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Abstract

We evaluate the Hamiltonian Particle Methods (HPM) and the Nambu discretiza-
tion applied to shallow-water equations on the sphere using the test suggested by
Galewsky et al. (2004). Both simulations show excellent conservation of energy and
are stable in long-term simulation. We repeat the test also using the ICOSWP scheme
to compare with the two conservative spatial discretization schemes. The HPM sim-
ulation captures the main features of the reference solution, but wave 5 pattern is
dominant in the simulations applied on the ICON grid for this highly idealized test.
As the spatial resolution increases, the wave 5 pattern weakens and features of refer-
ence solution emerge on the ICON grid. Nevertheless, agreement in statistics between
the three schemes indicates their qualitatively similar behaviours in the long-term in-
tegration.

1 Introduction

For long-term simulations of atmospheric flows, it is essential to develop numerical schemes
that retain conservation properties such as mass, energy, circulation, and locally potential
vorticity or globally potential enstrophy. Potential vorticity (PV) is one of the quantities of
main interest in atmospheric flows. It is advected materially along the path of fluid particles.
Particle methods are a fully Lagrangian formulation and maintain PV as well as other con-
servation properties in a long-term simulation. The discretized Hamiltonian approach used
in particle methods leads to methods preserving the symplecticity of fluid flows. This makes
them an attractive alternative to Eulerian atmospheric models. However, the generation
of high-frequency waves is a challenge in their applications. The problem is dealt with by
regularization in such way that the conservation properties are not affected. Consequently,
artificial diffusion can be avoided and time-reversibility survives. The Hamiltonian particle-
mesh (HPM) method has been proposed by Frank et al. (2002) for shallow-water equations
in planar geometry and extended to the shallow-water equations on the sphere (Frank &
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Reich 2004). Also non-hydrostatic HPM simulations have been presented recently in Shin
& Reich (2009).

Névir & Blender (1993) extended the Nambu mechanics to incompressible hydrodynamics
to generalize the non-canonical Hamiltonian formulation. Salmon (2005) and Salmon (2007)
combined this idea with the general strategy of using antisymmetry properties to construct
numerical schemes that conserve mass, circulation, energy, and potential vorticity. His idea
is adopted by Sommer & Névir (2009) for the shallow-equations on a staggered geodesic grid
used for the ICOsahedral Non-hydrostatic (ICON) model. Besides conservation of energy
and enstrophy, they show numerically that such schemes are stable and reproduce spectral
properties of underlying partial differential equations.

Here we further evaluate the HPM and the Nambu schemes by using a test proposed
by Galewsky et al. (2004). They use simple analytical functions for the initial perturbation
to represent barotropically unstable zonal flow, from which complex dynamics is generated.
More details and the given analytic function can be found in Galewsky et al. (2004). First,
we examine the ability of the HPM and the Nambu schemes to maintain a steady zonal
jet in the absence of the perturbation. Then vorticity fields are compared to examine to
which extent features of reference solution are captured for the generation of barotropic
instability. Also we run long-term simulations and analyze spectral distribution and time
series to investigate the long-term behaviour of each discretization for this test.

In the next section we describe the test briefly and introduce main properties of the
HPM and the Nambu discretization. In section 3 results from simulations are presented and
discussed. Lastly we evaluate our schemes and suggest outlook for further studies.

2 Description of the test case and numerical schemes

2.1 Test case

The mentioned test case is designed for the evaluation of the behaviour of numerical dis-
cretization schemes for the shallow-water equations 2.1 and 2.2. These equations describe
the flow of a shallow fluid on a rotating sphere and can be written as

∂tv = −v · ∇v − fk× v − g∇h (2.1)

∂th = −∇ · (hv). (2.2)

The variables are defined as:

v Horizontal velocity vector
h Height of the fluid
f Coriolis parameter
k Vertical unit vector

Here we include no diffusion terms. More details of the HPM and the Nambu representa-
tion of the shallow-water model can be found in Frank & Reich (2004) and Sommer & Névir
(2009). In the following subsections we introduce properties of each scheme briefly. The
initial condition given in this test is depicted in Figure 1. The basic zonal wind of 80 ms−1

represents a mid-latitude tropospheric jet, and the height is geostrophically balanced with
the wind field. A small unbalanced perturbation to the height field is added at the initial
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time, which generates barotropic instability. This perturbation is specified analytically so
that the initial condition given by Galewsky et al. (2004) is easily reproduced.
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Figure 1: Wind field representing jet flow, geostrophically balanced height field, and height
perturbation (left); vorticity field (middle); spectrum at t = 0 (right).

