plane and undergoes constant creep. Then the build-up94

of stress can be reduced by the aseismic creep motion, whose time-rate is95

given by96

u̇(xj) = c(xj)τ(xj, t)
3, (2)

where c(xj) is the rate of aseismic creep which is constant in time, but space-97

dependent.98

The kernel G in the fault model (hereinafter called Chinnery kernel) has a99

finite element at i = j. Note that this is different to the electric potential (∼100

1/r) where the diagonal element is a singular point. The Chinnery kernel also101
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decreases more rapidly (1/r3) with increasing distance from the source point.102

Consequently, the contribution of the long-range interaction to the total sum103

is much smaller than that between neighbouring cells. Nevertheless, the long-104

range contribution should be included in the integration to account for the105

conservation of stress in the entire half-space. Consequently, the number of106

computations for (1) is N×N , which brings about computational complexity.107

3. Idea of the multigrid algorithm in STH02108

The N × N multiplication can be done, however, in multi levels within109

reasonable error ranges, which is proportional to (h/a)2. Here h is a grid110

size and 0.5 km in this study, and a is a cut-off radius that will be explained111

more in the following description. The idea of using multiple grids for such112

problems was suggested in Hackbusch and Nowak (1989) and BL90. This113

has been relatively less popular than tree methods, for example, in Green-114

gard and Rokhlin (1987), whose method has some similar features to that115

in Hackbusch and Nowak (1989). Recently STH02 compared the tree meth-116

ods and multigrid methods, and found that the multigrid is twice as fast as117

simulations with the fast multipole method for the same accuracy in tests118

of 20,544-atom model of water. Moreover, the advantage of the multigrid119

method is simple implementation and continuously differentiable approxi-120

mations to a Green’s function.121

The three essential elements of the multilevel solver is separation of length122

scale, coarsening, and hierarchy. The separation of length scale means the123

split between a rapidly changing part and a smooth part of the kernel, to124

distinguish short range and long-range interactions. The former is to be125

computed directly, while the latter is approximated using the results from126

coarsening. The long-range interaction is computed at levels with larger grid127

spacing, so called coarse levels. The grid spacing doubles with increasing128

levels so that it is 2h for the level 2 when the spacing is h at the level 1129

where direct computation is done. For simplicity we use superscripts h, 2h130

to denote the quantities and grids at each level. For example, the grids131

of level 1 and level 2 are Ωh and Ω2h respectively. For the separation of132

length scale, we need to determine a cut-off distance a, inside which direct133

computation is done. It means that interactions between points with r ≤ a134

are classified as short-range interactions and otherwise long-range ones. The135

idea of STH02 is to split the kernel like136

G = (G− G̃) + G̃, (3)
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where G− G̃ vanishes for r beyond a so that this is calculated directly inside137

of a, while the smoothed function G̃ is computed on coarse grids. As a138

increases G̃ becomes more smooth. The scheme in BL90 is also based on the139

splitting of the kernel depending on the length scale of interactions. However,140

the difference is that it is not separated in such way that G − G̃ vanishes141

beyond a. This difference will be detailed more in the following paragraphs.142

We use I, J, for grid indices at the level 2 and I, J = 1, 2, ...N/4 for a143

2-D fault model. We consider 2-level algorithm only, for the relatively small144

domain in this study (see section 2). An extension to a higher level algorithm145

is easy to handle when it is necessary. The long-distance interactions can146

be approximated with fewer terms through a Coarsening. The coarsening147

means that G̃h, G̃ on the grid Ωh, is approximated by G̃2h on the grid Ω2h148

in such way that149

G̃h ≈ Ih
2hG̃2hI

2h
h , (4)

where Ih
2h is an interpolation and I2h

h a restriction operator. In our com-
putations we use a linear interpolation using nearest points values and a
restriction operator described in the Appendix. The coarse level calculation
can be further split into a two-level computation, which leads to a 3-level
scheme. This recursive application of the Separation and Coarsening is
called Hierarchy (Skeel et al., 2002). Using the idea of (3) and (4), (1) can
be approximated in a 2-level scheme by

