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ABSTRACT

It has recently been proposed to apply concepts of analytical mechanics to numerical discretization
techniques for geophysical flows. So far, mostly the role of the conservation laws for energy and
vorticity based quantities has been discussed but recently the conservation of phase space volume
has also been addressed. This topic relates directly to questions in statistical fluid mechanics and
in ensemble weather and climate forecasting. Here, we investigate phase space volume behaviour
of different spatial and temporal discretization schemes for the shallow-water equations on the
sphere. We compare combinations of spatially symmetric and common temporal discretizations.
Furthermore, the relation between time-reversibility and long-time volume averages is addressed.

1. Introduction

In atmospheric modeling, many properties of a numer-
ical scheme contribute to its overall performance. Local
accuracy of the operators, numerical stability, phase speed
of characteristic waves and conservation laws for mass, mo-
mentum, energy and vorticity based quantities have long
been a matter of interest (see, for example, Arakawa (1966);
Vichnevetsky and Bowles (1982); Salmon (1983); Zeitlin
(1991); Salmon (2005); Sommer and Névir (2009)). In re-
lated efforts, new classes of numerical schemes have been
developed for classical mechanics (Leimkuhler and Reich
(2004), Hairer et al. (2006). Of particular interest in this
field are conservation laws for energy, symmetry induced
conservation laws, and preservation of the symplectic struc-
ture. These methods, primarily designed for finite dimen-
sional systems of ordinary differential equations, are now
commonly referred to as geometric integration. Extension
of geometric integration to Hamiltonian partial differen-
tial equations (Morrison (1998); Shepherd (1990); Salmon
(1999)) is still an active area of research (Bridges and Re-
ich (2006)). See Frank and Reich (2004) for a particular
application to atmospheric fluid dynamics.

In this paper, we focus on a particular aspect of geo-
metric integration methods; namely conservation of volume
and time-reversibility (Arnold (1989)). Considering invis-
cid atmospheric dynamics as a dissipation-free dynamical
system, phase space volume is expected to be conserved.
This is a reasonable assumption even though this system is

not symplectic but Lie-Poisson (Arnold (1989)). It should
be emphasised that the relation of volume conservation
to reversibility is delicate (Lamb 1996; Posch and Hoover
2004). In particular, time-reversibility does not imply vol-
ume conservation but as will be shown below sets close
boundaries to fluctuations.

There are practical applications where phase space vol-
ume behavior of a given dynamical system can be of rel-
evance. When computing ensemble forecasts, a spurious
phase space contraction or expansion respectively could
have severe effects on the implied ensemble spread and the
dimension of the chaotic attractor (Ehrendorfer (1994a,b)).
Possibly, this lack of conservation is most dominant for the
most unstable dimensions, i. e. those with the largest Lya-
punov exponents.

The aim of this article is to investigate the impact of
common spatial and temporal discretization schemes of
a ‘state of the art’ atmospheric forecast model on phase
space volume and its relation to time-reversible discretiza-
tion methods (Leimkuhler and Reich (2004), Hairer et al.
(2006)). This topic has been previously addressed in Eg-
ger (1996). Dubinkina and Frank (2007) showed that the
Arakawa scheme (Arakawa (1966)) for two-dimensional in-
compressible flow is volume conserving. Here we show re-
sults of a more general physical and numerical setting.

Section 2 gives a definition of phase space volume con-
servation for numerical schemes in terms of the Liouville
equation and introduce the concept of time-reversibility.
In section 3, three different spatial discretization schemes
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of the shallow-water equations on the sphere are compared
regarding their phase space volume conservation proper-
ties. In section 4, different time-integration schemes are
compared.