2.2 The ICON scheme

The grid structure of ICON shallow-water model (ICOSWP) (Bonaventura & Ringler 2005)
is illustrated in Fig. 2. The Weber transformation v · ∇v = ζk× v + 1

2
∇v is used to write

the advection term in a vector invariant way, where ζ = ∇ × v is relative vorticity. The
spatial discretization is a finite volume approximation for the divergence and curl operator.
The gradient is approximated as a finite difference. The Leap-frog time integration scheme
with Asselin filtering is used to prevent numerical instabilities from occuring. In the ICON
and the Nambu discretization the spatial resolutions is approximately 85 km (10242 vorticity
points, 30720 wind edges, 20480 height points) for this test.

2.3 The Nambu scheme

The Nambu scheme is a modification of the ICON spatial discretization scheme on the same
grid. While being also a finite volume approximation in vector invariant form, it features a
different averaging scheme and also the operator stencils are larger than those of the ICON
scheme. Its construction method is based on the Nambu representation (Nambu 1973) of the
shallow-water equations suggested in Salmon (2005) and Salmon (2007). This representation
is a generalization of Hamiltonian representation, where the skew-symmetric Poisson bracket
is replaced by a twofold skew-symmetric Nambu bracket. The associated spatially semi-
discretized ODE conserves total energy and potential enstrophy algebraically exact. For
the time integration, the leap-frog and the implicit midpoint method were analyzed. Time-
step size was chosen 100 s which corresponds to a Courant number of 0.5. While none
of the two methods conserves energy or potential enstrophy exactly, the implicit midpoint
method reflects the conservation properties much better than the leap-frog scheme with
Robert-Asselin filter. Hence we only show results with the implicit midpoint simulation.
A semi-implicit implementation of the fully implicit midpoint rule can also be expected to
outperform the leap-frog scheme with Robert-Asselin filter. The main difference between the
ICON and the Nambu scheme lies in the use of different prognostic variables and different
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averaging. The ICON scheme consists in a prognostic equation of the wind normal to
triangle edges and height at triangle centers. The Nambu scheme on the contrary predicts
vorticity at hexagon centers, and divergence and height at triangle centers. Wind velocity
is then reconstructed from vorticity and divergence by solving the Poisson equations for the
corresponding streamfunction and vector potential. The placement of the variables on the
staggered grid is displayed in Fig. 2. To enable the conservation properties to be fulfilled,
the averaging with the Nambu scheme takes places on a considerably larger stencil.

(a) The ICON grid at low
resolution

(b) The local stencil: Vor-
ticity point ν, mass and di-
vergence point i and wind
edge l.

Figure 2: The ICON grid at low resolution and its local stencil.

PDE
Standard Discretization→

((((((((((((((((((
ODE

Conservative ODE
↓ ↑

PDE in Nambu form
Nambu Discretization→ ODE in Nambu form

Table 1: Standard and Nambu discretization scheme

2.4 The HPM scheme

The HPM scheme in this study is a fully Lagrangian formulation which uses a set of K parti-
cles with coordinates xk ∈ R3 and velocities vk ∈ R3 (Frank & Reich 2004). The key aspects
of the HPM lie in its variational or Hamiltonian nature of the spatial truncation and its
combination with a symplectic time stepping so that it guarantees excellent conservation of
mass, energy, and circulation. This distinctive feature is illustrated in Table 2 in comparison
to standard methods. The HPM utilizes also a longitude-latitude grid with equal spacing
π/J , over which a smoothing operator is implemented. Here J denotes the number of grid
points in the latitudinal direction, and is 256 in this test so that the length of the grid is
about 78 km longitudinally at the equator. The spatial discretization is combined with a
modified RATTLE/SHAKE algorithm (Frank & Reich 2004). This explicit time-stepping
is symplectic so that it ensures excellent conservation of total energy and circulation. The
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time-step size used here is 28.8 minutes. A total of K = 1335096 particles are equidistributed
over the sphere initially in this test.