τh
i ≈

∑
j

(Gh
i,j − G̃h

i,j)u
h
j + Ih

2h

∑
J

G̃2h
I,Ju

2h
J

≈
∑

||xj−xi||≤a

(Gh
i,j − G̃h

i,j)u
h
j + Ih

2h

∑
J

G̃2h
I,Ju

2h
J , (5)

along with the definition G̃h
i,j ≡ Gh

i,j for ||xj−xi|| > a in the scheme. STH02150

used a smoothed potential for G̃, which is based on the Taylor expansion151

of the potential function (1/r) to soften the original kernel function. In the152

same way, we also derive an approximation to the Chinnery kernel in the153

fault model. It is worth noting that the idea of using a softened kernel154

is also suggested in Brandt (1991) although the instruction for application155

is more straightforward in STH02. Multigrid computations with a softened156

kernel for a logarithmic kernel are tested also in Brandt and Venner (1998).157

The advantage of using G̃ is evident when it is compared with the scheme158

in BL90, where splitting is built in a different way. Here we use notation K159
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for G to avoid confusion. The approximated kernel K̃ in BL90 is defined by160

Kh
i,j − K̃h

i,j =

{
0 xj = x2J

Kh
i,j − Ih

2hK
2h
I,JI

2h
h , otherwise.

(6)

161

τh
i ≈

∑
||xj−xi||≤a

(Kh
i,j−K̃h

i,j)u
h
j +

∑
||xj−xi||>a

(Kh
i,j−K̃h

i,j)u
h
j +Ih

2h

∑
J

K̃2h
I,Ju

2h
J . (7)

Then, the cut-off radius a is decided beyond which the second term in (7)162

can be neglected so that finally163

τh
i ≈

∑
||xj−xi||≤a

(Kh
i,j − K̃h

i,j)u
h
j + Ih

2h

∑
J

K̃2h
I,Ju

2h
J , (8)

to reduce the number of multiplications. In fact, the second term in (7)164

is zero by definition in the scheme of STH02, but it is not in BL90, which165

can lead to additional errors in some multilevel formulations. Eventually, the166

absence of the second multiplication term in STH02 can leads to an increased167

efficiency without any additional loss of accuracy in the multilevel approach.168

In preliminary 1D tests for the Chinnery kernel, we found that the resulting169

error is higher for the BL90 scheme. We additionally tested the BL90 scheme170

for the realistic simulation described in section 5.1 and the error was greater171

than that in the test with STH02 type scheme. Hence, the approach in172

STH02 is chosen for solving the multiplication problems in this work.173

4. Details and results of application174

Differently from Coulombic potential, the Chinnery kernel has a negative175

value at the source (G < 0 at i = j) and decreases as 1/r3 away from the176

source. Figure 2 shows the sharpness of the kernel G in 2D perspectives.177

The kernel decreases rapidly from a source so that the contribution from178

long-range interactions is relatively small. Figure 3 shows the center of cells179

on Ωh and Ω2h in our 2-level scheme. Computations on Ωh are done for the180

interaction between the positions denoted by the black squares. To improve181

the efficiency, only interactions between the neighbouring cells are included.182

The neighbour size is determined by the cut-off radius a. We use a linear183

interpolation matrix I2h
h to map the function on the fine grid onto the coarse184

grid. More details of the interpolation between the two levels are described185
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in the Appendix. We obtain a softened kernel G̃ on the basis of the second-186

order Taylor expansion of 1/r3, but modified coefficients to further smooth187

the function. There is also an option to use a higher order approximation.188

The approximation is, of course, not unique. We tested different formula189

for the second-order expansion and the one presented here is found to be190

optimal. The smoothed function is given by191

G̃(r) =

{
1

(4a)3

(
− 1

16
−
(

r
a

)2
+ 2

(
r
a

)4)
, r ≤ a

G(x; x′), r > a
(9)

in this study. We need to implement this function in such way that
∑

i,j Gij192

is nearly conserved in the multilevel scheme. Figure 4 shows the Chinnery193

kernel (G) and the smoothed function (G̃) when a = L/64 = 1.0984 km and194

the source and evaluation depth are at z = 0.5492 km. It is shown that the195

profile of the smoothed function survives nearly unchanged through inter-196

polations. This is consistent with the well conserved sum of the kernel G
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Figure 4: The distribution of the Chinnery function Gh(r) (red), G̃h(r) (blue), and
Ih
2hG̃

2hI2h
h (r) (green) when a = L/64 and z = 0.5492 km.