2. Volume conservation under numerical discretiza-
tions

For this analysis, the discretization process is under-
stood as split into two parts, namely spatial (e. g. finite dif-
ferences) and temporal (e. g. implicit midpoint, leap-frog)
discretization. This carries a partial differential equation
(PDE) over to an ordinary differential equation (ODE) and
to an algebraic equation (AE).

a. Volume conservation and time-reversibility under spatial dis-
cretization

For a given PDE

ż = XPDE[z] (1)

let the ODE

ż = X(z) (2)

be a spatially discretized approximation of that PDE (1).
The corresponding normalised probability density function
ρ(z(t), t) is defined to fulfil the Liouville equation

∂tρ = −∇ · (ρX) or equivalently
dρ
dt

= −ρdiv (X). (3)

This evolution equation can be interpreted as a conserva-
tion law for the probability p of finding a system in a given
co-moving volume V (t):

d
dt

∫
V (t)

dV ρ︸ ︷︷ ︸
=:p

= 0. (4)

Locally, dp = ρdV and thus the phase space volume is
antiproportional to the density ρ. In the following when
speaking about phase space volume, what is meant is sim-
ply the inverse of the density.

Generally, the divergence of the discretized equation
(2) need not be the same as that of the field equation (1).
We define the difference as the accuracy order of volume
conservation of that specific spatial discretization:

div (XPDE) = div (X) +O(∆xr). (5)

A PDE (1) is called time-reversible, if there is a lin-
ear transformation of variables S such that S = S−1 and
XPDE(Sz) = −SXPDE(z). Similarly, a finite-dimensional
spatial truncation (2) is called time-reversible if X(Sz) =
−SX(z). Time-reversibility of a PDE is relatively easy to

maintain under spatial discretizations except for the ad-
vection terms (Egger (1996)). In this paper, we consider
only spatial discretizations which lead to reversible ODEs
(2). See Section 3.

As a Hamiltonian system, the shallow-water equations
and the incompressible Euler equations have vanishing di-
vergence. Generally it is considered to be impossible to
spatially truncate the Hamiltonian PDEs of fluid mechan-
ics to a finite dimensional Hamiltonian system. While the
antisymmetry condition can be maintained by discretizing
the Poisson brackets, this method does not ensure the Ja-
cobi identity to be fulfilled. A notable exception is provided
by Zeitlin’s truncation of the 2D incompressible Euler equa-
tions (Zeitlin (1991)). On the other hand, one may aban-
don the Hamiltonian nature of (1) and seek volume only
conserving discretrizations instead. Indeed, Arakawa’s dis-
cretization for the 2D incompressible Euler equations is
time-reversible and also conserves volume (Dubinkina and
Frank (2007)). However, it should be noted that time-
reversibility does not imply conservation of volume, in gen-
eral (Lamb (1996)), and we will demonstrate this fact nu-
merically in Section 3.

b. Volume conservation under temporal discretization

In the following, the accuracy order of volume conser-
vation for time stepping algorithms of linear systems is
considered. Experiments with the nonlinear shallow-water
equations in Section 4 will partially reflect this linear analy-
sis but also feature important differences. For now, assume
the ODE (2) to be linear:

ż = Az (6)

with constant phase space divergence

div (Az) = tr(A).

Let M be the specific discrete flow map that maps the
prognostic variables zi = z(ti) from timestep i to i+ 1:

M : zi 7→Mzi = zi+1. (7)

According to assumption (4) the probability p is constant
in a co-moving control volume so that∫

Vi+1

dVi+1 ρ(zi+1, ti+1) =
∫
Vi

dVi ρ(zi, ti)

and the left hand side complies with the transformation
formula∫

Vi+1

dVi+1 ρ(zi+1, ti+1) =
∫
Vi

dVi ρ(Mzi, ti+1) det(M)

so that
ρi+1 det(M) = ρi. (8)
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Here, the abbreviation ρi := ρ(zi, ti) has been used. Since
M is the discrete flow map of an s order time integration
scheme, it satisfies

M = exp(∆tA+O(∆ts+1)).

Also, eq. (8) can be written as a discrete Liouville equation

ρi+1 − ρi
∆t

= − ρi
∆t

(1− 1
detM

) (9)

= − ρi
∆t

(1− exp(−tr(∆tA+O(∆ts+1)))). (10)

A comparison of this to the exact solution

ρ̂i+1 − ρi
∆t

= − ρi
∆t

(1− exp(−trA∆t)) (11)

shows that the accuracy order of volume conservation is
also s. While s designates the order of accuracy of vol-
ume tendency, the volume ratio between two time steps is
actually of order s+ 1.