Hamiltonian H
Standard Discretization→

((((((((((((((((((
ODE

Conservative ODE
↓ ↑

Discretized Hn
HPM Discretization→ Euler-Lagrange equation

Table 2: Standard and HPM discretization scheme

3 Experiments and discussion

3.1 Vorticity fields

First, we initialize each model with the balanced zonal wind and integrate without the initial
perturbation (Galewsky et al. 2004). This is to examine the ability of schemes in this study
to maintain the steady zonal flow at least several days without diffusion. The zonal flow
given in this test is dynamically unstable so that truncation errors can initiate instability
even without the initial perturbation. For comparisons with the results in the reference (Fig.
4 in Galewsky et al. (2004)), we focus on the vorticity fields in the Northern Hemisphere (Fig.
3 and 4). The maintenance of the zonal jet is observed up to 7-8 days in the HPM simulation
without the given perturbation. However, this test is not trivial for the schemes with the
ICON grid which is not isotropic. Since the ICON grid is not zonally symmetric, the zonally
symmetric initial state decays very quickly with the generation of non-zonal components.
Wave 5 pattern develops dominantly and only little difference between the cases with or
without the perturbation can be observed (Fig. 3 and Fig. 4). On the other hand, the wave
structure at day 6 in the HPM simulation with the initial perturbation reasonably matches
the reference solution. The inviscid evolution of the vorticity field is well captured when we
examine the solution at time steps before day 6 (not shown here). The unstable vorticity
field rolls up into a number of vortices and develops steep vorticity gradient as featured in
Galewsky et al. (2004). The spatial resolution is refined for the ICON grid and it is observed
that contour plots of vorticity fields change with further refinement and some features of the
reference solution emerge. Moreover, wave 5 pattern weakens and its onset is delayed as the
resolution increases. The effect of the ICON grid will be discussed more in the section 3.3.

3.2 Spectral analysis

In this section we use spectral analysis to examine how kinetic energy is transferred between
wave numbers over time. In particular, we are interested in the long-term behaviour of the
HPM and the Nambu discretization in this test. In accordance with turbulence theory for
incompressible fluids we analyze the ‖v‖2 fields. Let εlm be the spherical harmonic coefficient
of the local constant height kinetic energy ‖v‖2:

εlm = (‖v‖2, Ylm) =

∫
dA ‖v‖2Ylm, (3.1)

5



 

 

−100 0 100
0

20

40

60

80

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
−4

 

 

−100 0 100
0

20

40

60

80

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
−4

 

 

−100 0 100
0

20

40

60

80

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
−4

Figure 3: Vorticity fields without initial perturbation of ICOSWP (left), Nambu scheme
(center) and HPM (right) at day 6
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Figure 4: Vorticity fields with the given initial perturbation of ICOSWP (left), Nambu
scheme (center) and HPM (right) at day 6

Here, Ylm is the normalized spherical harmonic of degree l and order m. The integral in (3.1)
is evaluated on the regular grid for HPM and on the ICON grid for the other two schemes.
The spectral density of kinetic energy in degree l is then defined by

εl =
l∑

m=−l

|εlm|2. (3.2)

This spectral density of kinetic energy εl is shown in figure 5 for the test without the initial
perturbation. It is shown that the peaks of spectrum are nearly unchanged in the HPM
simulation (compare the right panel of Fig 1), consistent with its maintenance of zonal jet at
this time (Fig. 3). Meanwhile, an increase in the kinetic energy on smaller scales is observed
in the Nambu simulation, which is related to the development of the wave 5 pattern (the first
two panels of Fig 3). However, it is observed that peaks of spectrum on larger scales have
generally similar pattern to that at the initial time. The spectral density at day 25 (dash
line) and 30 (dots) are also shown in Fig. 5. At 25 days, there is some increase of energy
in the larger scales below wave number 10, as well as on smaller scales in simulations with
the ICON grid. The spectrum of the HPM scheme is steeper than ICON and the Nambu
schemes, which indicates more energy in larger scales and less in the smallest scales. The
slight increase of small-scale energy is related to the development of complex flow associated
with truncation error after day 6. The spectral density at day 25 and 30 days nearly overlap
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each other in all schemes. This suggests that spectrum become stationary in the long-term
simulation. It also demonstrates that these schemes are stable in the long-term integration.

10 80

10
−4

10
−3

10
−2

10
−1

10 80

10
−4

10
−3

10
−2

10
−1

10 80

10
−4

10
−3

10
−2

10
−1

10
0

Figure 5: Spectral analysis for ICOSWP (left), Nambu scheme (middle), and HPM (right)
at day 6 (black), 25 (blue), and 30 (red) from the test without the initial perturbation.