197

to a degree of machine accuracy for all cut-off radii tested here (see Table198

1). This conservation property is important not to interfere with physical199

features of the fault model when we implement the multigrid method. In200

Table 1, comparisons about the sum are made between the 2-level multigrid201

scheme and the direct computation only within a cut-off radius. This di-202

rect computation differs from the original full direct multiplication in that203

it simply exclude the long-range interactions beyond the cut-off radius. It204
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Table 1: Total sum of the kernel (G) in the tests:
∑

l,m,nGtest, where l is an index of the
depth of the evaluation, m of the source, and n is a horizontal index difference between
them. It is -7.7423 for the original full direct multiplication (

∑
l,m,nG). For comparison,

we show |(
∑

l,m,nGtest −
∑

l,m,nG)/
∑

l,m,nG| in the 2-level multigrid scheme and the
direct computations only within each cut-off radius.

a Multigrid scheme Direct computation within a
70 km (a = L) 1.15 × 10−16 3.5 × 10−6

35 km (a = L/2) 1.15 × 10−16 1.6 × 10−3

17.5 km (a = L/4) 6.88 × 10−16 6.8 × 10−3

8.75 km (a = L/8) 4.59 × 10−16 2.28 × 10−2

4.375 km (a = L/16) 4.59 × 10−16 6.12 × 10−2

2.1875 km (a = L/32) 4.59 × 10−16 1.44 × 10−1

1.0938 km (a = L/64) 9.18 × 10−16 3.16 × 10−1

is shown that physical features of the fault model could be interfered in the205

computations without the long-range interactions.206

Since the kernel is not symmetric in the vertical direction we consider207

using a modified distance208

rm = ||x− x′||m =
√

(x− x′)2 + (z − z′)2/16, (10)

to include more vertical interaction into computations on the fine grids. We209

attempt to evaluate the performance of the multigrid scheme with the stan-210

dard radius r and that with rm. They are also compared with the direct211

computations within a. We use zero initial τ(xi), the slip u(xi) = (sin(x))2,212

which is dependent on horizontal direction only, and vpl=0 for a computation213

of (1) (Test 1-1). We measure the performance by errors against the original214

full matrix-vector computation on the fine grids using215

ME = max
i

(|τ̃i − τi|), (11)

where the index i = 1, 2, · · ·N to label cells in the domain, τi = τ(xi) is from216

the full direct computation, and τ̃i = τ̃(xi) is from each test case. In table217

2, we list ME in the three test cases. It is shown that errors are lower in the218

multigrid scheme than those in the partial direct computations. The use of rm219

reduces ME only slightly. The results may suggest that the standard radius220
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Table 2: Test 1-1: Error comparisons between the multigrid scheme with the standard
radius r, the scheme with the modified radius, rm, and the direct computation (with rm)
only within a.