1) Time-reversible systems

We now demonstrate that conservation of volume for
linear systems (6) is closely linked to the conservation of
time-reversibility under a numerical time-stepping method
(7).

In a typical situation of fluid dynamics, where the non-
linear equations of motion are invariant under time reflec-
tion, the corresponding linear system (6) satisfies

SA = −AS, (12)

where S acts by inverting the sign of the velocity com-
ponents. Then the eigenvalues of A come in pairs with
opposite signs since

SAv = λSv = −ASv.

Hence, assuming that A is diagonalisable, A is a traceless
matrix. Therefore in the linear case, time-reversibility and
volume conservation are equivalent. If a discrete flow map

zi+1 = Mzi

satisfies the corresponding symmetry

SM = M−1S, (13)

then detM = 1 and volume is conserved. Condition (13)
is satisfied for symmetric Runge-Kutta methods such as
the implicit midpoint/trapezoidal rule. It does not hold
for non-symmetric methods such as explicit and implicit
Euler and the popular explicit fourth-order Runge-Kutta
methods (Leimkuhler and Reich (2004) and Hairer et al.
(2006)).

The situation becomes more complicated for general
nonlinear ODEs (2) with time-reversing symmetries. It
can be shown (Reich (1999)) that symmetric Runge-Kutta
methods can be interpreted as the “exact” solution to a
modified ODE

ż = X̂∆t(z)

which satisfied SX̂∆t(z) = −X̂∆t(Sz), i.e., the modified
ODE is still time-reversible. However, since time-reversibility
does not imply conservation of volume for nonlinear ODEs,
the same applies to numerical methods. We will explore
this issue further in the subsequent section and Section 4.

c. Volume conservation in terms of Lyapunov exponents

Recall that the Lyapunov exponents λ1, . . . , λN of an
N -dimensional dynamical system (2) are defined as

λj = lim
t→∞

1
t

lnσj(x, t),

where σ1, . . . , σN are the singular values of the Jacobi ma-
trix of the flow map.

The sum of the Lyapunov exponents satisfies

∑
j

λj = lim
t→∞

1
t

∫ t

0

div X(z(t′))dt′ , (14)

which, for ergodic systems, is equal to the phase space or
ensemble mean.

For a time-discretized system zi+1 = φ(zi), this reads

∑
j

λj = lim
k→∞

1
k

k−1∑
i=0

ln |det Jz(φ(zi))|

= lim
k→∞

1
k

ln
k−1∏
i=0

|det Jz(φ(zi))|,

where Jz(φ(z)) denotes the Jacobian of φ at z, and there-
fore

e
P

j λj = lim
k→∞

k−1∏
i=0

|det Jz(φ(zi))|
1
k = lim

k→∞
k

√
ρ0

ρk

= lim
k→∞

{ ρi
ρi+1
}0≤i≤k, (15)

where the overbar denotes the geometric mean. It is as-
sumed that no re-orientation takes place, which is reason-
ably the case here.

For conservative systems, phase space volume is con-
served and therefore the sum of all Lyapunov exponents
equal to zero. For systems with volume expansion or con-
traction, this sum is shifted to a positive respectively a
negative value. For time-reversible systems, the sum of the
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Lyapunov exponents is zero generically. 1 Consequently
(14) states that as long as reversibility is ensured, phase
space volume is conserved in a long-term average even if lo-
cally the vector fields are not divergence free. The same ap-
plies to time-reversible maps. In other words, a symmetric
time integration scheme with a reversible space discretiza-
tion can be expected to average out local fluctuations in
volume over long time simulations.