In the test with the initial perturbation, influences of the perturbation on the spectrum
are well visible (Fig. 6): The odd modes become much more excited in the perturbed case
than in the unperturbed case at day 6. The development of vortices in the HPM simulation
corresponds to the increase of energy on larger wave numbers. The spectrum of the HPM
scheme is generally steeper than that of the Nambu and the ICON schemes. Apparently the
difference is largest in the smallest scales, which might be related to the differences in vortex
structure. At day 25 and 30, increases of smallest-scale energy is evident in the ICON and
the Nambu schemes, while energy transfer on that scale is minimal in the HPM scheme. As
in the unperturbed test, the spectrum becomes stationary before 30 days and all schemes
are stable in the long-term integration.
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Figure 6: Spectral analysis for ICOSWP (left), Nambu scheme (middle), and HPM (right)
at day 6 (black), 25 (blue), and 30 (red) from the test with the initial perturbation.

3.3 Effect of the ICON grid

In the previous sections it is shown that a wave 5 pattern develops in simulations with the
ICON grid (both ICOSWP and Nambu scheme). This has raised a question whether an
increase of spatial resolution delays or weakens the instability generation due to the non-
isotropic grid. We examine this by simulating the test with doubled resolutions, i.e., 40 km
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and 20 km. It is observed that the wave 5 pattern emerges later as the resolution increases
(Fig. 7). Features (Rolling-up wave around the longitude -100◦) in the reference solution are
partially captured and the wave 5 pattern becomes less dominant. Spectral analysis using
the 25 km simulation with the ICON scheme reasonably agrees to that using data from 80
km simulation (Fig. 8). Also this spectrum has better agreement with that in the HPM
simulation in the long-term simulation (see spectral density at day 25 and 30).
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Figure 7: Vorticity fields with initial perturbation for ICOSWP.
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Figure 8: Spectral analysis for ICOSWP with the grid size of 25 km, at day 6 (black), 25
(blue), and 30 for the test with the initial perturbation.
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3.4 Time series

Conservation of energy to a high degree of accuracy is observed in all simulations with
ICOSWP, Nambu, and HPM scheme (Fig. 9). Meanwhile, the enstrophy is conserved best
in the Nambu simulation. Here we define the potential enstrophy as E = 0.5

∑
µ hµq

2
µAµ,

where q is potential vorticity amid Aµ is the area of a grid cell of index µ. This definition
might not yield enstrophy changes that represent the behaviour of the HPM scheme exactly
due to approximations to obtain grid-based values from particle-based ones. Nevertheless, it
is shown that the loss of enstrophy does not increase significantly with time. Together with
spectral analysis this also suggests that the schemes used in this study remain stable in the
long-term simulation.
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Figure 9: Time series of total energy (blue) and potential enstrophy (green) for ICOSWP
(left), Nambu scheme (middle), and HPM scheme (right). Time series of potential enstrophy
obtained using the approximated grid-based PV in the HPM simulation.

4 Conclusion and Outlook

The test used in this study has the advantage that it uses simple and analytic functions
for initial conditions with a prescribed perturbation to impose barotropic instability. The
HPM simulations could reproduce the vorticity fields similar to those in the reference test
in (Galewsky et al. 2004). Without the perturbation the steady zonal jet is maintained
up to 7-8 days without diffusion in the HPM simulations. However, the maintenance of a
zonal jet with steep vorticity gradient is problematic to the schemes with the ICON grid
since non-zonal components in association with the non-isotropic grid generate instability
rapidly. This problem is solved partially by increasing the spatial resolution, but the wave
pattern associated with the grid structure is persistent. It should be noted that relatively
high computational cost for the Nambu discretization with the ICON grid is required to
reproduce the solution close to the reference one. These results indicate that the grid chosen
for constructing a conservative scheme affects the accuracy of solution significantly. As an
outlook, this shortcoming could be addressed in future work in the ICON model. Mean-
while, all schemes in this study have some agreement in the evolution of spectral density
in the long-term integration. This agreement increases especially with finer resolution in
the ICON discretization, which is consistent with the improved accuracy in those simula-
tions. All schemes remain stable for long-term integration, which is demonstrated by the
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energy conservation to a high degree accuracy and spectral density distribution. The results
in this test encourage further investigations with these conservative numerical schemes for
describing atmospheric flows.
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