a1 r rm Computation within a
70 km (a1 = L) 2.04 × 10−7 1.62 × 10−7 0

35 km (a1 = L/2) 1.25 × 10−5 8.96 × 10−6 2.83 × 10−4

17.5 km (a1 = L/4) 1.36× 10−4 5.44 × 10−5 1.5 × 10−3

8.75 km (a1 = L/8) 4.53 × 10−4 3.53 × 10−4 6.4 × 10−3

4.375 km (a1 = L/16) 1.3 × 10−3 1.3 × 10−3 2.17× 10−2

2.1875 km (a1 = L/32) 3.3 × 10−3 2.7 × 10−3 5.32 × 10−2

1.0938 km (a1 = L/64) 1.38 × 10−2 1.14 × 10−2 1.25 × 10−1

r could be a better choice for efficiency reason when the gain of accuracy221

does not increase significantly with the use of rm.222

Based on the error analysis in STH02 we expect the error in this test to223

be proportional to (h/a)p, where p is the order of the approximation made224

on the smooth part of the kernel and here we use p = 2. Figure 5 shows225

the logarithm plot of ME in the multigrid test 1-1 as function of cut-off226

radius. This is compared to the theoretically expected error C(h/a)2, where227

C is constant. By fitting this curve to the observed error in the test we found228

that convergence of the scheme behaves closely to the theoretical expectations229

when C = 0.0598. The error decreases slowly in the range of medium cut-off230

radius (around 10 km) and decreases similarly to the theoretical expectation231

for short cut-off radius. This error tendency implies that it might be optimal232

to choose a cut-off radius shorter than the medium cut-off radius for the233

problem in this study. We examine the spatial distribution of τi, τ̃i, and234

τ̃i − τi when a = L/16 = 4.375 km in the test 1-1 (Fig. 6). The error is235

relatively larger in the center of the domain, where u(x) is largest. However,236

τ̃i is generally close to τi in most area in the plane. The results suggest237

that the multigrid computations with a = L/16 produce a solution with a238

reasonable accuracy. In the next section, we explain how a multiple time239

stepping is combined with the multigrid scheme and discuss the efficiency240

gain through the multigrid algorithm.241
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5. Multiple time stepping242

Different from classical molecular dynamics, source and evaluation points243

are fixed in the earthquake modeling. This makes it easier to make the244

neighbour list. The list can be made once initially and used in further time245

stepping. We employ the approach suggested in Allen and Tildesley (1987),246

which is based on a Verlét algorithm. This algorithm enables each evaluation247

cell to have the list of neighbouring sources for the short-range interaction.248

Consequently, much less multiplication is needed for the short-range inter-249

action on the fine grids. Also only this interaction is updated for each cell250

every time step, while the long-range interaction is updated less frequently.251

We choose to update short-range interactions twice as often as the long-range252

computations. In other words, if the full direct multiplication is originally253

updated every δt, then we update the short range interactions every δt, but254

the long-range interactions every ∆t = 2δt.255

We assume to have the slip un and the stress τn at a time step n. The256

long-range contribution to τn is approximated by Ih
2h

∑
J G̃

2h
I,Ju

n
J , which is257

updated only every ∆t. Then the 2-level multiple time stepping Euler method258

can be expressed by259

u
n+ 1

2
h = un

h +
∆t

2
(τn)3

τn+ 1
2 =

∑
|x−x′|≤a

(Gh − G̃h)u
n+ 1

2
h + Ih

2h

∑
J

G̃2h
I,Ju

n
J

un+1
h = u

n+ 1
2

h +
∆t

2
(τn+ 1

2 )3

τn+1 =
∑

|x−x′|≤a

(Gh − G̃h)un+1
h + Ih

2h

∑
J

G̃2h
I,Ju

n
J

un+1
2h = 4I2h

h un+1
h

(12)

Here the subscript or superscript, h and 2h denote the variables defined on260

the fine grids Ωh and on the coarse grids Ω2h, respectively. We use the Euler261

method in this study, but it is also possible to combine the multigrid scheme262

with a higher order method such as the 4th-order Runge-Kutta method.263

We begin with testing the multigrid, multiple timestepping with τ per-264

turbed randomly initially. We choose the cut-off radius a = L/16 = 4.375265

km in all tests from now on. The efficiency is measured simply by the ratio of266

elapsed time of calculation (CPU time used by MATLAB) in the full direct267
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computation to that in multi-grid computations in MATLAB environment.268