3. Experiments with spatial discretization schemes

In this section, three different spatial discretization schemes
of the shallow-water equations on a staggered inhomoge-
neous triangular grid (the ICON grid) will be compared.
One is the ICON shallow-water prototype (ICOSWP), a
finite volume scheme with wind and height as prognostic
quantities. The second (Helmholtz) is also a finite volume
scheme but with prognostic quantities vorticity, divergence
and height. The third (Nambu) predicts also vorticity, di-
vergence and height and has additionally algebraic exact
conservation properties for total energy and potential en-
strophy. A detailed description of these schemes can be
found in Sommer and Névir (2009).

For the Nambu scheme (see Sommer and Névir (2009)
for notation), the divergence of the prediction vector field
in phase space can be explicitly computed as

div (XNambu) =
2
9

∑
l

λl
δl
∂⊥l γ

1
∂⊥l q

(q̃
˜

(
1

Aνhν
)
l

−
˜

q(
1

Aνhν
)
l

) 6= 0.

(16)

As a difference of the product of a mean and the mean
of a product, this spatial semi-discretization is not ex-
actly divergence-free and even a perfectly volume preserv-
ing time integration method would not preserve phase space
volume. The divergent part of the prognostic vector field
is due to compressibility and the grid inhomogeneity. Ne-
glecting this, phase space divergence vanishes for the same
reason as stated in Dubinkina and Frank (2007). However,
the divergence (16) vanishes in the continuous limit and
is very small for practical choices of resolution as shown
below.

To keep the results independent of the number of grid
points N , instead of displaying volume ratio, the (geomet-
ric) mean length expansion respectively contraction ratio

Λi,j := N

√
ρj
ρi

will be used. This can be interpreted as a typical length of
the observed volume in one dimension, or as the geometric

1A non-zero sum of Lyapunov exponents for time-reversible sys-
tems is possible for systems with a strong local violation of volume
conservation and leads to the existence of low dimensional attractors
and repellors (Posch and Hoover 2004).

mean ensemble variation. The relation to the Lyapunov
exponents is

e
1
N

P
j λj = lim

k→∞
{Λi,i+1}0≤i≤k (17)

according to (15). It must be stressed though, that even
with conserved total volume, the variation may be very
different in the distinct dimensions as the volume deforms.
To determine variation along the different dimensions, an
ensemble forecast would be the appropriate method.
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Fig. 1. Mean length tendency against grid constant.
ICON (dashed), Helmholtz (dotted) and Nambu (solid)
scheme.

Mean length tendency as given by 1
N div (X) against

spatial resolution is depicted in figure 1 for three different
spatial discretization schemes on the ICON grid. Due to
the complexity of the problem, only three values (corre-
sponding to 802, 3202 and 12802 data points respectively)
were computed. With more data available, the order of
spatial accuracy r could be determined. For the compari-
son between the different spatial and temporal schemes we
focus on the absolute values however. Obviously all three
schemes are not divergence-free, in contrast to the results
for the tendency of potential enstrophy. For that quan-
tity it has been shown in Sommer and Névir (2009), that
the tendency of the Nambu scheme vanishes algebraically.
Still, all schemes considered here converge and, as will be
shown below, volume non-conservation is still rather small
compared to that caused by asymmetric time integration
schemes.

4. Experiments with temporal discretization schemes

In this section, different time-integration rules are com-
pared concerning their volume conservation properties. The
spatial scheme chosen here is the ICON scheme, but any
other choice gives very similar results. The spatial resolu-
tion for these tests was set at 800km, corresponding to the
lowest resolution in the previous section.
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a. Implicit mid-point rule

The implicit mid-point rule

zi+1 = φ(zi) = zi + ∆tX
(
zi+1 + zi

2

)
is symmetric and therefore conserves volume very well,
whenever the underlying ODE is reversible (Egger (1996)).
Here we show experimentally, that while the conservation
property is well reproduced, it is not exact. Vanishing
phase space divergence is not a sufficient criterion for vol-
ume conservation under this scheme (Hairer et al. 2006).
As discussed in Section 1, volume is conserved exactly for
linear time-reversible systems , since the implicit midpoint
is time-reversible. Note also that volume conservation for
general Hamiltonian systems can be ensured by using sym-
plectic time integration methods (Leimkuhler and Reich
2004; Hairer et al. 2006). An application of such a method
for the shallow-water equations on the sphere is given in
Frank and Reich (2004).
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Fig. 2. Mean length tendency for the implicit midpoint
scheme. ICON (dashed), Helmholtz (dotted) and Nambu
(solid) scheme.