However, we can also estimate the theoretical efficiency by269

Efficiency ≈ N2 × 2n

N × q × 2n+ (N
4

)2 × n
(13)

where the number of neighbours q varies depending on the cut-off radius a.270

The number of cells on the grids Ω2h is N/4, where N is the number of cells271

on Ωh. The multiplication on the fine grids is updated 2n times, while on the272

coarse grids n times. This can be a theoretically expected maximum efficiency273

in the multigrid, multiple time stepping if we assume the interpolation and274

restriction processes add little computational cost. The theoretical efficiency275

is about 13.8 with the given parameters for the test 2-1 described in Table276

3. Since errors are not significantly improved by using the modified radius277

rm as discussed in section 4, we use the standard radius to achieve a higher278

efficiency in the test. The actual efficiency estimated by CPU time rate is279

12.1 and this is not far from the theoretical efficiency 13.8. In table 3 we280

show that using multiple time stepping leads to a minor decrease in accuracy281

compared to the multigrid computation without multiple time stepping. We

Table 3: Description of test 2-1: given parameters and initial condition, c = 2.8451·10−8,
u0 = 0, and τ0 = [20 mbar, 90 mbar] with ∆t = 3/365 yr and n = 50. Efficiency here is
defined to be CPU time rate: [CPU time in direct computation]/[CPU time in multigrid
scheme].

Test 2-1 Efficiency ME
No multiple time stepping 8.8 3.18 × 10−2

Multiple time stepping 12.1 4.13× 10−2

282

analyze the efficiency as well as the error tendency as function of cut-off283

radius. Figure 7 shows that the efficiency decreases relatively rapidly with284

the radius larger than a = L/16 = 4.375 km. Meanwhile the error decreases285

rather slowly with a at first, but rapidly beyond a = L/4 = 17.5 km. The286

error behaves similarly to that presented in Figure 5. These results suggest287

that the gain in the efficiency would diminish quickly beyond the radius a288

= 4.375 km, while the gain in the accuracy would increase with a rapidly289

if the cut-off radius becomes larger than a = 17.5 km. In consideration of290

14



the trade-off issue between the efficiency and accuracy the choice of the cut-291

off radius L/16 might be appropriate in our computations with a tolerable292

relative error size of 0.001 in τ .
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Figure 7: Test 2-1: Log-log plots for (a) Efficiency defined in Table 3 and (b) ME as
function of a in multigrid, multiple time stepping simulations.

293

5.1. Test 2-2: realistic interseismic process294

In this test we evaluate our multigrid, multiple time stepping algorithm by295

simulating a realistic interseismic process. We begin with the initial condition296

described in Table 4 and compare with the reference solution just before297

rupture occurs. Figure 8 shows that full direct and multigrid computations298

produce similar results to each other and to the reference. The error, the299

difference between the direct and multigrid computation, ranges between 0300

and 0.06 for cut-off radius L/16 = 4.375 km (Fig. 8d). However, it decreases301

rapidly with increasing cut-off radius, and the multigrid solution converges302

to the solution from the full direct computation (not shown here). Table 4303

shows the maximum error ME and efficiency when the multiple time stepping304

is used or not. The achieved efficiency in each case is similar to that shown in305

table 3 and the accuracy is not significantly affected by using multiple time306

stepping. The results from the tests show the potential of the multiple grid307

algorithm in an operational model for efficient simulations.308

6. Conclusion309

We develop a multigrid, multiple time stepping algorithm to efficiently310

simulate interseismic processes by reducing the complexity of direct compu-311

tations in a simplified fault model. The reduction is achieved by computing312

15



Table 4: Description of test 2-2: given parameters and initial condition, c = c(x, z), u0 =
0, and τ0 ≈ [50 mbar, 200 mbar] with ∆t = 0.01 yr, n = 78. Cut-off radius a = L/16 =
4.375 km.

Test 2-2 Efficiency ME
No multiple time stepping 8.8 5.39× 10−2

Multiple time stepping 12.5 6.55× 10−2

a multitude of long-range interactions on a coarse level and updating them313

less frequently. Computational speed-up for more realistic simulations may314

depend on specific implementation details of a model, but this study can pro-315

vide a proof of concept that multigrid methods would be useful for efficient316

matrix-vector multiplications in earthquake modeling. In this work the gain317

in computing speed is about a factor of 10 with an accuracy to a reasonable318

degree. There are no clearly determined standards, but we consider a relative319

error of 0.001 to be reasonable; simulations including coseismic processes have320

shown that stress release is not disturbed by such an error. The conservation321

of the stress in the entire half-space is retained in the multigrid formulation,322

which is a clear advantage over direct computations within a cut-off radius.323

In our study we use the Euler method, but a higher order time stepping such324

as the 4th order Runge-Kutta method can be combined with the multigrid325

scheme. Our 2-level multigrid scheme can be also extended to more levels,326

which are not necessary here because the current work is applied to a rela-327

tively small domain. If the number of interacting cells would become larger,328

increasing the number of levels would be beneficial. The technique presented329

in this work is flexible and easy to implement. Therefore, it has a high po-330

tential to be also useful for the reduction of computational effort in other331

systems, in which spatial scales can be separated. Structural heterogeneities332

can be taken into account by changing the Green’s function or by changing333

model parameters like the material strength as a function of space. The334

same holds for the implementation of additional faults leading to a growth of335

the interaction matrix. Such modifications will increase the computational336

effort, but the application of our method is nevertheless straightforward. Fu-337

ture work will examine the feasibility of our method with respect to those338

modifications and try a higher number of multi levels for the fault model339

with an increased complexity.340
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Figure 8: Test 2-2: (a) reference τ (mbar), (b) τ from the full direct computation, (c) τ
from the multigrid, multiple time stepping, and (d) the difference between (b) and (c).
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Appendix. Algorithmic details347

We build a two-level domain described in Figure 3. The level-1 grid points348

(black) corresponds to those in the original fault segmentation (Fig. 1). Then349

we calculate Gh
i,j based on a routine for the Chinnery function. Along with350

this we also produce G̃h
i,j using (9). Then we initialize uh or τh from previous351

integration or using existing data. The displacement (u) on grids Ω2h are352

defined using those on Ωh in such way that:353

u2h ≡ 4I2h
h uh. (.1)

where we use the restriction operator I2h
h for cell-centered discretization in354

such way that355

I2h
h Ah(x, y) =

1

4
[Ah(x− h

2
, y − h

2
) + Ah(x− h

2
, y +

h

2
)+

Ah(x+
h

2
, y − h

2
) + Ah(x+

h

2
, y +

h

2
)]

(.2)

This restriction operator transfers the data at the fine level (Ωh) to the coarse356

level (Ω2h).357

Next we make a list of neighbourhood for every point xi amongst xj. The358

size of a neighbour is given by359

S = (a/h · 2 + 1)2 (.3)

for each x = (x, y) so that the total length of the neighbours become S ×360

length(x). This reduces the computation of N × N to N × S, when N is361

the length of x. We name a new kernel function g(xi; xj) for short-range362

interactions with neighbours. Components of g(xi; xj) are retrieved from363

G(xi; xj)-G̃(xi; xj) under the condition |xj − xi| ≤ a. Likewise we define a364
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new displacement v(xj, t) by collecting only the element in the neighbour list365

from the original vector u(xj, t). Eventually, (5) is replaced by366

τh(xi) ≈
∑

xj ∈ neighbour list of xi

g(xi; xj)v(xj, t) + Ih
2h

∑
J

G̃2h
I,Ju

2h
J , (.4)

where Ih
2h is a prolongation operator (interpolation operator) that transfers367

data on the coarse grids to the fine grids and the method chosen here is taking368

the values on the nearest grid points in Ω2h (see Fig. 3). Alternatively we can369

use a linear interpolation method for cell-centered discretization described in370

Trottenberg et al. (2007), which might lead to a slightly lower errors. How-371

ever, we chose the nearest-point interpolation for reasons of efficiency since372

the gain in accuracy could be minimal for the problem under consideration.373
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