Mean length tendency according to (9) against time
step size is plotted in Fig. 2 for different spatial discretiza-
tion schemes. It can be seen that the non-conservation of
volume is dominated by the spatial truncation error.

b. Leap-frog method

As shown in Egger (1996) the unfiltered leap-frog scheme
is symmetric and volume conserving in the extended phase
space, even for non-reversible equations. Here we show re-
sults of the leap-frog with Asselin filter, a common method
to control the computational mode. This filter makes the
scheme asymmetric and the volume contraction rate can
be computed as:

ρi+1

ρi
= (1− 2γ)−N ,

where γ is the Asselin parameter and N the number of grid
points. This yields a discrete Liouville equation of the form

ρi+1 − ρi
∆t

= − ρi
∆t
(
−2Nγ +O(γ2)

)
.

This is independent of the generating vector field and
time-step size, therefore no reasonable accuracy order can
be given for this scheme. However, for typical choices of
time-step and Asselin parameter values (0.02 has been cho-
sen here), phase space volume is distinctively contracted
within only a few time steps, see Fig. 3.
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Fig. 3. Mean length tendency for Leap-frog (dotted) and
Runge-Kutta-4 time integration (inviscid: solid, viscid:
dashed).

c. Fourth-order Runge-Kutta scheme

While for the linearised equations, volume conserva-
tion under this scheme is of fourth-order accuracy, the re-
sults of an experiment (Fig. 3) with the nonlinear equa-
tions suggests a very different behavior. Comparing this to
the results of the experiments with the symmetric implicit
midpoint scheme, the fourth order explicit Runge-Kutta
scheme shows strong volume contraction even for reason-
ably small time step sizes. To give an impression of the
scale of this phenomenon, the result of the same experi-
ment with added viscosity of the form ν∇2v (ν = 10km2

s ,
corresponding to an e-folding time of the smallest wave
numbers representable on the grid of half a day) is also
displayed in Fig. 3. As expected, the dissipation leads to
a volume contraction; here about 3 per cent in 3 hours. 1
per mil of energy is dissipated over the same period. While
volume contraction due to this viscosity is much stronger
than the effect of spatial discretization on volume, it is
small compared to the effect of the temporal discretization
scheme. This shows clearly, that volume non-conservation
by numerical schemes can be comparable or even larger
than the effect of the physical processes involved.

5. Conclusion

Focusing on the divergence-free example of the shallow-
water equations, phase space volume behavior for different
discretization schemes has been analysed. For the spatial
discretization, it was found that none of the three schemes
tested is a divergence-free approximation, which is due to
the variable staggering and the inhomogeneity of the grid.

Concerning the time integration methods, it was found
that only the symmetric implicit midpoint scheme comes
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close to volume conservation. In combination with a re-
versible (but not necessarily divergence-free) space discretiza-
tion this symmetric scheme ensures time-averaged volume
conservation. All other schemes showed significant spu-
rious volume contraction, dominating the effects of space
discretization and even that of viscosity. While phase space
volume (non-)conservation is an abstract property of any
dynamical system, the degree of its numerical realization
can obviously have an important impact on results of the
ensemble forecasting method. The above mentioned short-
comings will eventually cause a systematic error in ensem-
ble spread.

The implicit midpoint/trapezoidal rule shows a desir-
able behavior with regard to conservation of volume; but it
is very expensive to implement. While computationally ef-
ficient standard implementations of semi-implicit variants
(Durran (1998)) are no longer symmetric, a framework for
time-symmetric semi-implicit methods have recently been
proposed (Staniforth et al. (2007); Reich (2006); Hundert-
mark and Reich (2007)). These methods should display
the same desirable behavior with regard to time-averaged
volume conservation as the implicit midpoint/trapezoidal
rule.
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